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INTRODUCTION

These notes are based on the course “Representations of Lie groups”
taught by the author at MIT in Fall 2021 and Fall 2023. This is the
third semester of Lie theory, which follows the standard 2-semester
introductory sequence, “Lie groups and Lie algebras I, IT” (for the au-
thor’s notes of these courses, see [E]). The notes cover the basic theory
of representations of non-compact semisimple Lie groups, with a more
in-depth study of (non-holomorphic) representations of complex groups.

Representation theory of (non-compact) semisimple Lie groups is an
important and deep area of Lie theory with numerous applications,
ranging from physics (quantum field theory) to analysis (harmonic anal-
ysis on homogeneous spaces) and number theory (the theory of auto-
morphic forms,; Langlands program). It is a synthetic subject which,
besides basic Lie theory and representation theory, uses a plethora of
techniques from many other fields, notably analysis, commutative and
non-commutative algebra, category theory, homological algebra and al-

gebraic geometry. For basic Lie theory (in particular, structure and
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finite-dimensional representations of compact Lie groups and semisim-
ple complex Lie algebras) we will rely on the notes [E]. In other areas,
most of the time we review the necessary material before using it, but
at least a superficial previous familiarity with these subjects will be
helpful to the reader.

Representation theory of semisimple Lie groups originated in the
work of Bargmann [Bal and Gelfand-Naimark [GN] in the late 1940s in
the case of SLy and was systematically developed by Harish-Chandra
in 1950s and 1960s, and later developed by many prominent mathe-
maticians, notably R. Langlands, who classified the irreducible repre-
sentations ([La]). A new conceptual approach to the representation
theory of complex semisimple Lie groups was proposed by J. Bernstein
and S. Gelfand around 1980 ([BG]) based on their previous pioneering
work with 1. Gelfand on category (0. This ultimately made the rep-
resentation theory of semisimple Lie groups a part of the new subject
of geometric representation theory that emerged in early 1980s from
the Kazhdan-Lusztig conjecture on multiplicities in category O and
its proof using geometric methods (D-modules and perverse sheaves)
by Beilinson-Bernstein and Brylinski-Kashiwara. Since that time the
theory has made giant strides forward (for example, computation of
irreducible characters of real reductive groups by G. Lusztig and D.
Vogan in 1980s, now implemented in the computer package ATLAS,
as well as progress in the classification of unitary representations de-
scribed in [ALTV]), and the connection with geometry has remained
the main driving force of its development all along.

The organization of the notes is as follows. In Sections 1-7 we discuss
the analytic aspects of the theory, arising from the fact that interesting
representations of non-compact Lie groups are infinite-dimensional and
realized in topological vector spaces. We introduce the main analytic
tools, such as Fréchet spaces, the convolution algebra of measures on the
group, K-finite, smooth and analytic vectors, matrix coefficients, and
then discuss theorems of Harish-Chandra which allow one to reduce the
study of representations of a semisimple Lie group G to the study of ad-
missible (g, K')-modules, where g = LieG and K is a maximal compact
subgroup of GG, and thereby to the purely algebraic problem of study-
ing Harish-Chandra modules. Then in Section 8 we recall the theory
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of highest weight modules for g, and in Section 9 use the developed
theory to classify irreducible and unitary irreducible representations of
SLy(R).

The rest of the notes is almost completely algebraic. Namely, in Sec-
tions 10-14, we prove a number of fundamental properties of the action
of the Weyl group W on the symmetric algebra Sh on the Cartan sub-
algebra b and of the universal enveloping algebra U(g) for a semisimple
complex Lie algebra g — the Chevalley restriction theorem, Chevalley-
Shephard-Todd theorems ([Che],[ST]), Kostant theorems ([Ko]). Then
in Sections 15, 16 we develop the basic theory of the BGG category O,
and in Section 17 discuss the nilpotent cone of g, proving that it is a re-
duced irreducible variety. In Sections 18, 19 we prove the Duflo-Joseph
theorem and discuss principal series representations of the complex Lie
group G. Here we also introduce a functor Hy which connects category
O with the category Harish-Chandra bimodules for g. In Sections 20,
21 we continue to study category O (BGG theorem, BGG reciprocity,
multiplicities, formulation of the Kazhdan-Lusztig conjectures). In Sec-
tions 22-25 we give an exposition of the the theory of projective func-
tors of J. Bernstein and S. Gelfand ([BG]) and give its applications to
representation theory of complex groups (classification of irreducible
representations, describing the category of Harish-Chandra bimodules
in terms of category O) as well as to the structure theory of U(g) (Du-
flo’s theorem on primitive ideals). In Section 26, we apply these results
to the group G = SLs(C) and give an explicit classification of its ir-
reducible and unitary irreducible representations. Finally, in Sections
27-31 we outline the geometric approach to representation theory of
semisimple Lie groups, starting from Borel-Weil theorem and then pro-
ceeding to D-modules, the Beilinson-Bernstein localization theorem,
and classification of irreducible Harish-Chandra modules by data at-
tached to K-orbits on G/B. In these sections the material is more
advanced and the exposition is less detailed.

The notes are divided into 31 sections which roughly correspond to
80 minute lectures. So there is a bit more material than in a 1-semester
course (which normally consists of 26 lectures). So if these notes are
used to teach a course, some material (roughly equivalent to 5 sections)
should be skipped. A lot of important material is included in exercises,
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which are often provided with detailed hints and may be assigned as
homework.

Disclaimer: These notes contain nothing original except mistakes
of the author, and in all sections the exposition is mostly adopted from
various existing sources — original articles, textbooks and lecture notes.
For example, the exposition in Sections 1-7 is mostly borrowed from
|G and |L], in Sections 20, 21 parts are adopted from [Hul, in Sections
22-25 we closely follow [BG], and in Sections 28-30 we follow [BCEY].
Since the material is standard, we do not always give a reference.

Also, these notes only scratch the surface in the deep subject of
representations of semisimple Lie groups. For a more in-depth study of
this theory, we recommend the books [K], [ABV] and the lectures [KTJ;
for recent progress on unitary representations see [ALTV]. For more
about category O we refer the reader to [Bez], [Hu]. For more on the

theory of D-modules and their applications to representation theory we
recommend the book [HTT].

Acknowledgments. I'd like to thank David Vogan who prompted
me to rework the MIT Lie groups graduate sequence, of which this
is part 3 (the notes for parts 1 and 2 can be found in [E]). It is my
pleasure to dedicate this text to David’s 70th birthday.

[ am grateful to the students of the MIT course “Representations
of Lie groups” in the academic years 2021/2022 and 2023/2024 for
feedback, and to Jeffrey Lu and David Vogan for reading the manuscript
and many corrections. This work was partially supported by the NSF
grant DMS-DMS-2001318.

1. Continuous representations of topological groups

This course will be about representations of Lie groups, with a fo-
cus on non-compact groups. While irreducible representations of com-
pact groups are all finite-dimensional, this is not so for non-compact
groups, whose most interesting irreducible representations are infinite-
dimensional. Thus to have a sensible representation theory of non-
compact Lie groups, we need to consider their continuous representa-

tions on topological vector spaces.
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1.1. Topological vector spaces. All representations we’ll consider
will be over the field C, which is equipped with its usual topology.
Recall that a topological vector space over C is a complex vector
space V' with a topology in which addition V' x V' — V and scalar
multiplication C x V' — V are continuous. The topological vector
spaces V' we’ll consider will always be assumed to have the following
properties:

e Hausdorff: any two distinct points of V' have disjoint neighbor-
hoods.

e locally convex: 0 € V (hence every point) has a base of convex
neighborhoodsﬂ Equivalently, the topology on V' is defined by a family
of seminormg{ {v,,a € A}: a base of neighborhoods of 0 is formed by
finite intersections of the sets U, := {v € V]v,(v) < e}, a € A, e > 0.
L.e., it is the weakest of the topologies in which all v, are continuous.

e sequentially complete: every Cauchy sequenceﬂ is convergent.

Also, unless specified otherwise, we will assume that V' is

e first countable: 0 € V (equivalently, every point of V') has a
countable base of neighborhoods. By the Birkhoff-Kakutani theorem,
this is equivalent to V being metrizable (topology defined by a metric),
and moreover this metric can be chosen translation invariant: d(x,y) =
D(z —y) for some function D : V — Rs,.

In this case V is called a Fréchet space. For example, every Banach
space (a complete normed space), in particular, Hilbert space is a
Fréchet space.

Recall that a Hausdorff topological vector space V' is said to be com-
plete if whenever V is realized as a dense subspace of a Hausdorff
topological vector space V with induced topology, we have V = V.
Every complete space is sequentially complete, and the converse holds
for metrizable spaces (albeit not in general). Thus a Fréchet space can

'Recall that a set X C V is convex if for any z,y € X and t € [0,1] we have
tr+ (1 -ty e X.

2Recall that a seminorm on V is a function v : V — R such that v(z +y) <
v(z) +v(y) and v(Az) = |A|v(z) for z,y € V, A € C. A seminorm is a norm iff
v(z) =0 implies z = 0.

3Recall that a sequence a, € V is Cauchy if for any neighborhood U of 0 € V
there exists IV such that for n,m > N we have a,, — a,, € U.

5



be defined as a locally convex complete metrizable topological vector
space.

Alternatively, a Fréchet space may be defined as a complete topo-
logical vector space with topology defined by a countable system of
seminorms v, : V — R, n > 1. Thus, a sequence x,, € V goes to
zero iff v, (z,,) goes to zero for all n. Note that the Hausdorff prop-
erty is then equivalent to the requirement that any vector x € V with
vp(x) = 0 for all n is zero.

A translation-invariant metric on a Fréchet space may be defined by
the formula

d(z,y) = D(z —y), D(z) =Y _ 1 (@)

Note however that D is not a norm, as it is not homogeneous: for
A € C, D(Ax) # |A|D(z). If we had a finite collection of seminorms,
we could define a norm simply by D(z) := ) v,(x), but if there are
infinitely many, this sum may not converge, and we have to sacrifice
the homogeneity property for convergence. In fact, the examples be-
low show that there are important Fréchet spaces that are not Banach
(i.e., do not admit a single norm defining the topology). We also note
that the same Fréchet space structure on V' can be defined by different
systems of seminorms v,,, and there is also nothing canonical about the
formula for D (e.g., we can replace 2% by any sequence a,, > 0 with
Y Gy < 00), 80 v, or D are not part of the data of a Fréchet space.

Finally, unless specified otherwise, we will assume that V' is

e second countable: admits a countable base. For metrizable
spaces, this is equivalent to being separable (having a dense countable
subset).

Example 1.1. 1. Let X be a locally compact second countable Haus-
dorff topological space (e.g., a manifold). Then it is easy to see that
X can be represented as a countable nested union of compact subsets:
X =U,»; Ko, K1 C Ky C ... Let C(X) be the space of continuous

complex-valued functions on X. We can then define seminorms v,, by

va(f) = max|f(x)].

Q?EKn
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(this is well defined since K, are compact). This makes C'(X) into a
Fréchet space, and this structure is independent on the choice of the
sequence K. The convergence in C(X) is uniform convergence on
compact sets.

By the Tietze extension theorem, if K C L are compact Haus-
dorff spaces then the restriction map C'(L) — C(K) is surjective. So
C(X) = lim,,,C(K,) as a vector space. Alternatively, without mak-
ing any choices, we may write C'(X) = limgcxC(K), where K runs

%
over compact subsets of X.

2. If X is a manifold and 0 < k£ < oo, we can similarly define a
Fréchet space structure on the space C*(X) of k times continuously
differentiable functions on X. Namely, cover X by countably many
closed balls K, each equipped with a local coordinate system, and set

Von(f) = max [|d" f(2)[|, 0 <m <k

where d" f(x) is the m-th differential of f at x, comprising the m-th
mixed partial derivatives of f at x with respect to the local coordinates
(these are labeled by two indices rather than one, but it does not matter
since this collection is still countable). The convergence in C*(X) is
uniform convergence with all derivatives up to k-th order on compact
sets.

These spaces are not Banach unless X is compact. Moreover, C*°(X)
is not Banach even for compact X (of positive dimension). For example,
for C*°(S') we may take,

m

v(f) = ) max|fO(z)],
P zeSt

but this is still an infinite collection. Note that these are all norms,
not just seminorms, but each of them taken separately does not define
the correct topology on C*°(S') (namely, v, defines the incomplete
topology induced by embedding C*(S') as a dense subspace into the
Banach space C™(S') with norm v,,).

3. The Schwartz space S(R) C C*°(R) is the space of functions f
with

Vmn(f) :=sup [z"0™ f(z)| < oo, m,n > 0.
TzeR
7



This system of seminorms can then be used to give S(R) the structure of
a (non-Banach) Fréchet space. The same definition can be used for the
Schwartz space S(RY), by taking n = (ny,...,ny), m = (my, ..., my),
x = (r1,...,xNn), 0 = (01, ...,0n), and

x .—Ha:il, 0 .—H@i L
i

7

It is well known that all these spaces are separable (check it!).

1.2. Continuous representations. Let G be a locally compact topo-
logical group, for example, a Lie groupf_[]

Definition 1.2. A continuous representation of G is a topological
vector space V with a continuous linear action a : G x V — V[

In particular, a continuous representation gives a homomorphism
m: G — Aut(V) from G to the group of continuous automorphisms of
V' (i.e., continuous linear maps V' — V' with continuous inverse).ﬂ

Definition 1.3. A continuous representation is called unitary if V' is
a Hilbert space and for all g € G, the operator 7(g) : V' — V is unitary;
in other words, 7 lands in the unitary group U (V) C Aut(V).

Exercise 1.4. Let 1 < p < oo and LP(R) be the Banach space of
measurable functions f : R — R with

i, = ([ !f(x)!pdx); o

(modulo functions vanishing outside a set of measure zero), with norm
f = |[fll,- The Lie group R acts on LP(R) by translation.

4Topological groups will always be assumed Hausdorff and second countable. Im-
portant examples of locally compact topological groups include groups G(F'), where
F is a local field and G is an algebraic group defined over F'. If F' is archimedean
(R or C) then G(F) is a real, respectively complex, Lie group. Another example
important in number theory is G(A), where k is a global field, Ay is its ring of
adéles, and G is an algebraic group over k.

5Tt is easy to see that it suffices to check this property at points (1,v) forv e V.

6Note that by the open mapping theorem, in a Fréchet space any invertible
continuous operator has a continuous inverse.

8



(i) Show that this is a continuous representation, which is unitary
for p = 2 (use approximation of L? functions by continuous functions

with compact support).
(ii) Prove the same for the Fréchet spaces C*(R) and S(R).

Let G be a locally compact group, for example a Lie group. In this
case GG is known to have a unique up to scaling right-invariant Haar
measure dz. For Lie groups, this measure is easy to construct by
spreading a nonzero element of A"g*, g = Lie(G), n = dim g, over the
group G by right translations. Thus we can define the Banach space
LP(G) similarly to the case G = R. It is easy to generalize Exercise
to show that the translation action of G on LP(G) and C*(G) is

continuous, with L?(G) unitary.

Example 1.5. Let X be a manifold with a right action of a Lie group
G. We'd like to say that we have a unitary representation of G on
L3(X) via (gf)(x) = f(zg). But for this purpose we need to fix a G-
invariant measure on X, and such a nonzero measure does not always
exist (e.g., G = SLy(R), X = RP! = S1).

The way out is to use half-densities on X rather than functions.
Namely, recall that if dim X = m then the canonical line bundle Ky :=
A™T*X has structure group R*. Consider the character R* — R>?
given by t — |t|°, s € R, and denote the associated line bundle |K|*.
This is called the bundle of s-densities on X (in particular, densities
for s = 1 and half-densities for s = ). Thus in local coordinates
s-densities are ordinary functions, but when we change coordinates by

x +— o' = 2'(z), these functions change as
f=Ffldet(3)I"

The benefit of half-densities is that for any half-density f, the ex-
pression |f|? is naturally a density on X, which canonically defines a
measure that can be integrated over X. As a result, the space L*(X)
of half-densities f on X with

11, = \//Xm? <o

9



is a Hilbert space attached canonically to X (without choosing any
additional structures), and any diffeomorphism g : X — X defines a
unitary operator on L?(X). Thus similarly to Exercise [l.4 L*(X) is a
unitary representation of G. Note that if X has a G-invariant measure,
this is the same as a representation of G on L?-functions on X.

In particular, we see that we have a unitary representation of G x GG
on L*(G) by left and right translation even though the right-invariant
Haar measure is not always left-invariant.

If V is finite-dimensional, Aut(V') = GL(V) is just the group of in-
vertible matrices, and the continuity condition for representations of G
is just that the map 7 : G — Aut(V) is continuous in the usual topol-
ogy. Then it is well known that this map is smooth and is determined
by the corresponding Lie algebra map g — End(V) = gl(V'), and this
correspondence is a bijection if G is simply connected. In this way the
theory of finite-dimensional continuous representations of connected Lie
groups is immediately reduced to pure algebra.

On the other hand, for infinite-dimensional representations the situ-
ation is more tricky, as there are several natural topologies on Aut(V).
One of them is the strong topology of End(V') (continuous endomor-
phisms of V'), in which T,, — T" iff for all v € V' we have T,, v — Tw. It
is clear that if (V) is a continuous representation of G then the map
7w : G — Aut(V) is continuous in the strong topology, but the converse
is not true, in general. However, the converse holds for Banach spaces
(in particular, for unitary representations).

Proposition 1.6. If V is a Banach space then a representation (V, )
of G is continuous if and only if the map m : G — Aut(V') is continuous
in the strong topology.

Proof. Recall the uniform boundedness principle: If T, is a se-
quence of bounded operators from a Banach space V' to a normed space
and for any v € V' the sequence T,,v is bounded then the sequence ||T,,||
is bounded.

Now assume that 7 is continuous in the strong topology. Let g, € G,
gn — 1, and v, - v € V. Since G is second countable, our job is to
show that 7(gn)v, — v. We know that 7(g,)v — v, as 7(g,) — 1 in

the strong topology. So it suffices to show that 7(g,)(v, —v) — 0. As
10



v, — v — 0, it suffices to show that the sequence ||7(gy)|| is bounded.
But this follows from the uniform boundedness principle.

Remark 1.7. 1. Another topology on End(V') for a Banach space V' is
the norm topology, defined by the operator norm. It is stronger than
the strong topology, and a continuous representation 7 : G — Aut(V)
does not have to be continuous in this topology. For example, the
action of R on L?(R) is not. Indeed, denoting by T, the operator 7(a)
given by (T,.f)(z) = f(x+a), we have || T, — 1|| = 2 for all a # 0 (show
it!).

2. If dim V' = oo then Aut(V) is not a topological group with respect
to strong topology (multiplication is not continuous).

1.3. Subrepresentations, irreducible representations.

Definition 1.8. A subrepresentation of a continuous representation
V of G is a closed G-invariant subspace of V. We say that V is irre-
ducible if its only subrepresentations are 0 and V.

Example 1.9. The translation representation of R on L?(R) is not irre-
ducible, although this is not completely obvious. To see this, we apply
Fourier transform, which is a unitary automorphism of L?(R). The
Fourier transform maps the operator T, to the operator of multiplica-
tion by €"®. But it is easy to construct closed subspaces of L*(R) invari-
ant under multiplication by e*®: take any measurable subset X C R
and the subspace L?*(X) C L*(R) of functions that essentially vanish
outside X (e.g., one can take X = [0, +00)).

Example 1.10. Here is the most basic example of an irreducible infinite-
dimensional representation of a Lie group. Let G be the Heisenberg
group, i.e., the group of upper triangular unipotent real 3-by-3 ma-
trices. It can be realized as the Euclidean space R? (with coordinates
x,y, z being the above-diagonal matrix entries), with multiplication law

(a,b,c)(a,V,d)=(a+d b+b,c+ +ab).

Then we can define a unitary representation of G on V = L*(R) by
setting m(a,0,0) = € (multiplication operator) and 7(0,0,0) = T,
(shift by b).

11



Exercise 1.11. (i) Show that this gives rise to a well defined unitary
representation of G, and compute 7(a, b, ¢) for general (a, b, c).

(ii) Show that V' is irreducible.

Hint. Suppose W C V is a proper subrepresentation, and denote
by P :V — V the orthogonal projector to W. We can write P as an
integral operator with Schwartz kerne]ﬂ K(z,y), a distribution on R?.
Show that K is translation invariant, i.e., K(x + a,y + a) = K(z,vy),
and deduce K (z,y) = k(x —y) for some distribution k(z) on RF] Show
that (¢ —1)k(x) = 0 for all a € R. Deduce that P is a scalar operator.
Conclude that P =0, so W = 0.

2. K-finite vectors and matrix coefficients

2.1. K-finite vectors. Let K be a compact topological group. In this
case K has a unique right-invariant Haar measure of volume 1, which
is therefore also left-invariant; we will denote this measure by dg. Thus
if V' is a finite-dimensional (continuous) representation of K and B a
positive definite Hermitian form on V' then the form

B(v,w) ::/KB(gv,gw)dg

is positive definite and K-invariant, which implies that V' is unitary. If
V' is irreducible then by Schur’s lemma this unitary structure is unique
up to scaling.

This implies that finite-dimensional representations of K are com-
pletely reducible: if W C V is a subrepresentation then V = W @ W+,
where W+ is the orthogonal complement of W under the Hermitian
form.

"Recall that every smooth function ¢(z,y) on R? with compact support defines
a trace class operator Ty with kernel ¢(y, x), i.e.,

(Tyf)(x / Py, x

Then the Schwartz kernel K of a continuous endomorphism A of L?(R) is defined
by the formula (K, ¢) = Tr(AT,) (which is well defined since the operator ATy, is
trace class).
8This means that (K, ¢) = (k, ), where ¢(z = [po(z +y,y)dy.
12



Now let V' be any continuous representation of K (not necessarily
finite-dimensional).

Definition 2.1. A vector v € V is K-finite if it is contained in a finite-
dimensional subrepresentation of V. The space of K-finite vectors of

V is denoted by Viir,

Let Irr K be the set of isomorphism classes of irreducible finite-
dimensional representations of K. We have a natural K-invariant linear
map

5 : EBpGIrrKI—IOIn(pa V) X p — Vﬁn
(where K acts trivially on Hom(p,V')) defined by

E(h®u) = h(u).
Lemma 2.2. £ is an isomorphism.

Proof. To show ¢ is injective, assume the contrary, and let p be an
irreducible subrepresentation of Keré. Then p = h ® p for a suitable
h € Hom(p, V), so for any u € p we have h(u) = {(h ® u) = 0. Thus
h = 0, a contradiction.

It remains to show that ¢ is surjective. For v € V" let W c Vi be
a finite-dimensional subrepresentation of V' containing v. By complete
reducibility, W is a direct sum of irreducible representations. Thus
it suffices to assume that W is irreducible. Let h : W — V be the
corresponding inclusion. Then v = h(v) = £(h ® v). O

Example 2.3. Let K = S* = R/27Z. The irreducible finite-dimensional
representations of K are the characters p,(x) = e for integer n. Let
V = L%*(SY). Then Hom(p,,V) is the space of functions on S* such
that f(x + a) = €™ f(z), which is a 1-dimensional space spanned by
the function e™*. It follows that V" is the space of trigonometric
polynomials a,e™, where only finitely many coefficients a, € C
are nonzero.

2.2. Matrix coefficients. Let us now consider the special case V' =
L*(K), and view it as a representation of K x K via

(m(a,0)f)(x) = f(a~ D).

13



For every irreducible representation p € Irr K’ we have a homomorphism
of representations of K x K:

¢, Endep=p* ®p— L*(K)
defined by
§o(h ®v)(g) := h(gv).

This map is nonzero, hence injective (as p* ® p is an irreducible K x K-
module), and is called the matrix coefficient map, as the right hand
side is a matrix coefficient of the representation p. The theorem on
orthogonality of matrix coefficients tells us that the images of ¢,
for different p are orthogonal, and for A, B € Endcp we have

(AR
(6,(A). &,(B)) = ZABD

where B' is the Hermitian adjoint of B with respect to the unitary
structure on p. Thus, choosing orthonormal bases {v,;} in each p, we
find that the functions
Vpij = (dim p)2&,(Eyy),

where E;j = U;j ® v,; are elementary matrices, form an orthonormal
system in L?(K).

Let us view L*(K) as a representation of K via left translations. Let
p € Irr K. Then every h € p defines a homomorphism of representations
fn : p* — L*(K) which, when viewed as an element of L*(K,p), is
given by the formula f,,(y) := yh. Conversely, suppose f : p — V
is a homomorphism. Then f can be represented by an Lz—funcpvion
f : K — p such that for any b € K, the function z — f(bx) — bf(x)
vanishes outside a set S, C K of measure 0. Let S C K X K be the set
of pairs (b, z) such that x € S,. Then S has measure 0, hence the set
T, of b € K such that (b,x) € S (i.e., x € Sp) has measure zero almost
everywhere with respect to . So pick « € K such that T), has measure

zero. For y = bx ¢ T,x, we have v ¢ Sy, so f(y) = yz~' f(z). Thus

f = fn where h = 271 f(z). Tt follows that the assignment h > f}, is
an isomorphism p = Hom(p*, L?(K)). This shows that the map

P & P rrep— L2E)"

pElrrK pElrrK
14
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is an isomorphism, where L?(K)i" is the space of K-finite vectors in
L*(K) under left translations. Thus any K-finite function under left
(or right) translations is actually K x K-finite, and we have a natural
orthogonal decomposition

L2(K>ﬁn o~ @ p*®p

pElrrK

Moreover, since L?(K) is separable, it follows that IrrK is a countable
set.

2.3. The Peter-Weyl theorem. The following non-trivial theorem is
proved in the basic Lie groups course.

Theorem 2.4. (Peter-Weyl) L?(K)™ is a dense subspace of L*(K).
Hence {t,i;} form an orthonormal basis of L*(K), and we have

Lz(K) = @pelrer* ® p-
(completed orthogonal direct sum under the Hilbert space norm,).

Example 2.5. For K = S' = R/277Z the Peter-Weyl theorem says
that the Fourier system {e""} is complete, i.e., a basis of L?(S').

2.4. Partitions of unity. Let X be a metric space with distance func-
tion d, and C' C X a closed subset. For x € X define

d(z,C) = inf ccd(x,y)

if C' # (. This function is continuous, since d(x, C') < d(z,y) +d(y, C),
hence |d(z,C) —d(y, C)| < d(z,y). Thus the function fo(x) := %
(defined to be 1 if C' = () is continuous on X, takes values in [0, 1],
and fo(z) =0iff x € C. So if {U;,7 € N} is a countable open cover of
X then the function }, 27 Jue is continuous and strictly positive, so

we may define the continuous functions on X
27'f, Ue

2 ien 27 fue

These functions form a partition of unity subordinate to the cover

{U;,i € N}: each ¢; is non-negative, vanishes outside U;, and ) . ¢ =

1 (a uniformly convergent series on X).
15
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3. Algebras of measures on locally compact groups

3.1. The space of measures. Let X be a locally compact second
countable Hausdorff topological space. It is well known that such a
space is metrizable, so let us fix a metric d defining the topology on X.

As we have seen in Example , the space C'(X) of continuous func-
tions on X is a separable Fréchet space. So let us consider the topo-
logical dual space, C'(X)*, of continuous linear functionals on C(X).
This space is denoted by Meas.(X); its elements are called (complex-
valued) compactly supported (Radon) measures on X. We will
often use the standard notation from measure theory: for f € C(X)
and p € Meas.(X),

u(f) = /X f(@)dp(z).

We equip Meas.(X) with the weak topology[]in which y, — u iff
tn(f) = p(f) for any f € C'(X) (this topology is commonly called the
weak™ topology, but we will drop the *). Namely, the weak topology is
defined by the family of seminorms p — |u(f)], f € C(X), so Meas.(X)
is Hausdorff and locally convex. We will also see that Meas.(X) is
separable and sequentially complete, but, as shown by the example
below, in general it is not first countable (so in particular not second
countable or metrizable), nor complete, so it is not a Fréchet space.

Example 3.1. Let X = N with discrete topology. Then C'(X) is the
space of complex sequences a = {a,,n € N} with topology defined by
the seminorms v,(a) := |a,|,n € N (i.e., topology of termwise conver-
gence). So C'(X)* = Meas.(X) is the space of eventually vanishing com-
plex sequences f = {f,,n € N} (acting on C(X) by f(a) = > .y fnan)
with topology having base of neighborhoods of zero consisting of finite
intersections of the sets Uy = {f € C(X)* : |f(a)| < €}, a € C(X),
e > 0. This space has a basis {e,,, m > 0} given by (e,,)n := dmn, i.€.,
it is countable-dimensional.

We have f, — 0 in C(X)* iff all f, are supported on some finite
set S C N and for all j € S, f,; — 0. This implies that C'(X)*

9f X is compact then C'(X) is a Banach space and thus so is Meas.(X), in the
corresponding norm topology. However, this norm topology is stronger than the
weak topology and is not relevant here.
16



is not first countable (hence all the more not second countable and
not metrizable). Indeed if W,,,m > 1 were a basis of neighborhoods
of zero then by replacing W,, by Wi N ... N W,, we can ensure that
Wi D Wy D ... Assuming this is the case, pick N,, > 1 such that the
sequence a,, = 3 belongs to W, (it exists since for each m, & — 0 in
C(X)* as N — o0). Then the sequence {a,,, m > 1} does not converge
to 0, and yet for each m, a; € W, for all j > m, contradiction.

Also C'(X)* is not complete, as it is a dense subspace of the space
C(X)zg of all (not necessarily continuous) linear functionals on C'(X)
(uncountable-dimensional, hence bigger than C(X)*), from which it
inherits the weak topology. On the other hand, it is sequentially com-
plete. Indeed, if {f,} is a Cauchy sequence in C(X)* then f, — f,.4
goes to 0 as n — oo, so for some N and n > N, f, — f,, is supported
on some finite set S C N. Hence for all n, f, is supported on the union
of S and the supports of f;, 1 <7 < N, which is a finite set. Hence it
converges (as it is Cauchy). Also, the countable set C(X):, of even-

ra
tually vanishing sequences of Gaussian rationals is dense in C'(X)*, so

C(X)* is separable.

Thus we see that C'(X)* = (J;5,; C(K;)" as a vector space, or, with-
out making any choices, C'(X)* = limgcxC(K)*, where K runs over

compact subsets of X.

Pick a representation of X as a nested union of compact subsets
K;,i > 1. We claim that for any p € C(X)* there exists ¢ such that
if f € C(X) satisfies f|x, = 0 then p(f) = 0. Indeed, if not then
for each i there is f; € C(X) with fi|k, = 0 but u(f;) = 1. Then
the series ), f; converges in C(X) (as it terminates on each K, and
every compact subset of X is contained in some K;) while the series
p(>o; fi) = >, m(fi) = >, 1 diverges, a contradiction. Thus we see
that C(X)* = [U,»; C(K;)* as a vector space, or, without making any
choices, C(X)* = limgcxC(K)*, where K runs over compact subsets
of X

Lemma 3.2. (i) If a sequence {p,,n > 1} € C(X)* is Cauchy then
there is a compact subset K C X such that u, € C(K)* C C(X)* for
all n.
(i) C(X)* is sequentially complete.
17



Proof. (i) Otherwise for each j > 1 there exists the largest positive
integer N; > 0 such that if f € C(X) and f|g; = 0 then p(f) = ... =
pn;—1(f) = 0. The numbers N; form a nondecreasing sequence, and
since C(X)* = U,»; C(K;)*, we have N; — oco. So let p(j) > j be the
largest i for which N; = N;. By assumption, for every j > 1 there is
fi € C(X) with fi|x, = 0 and py,(f;) # 0. Then we can arrange that
pn,(fr + ...+ f;) = j, and pn,(fi) = 0if © > p(j). Now, the series
f=> .- fi converges in C'(X), and we have

pn; (f) = oy (fr + o+ fog) = ki (F1 + o+ fog) = p0)-
On the other hand, since u,, is Cauchy, we get

p(] + 1) _p(j) = :uNj+1(f) - HNJ(f) - Oa j — 00,
a contradiction since p(j) > j.

(i) Let {un,n > 1} be a Cauchy sequence in C(X)*. By (i), pn €
C(K)* for some compact K C X, so we may assume that X is compact.
Since p, is Cauchy, so is pu,(f) for any f € C(X). Thus p, weakly
converges to some linear functional p : C(X) — C given by u(f) :=
lim,, o ptn(f), and our job is to show, that p is continuous. Since
tn(f) is convergent, it is bounded, so by the uniform boundedness

principle, the sequence ||y, is bounded above by some constant C' i.e.,
in(£)] < C I fI. But then [u(f)| < C | fIl, 5o llull < C, as desired. O

3.2. Support of a measure. Define the support of ;€ C'(X)*, de-
noted supppu, to be the set of all x € X such that for any neighborhood
U of z in X there exists f € C'(X) vanishing outside U with u(f) # 0.
Thus the complement (supppu)© is the set of x € X which admit a neigh-
borhood U such that for every f € C'(X) vanishing outside U we have
w(f) = 0. In this case, U C (supppu), so (suppu)© is open, hence supppu
is closed. Moreover, since C'(X)* = limgc xC(K)*, supppu is contained

in some compact subset K C X, so it is itself compact.
Proposition 3.3. If f € C(X) and flsuppu = 0 then p(f) = 0.

Proof. For every z € (suppu)© there is a neighborhood U, C (suppu)©
such that for any ¢ € C(X) vanishing outside U,, p(¢) = 0. These
neighborhoods form an open cover of (suppu)€. Since (suppp)€ is second

countable, this cover has a countable subcover {U;,i € N}. Let {¢;,i €
18



N} be a continuous partition of unity subordinate to this cover. Then

louf) = 0 for al i so () = p(E, ) = 2, (@) = 0. s claimed

3.3. Finitely supported measures. A basic example of an element
of Meas.(X) is a Dirac measure 6,, a € X, such that §,(f) = f(a).
Thus if a,, = a in X as n — oo then d,, — J, in the weak topology.
A finite linear combination of Dirac measures is called a finitely sup-
ported measure, since such measures are exactly the measures with

finite support. The subspace of finitely supported measures is denoted
Meas? (X).

Lemma 3.4. Meas)(X) is a sequentially dense (in particular, dense)
subspace in Meas.(X), i.e., every element p € Meas.(X) is the limit of
a sequence ji, € Meas?(X) in the weak topology.

Proof. By replacing X with suppu, we may assume that X is compact.
For every n > 1, let X, be a finite subset of X such that the open balls
B(z, %) around z € X, cover X. Let {¢,.,,x € X, } be a continuous

partition of unity subordinate to this cover, and let

o = Z 11(Pnz )6, € Meas?(X).

reXp

We claim that p,, — p in the weak topology.
Indeed, let f € C'(X). Then

() =1(F)] = 110D bnalf=F(2))] < i} sup > b f(y)—f ()]

zeXny zeXy

But f is uniformly continuous, so for every € > 0 there is N such that if
d(z,y) <  then |f(z)— f(y)| <e. Soforn > N, whenever ¢,,(y) # 0,
we have |f(y) — f(z)| < e. Thus we get

pin(F) = ()] < ] sup > naly) = ull,

ZBGXTL

which implies the desired statement. U

Note that since X is separable, so is Meas)(X) (given a countable
dense subset T' C X, finitely supported measures with support in 7’

and Gaussian rational coefficients form a countable, sequentially dense
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subset BEp C Meas?(X)). Thus we get that Meas.(X) is separable;
moreover, since Ep is sequentially dense in Meas.(X), the latter is se-
quentially separable.

Corollary 3.5. If X, Y are locally compact second countable Hausdorff
spaces then the natural bilinear map

X : Meas?(X) x Meas?(Y) — Meas,(X x Y)
uniquely extends to a bilinear map
X : Meas.(X) x Meas.(Y) — Meas.(X x Y)

which is continuous in each variable.

Proof. 1t is clear that X is continuous in each variable, so the result
follows from the facts that Meas?(X) is sequentially dense in Meas,(X)
and that Meas.(X) is sequentially complete. O

Remark 3.6. Here is another proof of Corollary We may assume
that X,Y are compact. Given p € C(X)*, v € C(Y)*, define a linear
functional p X v on C(X)® C(Y) C C(X xY) by

(nRv)(f@g) = p(fv(g).

We claim that ||u X v|| < ||u|l||lv] (in fact, the opposite inequality is
obvious, so we have an equality). Thus our job is to show that for
fieC(X),g:€C(Y),1<i<mn, wehave

) N < . ,
S| <l 1 s, 1 37 Aol
i.e., that
Na. )| < ,
/(2 0] < il I 2y, | 32 o)
To this end, it suffices to show that

maX|Zu fi)gi(y)| < ||M|| max |Zfz($)9 ()

which would follow from the inequality

IZM fi)gi(y)] < ||M||maX|Zfz
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forally € Y. But this is just the inequality |u(F,)| < ||p|| maxzex [Fy ()]
applied to Fy(x) :== Y. g:(y) fi(z).

Now note that by the Stone-Weierstrass theorem, C'(X) ® C(Y)) is
dense in C'(X xY), so u X v extends continuously to C(X x Y).

3.4. The algebra of measures on a locally compact group. Now
let G be a locally compact group. In this case Meas’(G) = CG is
the group algebra of G as an abstract group. Namely, the algebra
structure is given by 0,0, = d,,. This multiplication is continuous
in the weak topology, hence uniquely extends to Meas.(G), since the
latter is sequentially complete and Meas?(() is sequentially dense in
Meas.(G). Thus Meas.(G) is a topological unital associative algebra
with unit §;. The multiplication in this algebra may be written as

(k1 % p2)(f) = (11 W o, A(f)) = s f(@y)dpn (x)dpa(y),
X
where A : C(G) — C(G x G) is given by A(f)(z,y) := f(xzy). This
multiplication is called the convolution product.

Moreover, if dg is a right-invariant Haar measure on GG then any com-
pactly supported continuous function (or, more generally, L'-function)
¢ on G gives rise to a measure j = ¢pdg € Meas.(G). For such measures
p1 = ¢1dg, g2 = ¢2dg we have

(pep2)(f) = fay) o1 (z)da(y)dudy = (2)p1(zy~ ") 2 (y)dzdy.
GxG GxG

Thus py * g = ¢dg where

o(z) = /G o1(zy ) baly)dy.

This is called the convolution of functions.

Now let V' be a continuous representation of G with the associated
homomorphism 7 : G — Aut(V). This map 7 extends by linearity to
a homomorphism 7 : CG = Meas?(G) — End(V).

Let us equip CG with weak topology and introduce the corresponding
product topology on CG x V.
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Lemma 3.7. The map CGxV — V given by g — w(g)v is continuous.
Thus m s continuous in the weak topology of CG and strong topology
of End(V).

Proof. We need to show that for any seminorm A (from the family
defining the topology of V') there exists a neighborhood U of 0 in the
space CG x V such that for (u,v) € U we have A\(mw(u)v) < 1. Let
p= > ¢y, then this inequality takes the form

(1) Z)\(cm(xi)v) < L

i=1
Since A is a seminorm, would follow from the inequality
(2) > el A(m (@) < 1.

i=1

We define [ = Y0, [edld,, and f,(x) == A(x(z)v). f, € O(X). Then
takes the form

(3) |l (fo) < 1.
Clearly, the map (u,v) — |u|(f,) is continuous, so we may take U to
be defined by . O

Corollary 3.8. If (V,7) is a continuous representation of G then 7
the action G x V. — V uniquely extends to a continuous bilinear map
Meas.(G) x V. — V| which gives rise to a continuous unital algebra
homomorphism

7 : Meas.(G) — End(V).

Proof. We need to show that for every v € V the map p — w(u)v
uniquely extends by continuity from Meas?(G) to Meas,(G). This fol-
lows from Lemmas [3.4 and [3.7] since V' is complete. O

4. Plancherel formulas, Dirac sequences, smooth vectors

4.1. Plancherel formulas. For a compactly supported L!-function f

on G, for brevity let us denote 7(fdg) just by 7(f).
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Proposition 4.1. (Plancherel’s theorem for compact groups) Let K be
a compact group and f1, fo € L*>(K). Then

o fo) = 3 dimp-Ta(m,(f)mo(f)1)
pelrr K

and this series is absolutely convergent.

Proof. Recall that if e; is an orthonormal basis of a Hilbert space H
and fi, fo € H then

(f1, f2) = Y (frre)(es, fo)

i

and this series is absolutely convergent. The result now follows by
applying this formula to the orthonormal basis provided by the Peter-

Weyl theorem:
¢Pij Y dimp(ﬂ-p(g)/upi?vpj)a
where {v,;} is an orthonormal basis of p. O

Example 4.2. If K = S*', Plancherel’s theorem reduces to the usual
Parseval equality in Fourier analysis:

(f1, f2) = ch fi)en f2
nez
where ¢, (f) are the Fourier coefficients of f.

Proposition 4.3. (Plancherel’s formula) If K is a compact Lie group
and f € C®(K) then

= Y dimp- Te(m,(f))
pelrrK

and this series is absolutely convergent.

Example 4.4. If K = S then this formula says that for f € C*°(S')

nez
i.e., the Fourier series of f absolutely converges at 1. Note that for
f € C(SY) this is false in general["
00ne can show that for an N-dimensional group, the differentiability needed for

the Plancherel formula is C* for k > N/2.
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Proof. Consider the integral operator A of convolution with the func-
tion f:

(A) () = (f *¥)(x) = /K fay ™ Y()dy.

This operator is trace class, since it has smooth integral kernel F'(x,y) =
flzy™), and

Tr(A):/KF(x,x)dx:/Kf(l)da::f(l).

On the other hand, A is right-invariant, so it preserves the decompo-
sition of L?*(K) into the direct sum of p ® p* and acts on each such
summand as 7,(f) ® 1. Thus we also have

as desired. 0

4.2. Dirac sequences. If G is a locally compact group then multi-
plication by dg defines an inclusion C.(G) < Meas.(G) of compactly
supported continuous functions into compactly supported measures as
a (non-unital) subalgebra. Moreover, if G is a Lie group then we have
a nested sequence of subalgebras C*(G), 0 < k < co (compactly sup-
ported C*-functions). The following lemma shows that while these
subalgebras are non-unital, they are “almost unital”.

Lemma 4.5. There exists a sequence ¢, € C.(G) such that ¢, —
in the weak topology as n — oco. Moreover, if G is a Lie group, we can

choose ¢, € C°(G).

Proof. (sketch) ¢,, can be constructed as a sequence of “hat” functions
supported on a decreasing sequence of balls By D By D ... whose inter-
section is 1 € (G. Such hat functions can be chosen smooth if GG is a Lie
group. 0

Such sequences ¢,, are called Dirac sequences.

Corollary 4.6. C.(G) is sequentially dense in Meas.(G). For Lie
groups, C°(Q) is sequentially dense in Meas.(G).
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Proof. By translating a Dirac sequence, for any g € G we can construct
a sequence 1, — d,. This implies that Meas)(G) is contained in the
sequential closure of C.(G) (and of C2°(G) in the Lie case). So the
result follows from Lemma [3.4] 0

4.3. Density of K-finite vectors.

Corollary 4.7. Let V be a continuous representation of a compact
group K. Then Vi is dense in V.

Proof. Let v € V, and ¢, — d; a continuous Dirac sequence, which
exists by Lemma [£.5] Then 7(¢,)v — v as n — oo. But ¢, € L*(K),
so by the Peter-Weyl theorem, there exists ¢, € L*(K)™ = @,0* @ p
such that

1
||wn - ¢n”2 < E

Then ¥, — ¢, — 0 in L2(K), hence in Meas.(K). So by Corollary [3.8]
T(Yn — ¢n)v — 0 as n — oo. It follows that 7(¢y,)v — v as n — oo.
But 7 (¢, )v € Vin, O

Corollary 4.8. L*(K)™™ c C(K) is a dense subspace. Moreover, if K
is a Lie group then L*(K)i C C*(K) is a dense subspace for 0 < k <
0.

Proof. The claimed inclusions follow since matrix coefficients of finite-
dimensional representations of K are continuous, and moreover C'**° in
the case of Lie groups. The density then follows from Corollary[4.7 O

Corollary 4.9. If V is an irreducible continuous representation of K
then V' is finite-dimensional.

Proof. By Corollary , Vin s dense in V. Hence Vi £ 0. Let p
be a finite-dimensional subrepresentation of V. Then p is a closed
invariant subspace of V. Hence p = V. U

4.4. Smooth vectors. Let G be a Lie group. As we have noted in
Subsection [1.2] any continuous finite-dimensional representation 7 :
G — Aut(V) is automatically smooth and thereby defines a repre-
sentation 7, : g — End(V) of the corresponding Lie algebra, which
determines 7 if G is connected. Moreover, if GG is simply connected,

this correspondence is an equivalence of categories. This immediately
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reduces the problem to pure algebra and is the main tool of studying
finite-dimensional representations of Lie groups.

We would like to have a similar theory for infinite-dimensional repre-
sentations. But in the infinite-dimensional setting the above statements
don’t hold in the literal sense.

Example 4.10. Consider the action of S' on L?(S'). Then the Lie
algebra should act by . But this operator does not act on L?(S%).

The largest subspace of L?(S') preserved by this operator (acting on
distributions on S') is C>°(S').

This motivates the notion of a smooth vector in a continuous rep-
resentation of a Lie group. To define this notion, for a manifold X and
a topological vector space V', denote by C*°(X, V') the space of smooth
maps X — V (where smooth maps are defined in the same way as in
the case of finite-dimensional V).

Definition 4.11. Let (V,7) be a continuous representation of a Lie
group G. A vector v € V is called smooth if the map G — V given by
g — 7(g)v is smooth, i.e., belongs to C*°(G, V). The space of smooth
vectors is denoted by V*°.

It is clear that V> C V is a G-invariant subspace (although not a
closed one).

Example 4.12. For the representation of a compact Lie group K on
V = L[*(K), we have V> = C*(K).

Proposition 4.13. Let (V,m) be a continuous representation of a Lie
group G with g = Lie(G). Let v € V™. Then we have a linear map
Tew 0 9 — V™ given by

d
W*,U(b) = E

This defines a Lie algebra homomorphism m, : ¢ — Endc(V>°) (algebra
of all linear endomorphisms of V) given by m.(b)v := m, ,(b).

Exercise 4.14. Prove Proposition [4.13]

Proposition 4.15. (i) V> is dense in V.
(ii) Vin C vee.

li—om(e®)v.
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Proof. (i) Let ¢, — 61 be a smooth Dirac sequence. Then (¢, )v — v
as n — oo. But it is easy to see that 7(¢,)v € V.

(i) This follows since matrix coefficients of finite-dimensional repre-
sentations are smooth. U

5. Admissible representations and (g, K')-modules

5.1. Admissible representations. Now let G be a Lie group and
K C G a compact subgroup. For a continuous representation V' of G,
denote by V& the space (V]x). In general VE-1 is not contained
in V°°; for example, if K = 1 then VX" = V. However, this inclusion
holds if K is sufficiently large and V' is sufficiently small.

Definition 5.1. V is said to be K-admissible (or of finite K-type) if
for every finite-dimensional irreducible representation p of K, the space
Hompg (p, V) is finite-dimensional.

Example 5.2. Let G be a connected Lie group and V = L*(G/B)
where B is a closed subgroup of G (half-densities on G/B). Then V
is K-admissible iff K acts transitively on G/B, i.e., KB = G. In this
case setting T'= K N B, we have G/B = K/T, so V = L*(K/T) and
Homye(p, V) = (p*)* [T

Example 5.3. For G = SLy(C) and K = SU(2), the unitary represen-
tation of G on the space V = L?(CP') of square-integrable half-densities
on CP! is K-admissible. Indeed, taking p, to be the representation of
SU(2) with highest weight n, we have dim Hom(p,,, V') = 0 for odd n
and 1 for even n.

More generally, for a real number s we may consider the represen-
tation Vi of square integrable % + is-densities on CP!; this space is
canonically defined since for a % + is-density f, the complex conjugate
fisa + — is-density, so |f|* = ff is a density and can be integrated
canonically over CP!. This representation has the same K-multiplicities
as V =1,.

HNote that here we don’t have to distinguish between half-densities and functions
on K/T since K/T always has a K-invariant volume form as K is compact.
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Similarly, for G = SLy(R), K = SO(2), we have a unitary K-
admissible representation V' = L*(RP') (half-densities) and more gen-
erally V; (3 + is-densities). For the K-multiplicities we have equalities
dim Hom(x,, V) = 1 for odd n and 0 for even n, where x,(0) = e,

We will see that the representations Vi in both cases are irreducible
and Vi, V, are isomorphic iff s = £¢. The family of representations V;
is called the unitary spherical principal series.

Note that this family makes sense also when s is a complex number
which is not necessarily real. In this case V; is not necessarily uni-
tary but still a continuous representation on square integrable % + 1s-
densities. The space of such densities is canonically defined as a topo-
logical vector space, although its Hilbert norm is not canonically defined
unless s is real (however, we will see that for some non-real s, corre-
sponding to so-called complementary series, this representation is
still unitary, even though the inner product is not given by the stan-
dard formula). The family V; with arbitrary complex s is called the
spherical principal series.

Explicitly, the action of G on V; looks as follows (realizing elements
of V; as functions on R or C, removing the point at infinity):

-1
TR -

where m = 1 in the real case and m = 2 in the complex case.

Proposition 5.4. If V is K-admissible then VEF™ C V> and it is a
g-submodule (although not in general a G-submodule).

Proof. For a finite-dimensional irreducible representation p of K, let
VP :=Hom(p, V) ® p be the isotypic component of p.

We claim that for any continuous representation V' the space V>°NV?*
is dense in V”. Indeed, let ¢, € L?(K)™ be the character of p given by

w,o = Z wpii-

Let &, be the pushforward of ¢,dz from K to G (a measure on G sup-

ported on K'). Then 7(¢,) is the projector to V* annihilating @,,,V".
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Let ¢, — 61 be a smooth Dirac sequence on GG. Then for v € V7,

7(&p * Sa)u = 7(E)(Bn)0 = 7(E,) = v

as n — oo. However, &, * ¢, is smooth, so m(&, * ¢,)v € VN V7.
Thus if V* is finite-dimensional (which happens for K-admissible V)
then VN V? =V? so VP C V®. Hence VEfin C /o
Finally, it is clear that for b € g and v € V?, the vector bv generates
a K-submodule of a multiple of g ® p, so bv € Vi Tt follows that
VE-fin is a g-submodule. ([l

Example 5.5. If G = SLy(R), K = SO2), V =V, = L*(S") is
a spherical principal series representation, then V5" is the space of
trigonometric polynomials. Note that this space is not invariant under
the action of G. However, the Lie algebra g = sl3(R) does act on this
space.

Exercise 5.6. Compute this Lie algebra action in the basis v, = e™?

and write it as first order differential operators in the angle 6. (Pick
generators e, h, f in gc so that h acts diagonally in the basis v;).

5.2. (g, K)-modules. This motivates the following definition. Let K
be a compact connected Lie group and ¢ = LieK. Let g be a finite-
dimensional real Lie algebra containing €, and suppose the adjoint ac-
tion of € on g integrates to an action of K. In this case we say that
(g, K) is a Harish-Chandra pair.

Definition 5.7. Let (g, K) be a Harish-Chandra pair.

(i) A (g, K)-module is a vector space M with actions of K and g
such that

e ) is a direct sum of finite-dimensional continuous K-modules;

e the two actions of € on M (coming from the actions of g and K)
coincide.

(i) Such a module is said to be admissible if for every p € Irr K we
have dim Homg (p, M) < oc.

(iii) An admissible (g, K)-module which is finitely generated over

U(g) is called a Harish-Chandra module.
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Exercise 5.8. Show that if M is a (g, K)-module then for every ¢ €
K,a € g,v € M we have

gav = Ad(g)(a)gv,
where Ad denotes the K-action on g.

In fact, a (g, K)-module is a purely algebraic object, since finite-
dimensional K-modules can be described as algebraic representations
of the complex reductive group K¢. Moreover, we can represent them
even more algebraically in terms of the action of €. Namely, let us say
that a finite-dimensional representation of ¢ is integrable to K if it
corresponds to a representation of K (note that this is automatic if K is
simply connected). Then (g, K)-modules are simply g-modules which
are locally integrable to K when restricted to ¢ (i.e., sum of integrable
modules). So if K is simply connected (in which case £ is semisimple)
then a (g, K)-module is the same thing as a g-module which is locally
finite when restricted to £ (i.e., sum of finite-dimensional modules).

Thus (g, K)-modules form an abelian category closed under exten-
sions (and this category can be defined over any algebraically closed
field of characteristic zero). The same applies to admissible (g, K)-
modules and to Harish-Chandra modules (the latter is closed under
taking kernels of morphisms because the algebra U(g) is Noetherian,
as so is its associated graded Sg by the Hilbert basis theorem).

Example 5.9. Let G be a connected complex semisimple Lie group.
Then its maximal compact subgroup is the compact form K = G..
Thus a (g, K )-module is a g-module M which is locally finite for g. C g,
where g. = LieG.. Note that the action of g here is only real linear.
Thus we may pass to complexifications: (g.)c = ¢, 9c = g @ g, and
g sits inside g @ g as the diagonal. Thus a (g, K)-module is simply a
g & g-module which is locally finite for the diagonal copy of g. This is
the same as a g—bimoduleﬂz] with locally finite adjoint action

ad(b)m := [b,m] = bm — mb.
For example, if I is any two-sided ideal in U(g) then U(g)/I is a (g, K)-
module.
PIndeed, every g @ g-module M with action (a,b,v) — (a,b)ov, a,be g, ve M

is a g-bimodule with av = (a,0) o v and vb = (0, —b) o v, and vice versa.
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Thus we obtain the following proposition.

Proposition 5.10. If V is a K-admissible continuous representation
of G then VEF™ js an admissible (g, K)-module.

Exercise 5.11. Show that for any continuous representation V' of G,
the intersection V°° N V& i5 a (g, K)-module (not necessarily admis-
sible).

Exercise 5.12. Show that if V' is an admissible representation of G
and L a finite-dimensional (continuous) representation of G then V' ® L
is also admissible. Prove the same statement for (g, /{')-modules.

5.3. Harish-Chandra’s admissibility theorem. We will now re-
strict our attention to semisimple Lie groups . By this we will
mean a connected linear real Lie group G with semisimple Lie algebra
g. “Linear” means that it has a faithful finite-dimensional representa-
tion, i.e., is isomorphic to a closed subgroup of GL,(C). In other words,
G is the connected component of the identity in G(R), where G is a
semisimple algebraic group defined over R. Typical examples of such
groups include SL,(R) and SL,(C) (in the latter case G = SL,, x SL,
and the real structure defined by the involution permuting the two
factors).

A fundamental result about the structure of semisimple Lie groups
is
Theorem 5.13. (E. Cartan) Every semisimple Lie group G has a mazx-
1mal compact subgroup K C G which is unique up to conjugation.

Example 5.14. For G = SL,(R) we have K = SO(n) and for G =
SL,(C) we have G = SU(n).

We will say that a continuous representation V' of G is admissible if
it is K-admissible with respect to a maximal compact subgroup K C G
(does not matter which since they are all conjugate).

Theorem 5.15. (Harish-Chandra’s admissibility theorem, [HC2|) Ev-
ery irreducible unitary representation of a semisimple Lie group is ad-
massible.

We will not give a proof (see [HC2],|Gal).
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Remark 5.16. 1. This theorem extends straightforwardly to the more
general case of real reductive Lie groups.

e~

2. Let G = SLy(R) be the universal covering of SLy(R). Then G is
not linear (why?) and so it is not viewed as a semisimple Lie group
according to our definition. In fact, Harish-Chandra’s theorem does
not hold as stated for this group, since it has no nontrivial compact
subgroups. This happens because when we take the universal cover,
the maximal compact subgroup SO(2) = S! gets replaced by the non-
compact group R. However, if we take for K the universal cover of
SO(2) (even though it is not compact) then Harish-Chandra’s theorem
extends straightforwardly to this case.

Exercise 5.17. Let M be an admissible (g, K')-module and
Mv = @VemK(Hom(V, M) X V)* C M*

be the restricted dual to M. Show that MV has a natural structure of
an admissible (g, K)-module, and (M")¥ = M.

6. Weakly analytic vectors

6.1. Weakly analytic vectors and Harish-Chandra’s analytic-
ity. Let G be a Lie group and V' a continuous representation of G.

Definition 6.1. A vector v € V is called weakly analytic if for each
h € V* the matrix coefficient h(gv) is a real analytic function of g.

Example 6.2. Let V = L?(S') and G = S! act by rotations. So if
v(x) =Y, cp vn€™ and h(z) = Y, ; hpe ™ then for g = " we have

h(g(f)v) = Z P, e™.
nez
Thus v is a weakly analytic vector iff the sequence h,v, decays expo-
nentially for any ¢5-sequence {h,}, which is equivalent to saying that
vy, decays exponentially, i.e., v(f) is analytic.

Theorem 6.3. (Harish-Chandra’s analyticity theorem) If V' is an ad-
massible representation of a semisimple Lie group G with maximal com-
pact subgroup K then every v € VEn is a weakly analytic vector.

Theorem [6.3]is proved in the next two subsections.
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6.2. Elliptic regularity. The proof of Theorem is based on the
analytic elliptic regularity theorem, which is a fundamental result
in analysis (see [Cal). To state it, let X be a smooth manifold, and
D(X) the algebra of (real) differential operators on X. This algebra
has a filtration by order: Dy(X) = C>®(X) C D1(X) C ..., such that

Dn(X) ={D € EndeC™¥(X) : [D, f] € Du_1(XVf € C®(X)}, n > 1,

and grD(X) = @,>o'(X, S"T'X), where I' takes sections of the vector
bundle. Thus for every differential operator D on X of order n we have
its symbol (D) € gr,D(X) =I'(X, S"T'X). For every x € X, 0(D),
is thus a homogeneous polynomial of degree n on 1)y X.

Definition 6.4. We say that D is elliptic at z if o(D).(p) # 0 for
nonzero p € T X. We say that D is elliptic (on X) if it is elliptic at
all points z € X.

Example 6.5. 1. If dim X = 1 then any differential operator with
nonvanishing symbol is elliptic.

2. Fix a Riemannian metric on X and let A be the corresponding
Laplace operator, Af = div(gradf). Then A is elliptic.

3. If D is elliptic then for any nonzero polynomial P € R[t] the
operator P(D) is elliptic.

Note that ellipticity is an open condition, since it is equivalent to
non-vanishing of o(D), on the unit sphere in 7 X (under some inner
product). Thus the set of € X on which a given operator D is elliptic
is open in X.

Theorem 6.6. (Elliptic reqularity) Suppose D is an elliptic operator
with real analytic coefficients on an open set U C RN, and f(z) is a
smooth solution of the PDE

Df=0
on U. Then f is real analytic on U.

Corollary 6.7. Let X be a real analytic manifold and D an elliptic
operator on X with analytic coefficients. Then every smooth solution

of the equation Df =0 on X is actually real analytic.
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Remark 6.8. 1. This is, in fact, true much more generally, when f is
a weak (i.e., distributional) solution of the equation Df = 0. Also the
equation Df = 0 can be replaced by a more general inhomogeneous
equation Df = g, where ¢ is analytic.

2. If D is not elliptic, there is an obvious counterexample: the equa-

tion %afy = 0 on R? has smooth non-analytic solutions of the form

f@) +g), f,g € C*(R).

Example 6.9. 1. For N = 1 this theorem just says that a solution of
an ODE

FM () + ay(2) (@) + o+ an(2) f(2) =0

with real analytic coefficients is itself real analytic, a classical fact about
ODE.

2. Let N =2 and D = A be the Laplace operator on U C R? with
respect to some Riemannian metric with real analytic coefficients. This
metric defines a conformal structure with real analytic local complex
coordinate z. Then every harmonic function f (i.e., one satisfying
Af = 0) is a real part of a holomorphic function of z, hence is real
analytic, which proves elliptic regularity in this special case.

3. Suppose f,g are Schwartz functions on R” and D = Q(9) is an
elliptic operator with constant coefficients, where () is a real polynomial
(so the leading term of () is nonvanishing for nonzero vectors). Then
elliptic regularity says that if g is analytic, so is f. This can be easily
proved using Fourier transform. Indeed, for Fourier transforms we get

Q(p)f(p) =g(p). Thus g(p) = %, so this must be a smooth function.

Note that |Q(p)| — oo as p — 0o because () has non-vanishing leading
term. So, since g is analytic, g decays exponentially at infinity, hence
so does f. Thus f is analytic.

6.3. Proof of Harish-Chandra’s analyticity Theorem. We are
now ready to prove Theorem [6.3] Let g = LieG and b € U(g). Then
we have a linear operator m,(b) : V> — V°°, which we will write just
as b for short. Moreover, if b € U(g)¥ then it preserves the subspace
VP C V* for each irreducible representation p of K. Therefore, since
all V* are finite-dimensional, for any v € VX" there exists a nonzero

polynomial P € R[t] such that P(b)v = 0 (e.g., we can take P to be
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the product of the characteristic polynomial of b on Kv by its complex
conjugate).

Now recall that U(g) can be thought of as the algebra of left-invariant
real differential operators on G. Let vy, ,(g) := h(gv) be the matrix
coefficient function. We know that this function is smooth, and we
have

(P(b)¢n)(9) = h(gP(b)v) = 0.
Thus if b is an elliptic differential operator on G, it will follow from
Corollary that v, , is real analytic, as desired.

It remains to find b € U(g)"™ which defines an elliptic operator on
G. For this purpose fix a left-invariant Riemannian metric on G, and
make it K-invariant (under right, or, equivalently, adjoint action) by
averaging over K. Then the Laplace operator A corresponding to this
metric is elliptic and given by some element A € U(g)¥, so we may
take b = A. This proves Theorem [6.3]

Remark 6.10. If G is simple, there exists a unique up to scaling
two-sided invariant metric on G. This metric, however, is pseudo-
Riemannian rather than Riemannian if G is not compact. Thus the
corresponding Laplace operator is hyperbolic rather than elliptic, so
not suitable for our purposes.

6.4. Applications of weakly analytic vectors.

Corollary 6.11. The action of G on V' is completely determined by
the corresponding (g, K)-module V-,

Proof. Since VE-in is dense in V/, it suffices to specify gv for v € VE-fin,
For this it suffices to specify h(gv) for all h € V*. By Theorem [6.3| and
the analytic continuation principle, this is determined by the derivatives
of all orders of h(gv) at ¢ = 1. But these have the form h(bv) where
b e U(g), so are determined by bv. O

Corollary 6.12. Let W C VE/m be q sub-(g, K)-module. Then the
closure W C V is G-invariant.

Proof. Let w € W, g € G. Tt suffices to show that gw € W. If not,
then the space W’ := W @ Cgw is a closed subspace of V' containing

W as a subspace of codimension 1. So there exists a unique continuous
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linear functional h : W’ — C such that h(gw) = 1 and h|y = 0. By the
Hahn-Banach theorem, h can be extended to an element of V*. Thus
to get a contradiction, it is enough to show that for every h € V* that
vanishes on W, we have h(gw) = 0. But by Theorem , this function
is analytic in ¢g. So it suffices to check that its derivatives at ¢ = 1
vanish. But these derivatives are of the form h(bw) for b € U(g), so
vanish since bw € W. 0J

Corollary 6.13. Let V' be an admissible representation of G. There
is a bijection between subrepresentations of V' and (g, K)-submodules
of VK'ﬁ”,_given by a : U C V = UK The inverse is given by
B:W—W.

Proof. Since UK is dense in U, we have 3o a = Id. To show that

ao 8 =1d, we need to show that W — Clearly W™ contains

W, so we just need to prove the opposite inclusion. Let w € W”, then
we have a sequence w, — w, w, € W. Now apply the projector &,:

/

w,, = m(,)w, = m(€,)w =w, n — oo,

and w!, € W*. Thus w € Wr = WP, since W? is finite-dimensional.

Hence W™ — Ww. 0

Corollary 6.14. IfV is irreducible then VE/" is an irreducible (g, K )-
module, and vice versa.

Corollary 6.15. IfV is of finite length then VX" is o Harish-Chandra
module.

Proof. By Corollary [6.13 VE-in is a finite length (g, K )-module. But
any finite length (g, K)-module is finitely generated over U(g), hence a
Harish-Chandra module. U

Let Rep G denote the category of admissible representations of G of
finite length, and HC the category of Harish-Chandra modules for G.
Thus we obtain

Theorem 6.16. The assignment V — VEF™ defines an exact, faithful

functor Rep G — HCq, which maps irreducibles to irreducibles.
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7. Infinitesimal equivalence and globalization

7.1. Infinitesimal equivalence. The functor of Theorem is not
full, however, since there exist pairs of non-isomorphic V,W € Rep G
such that VE—fin o= J&=fin 55 Harish-Chandra modules. Representa-
tions V, W &€ Rep G such that VE—fin = 1)/ K=fin 35 Harish-Chadra mod-
ules are called infinitesimally equivalent. In other words, infinites-
imally equivalent representations with the same underlying Harish-
Chandra module M differ by what topology we put on M (namely,

the corresponding representation M is the completion of M is this
topology). An example of infinitesimally equivalent but non-isomorphic
representations are L?(RP') and C*°(RP!) as representations of G =
SLy(R) (with G-action on half-densities).

However, we have the following proposition.

Proposition 7.1. Let V.W be two unitary representations in Rep G.
If VE-fin o YW E=fn o5 Harish-Chandra modules, then V.= W as uni-
tary representations. In other words, infinitesimally equivalent unitary
representations in Rep G are isomorphic.

Proof. Clearly, it suffices to assume that V,W are irreducible. If V
is unitary irreducible then VX~fi" has an invariant positive Hermitian
inner product B = By restricted from V. Moreover, B is the unique
invariant Hermitian inner product on VE=" up to scaling.ﬁ Indeed, if

B’ is another then pick a nonzero v € VX" and let \ := f;l((;’f)). Then

B’ — AB has a nonzero kernel, which is a (g, K )-submodule of VK~fin,
This kernel therefore must be the whole VE=fin so B’ = \B.

Thus if A : VE=fin 5 JWE=fin i an isomorphism then it is an isometry
with respect to By, By under suitable normalization of these forms.
Then A extends by continuity to a unitary isomorphism V' — W which
commutes with K.

It remains to show that A commutes with G. For v € V, w € W,
consider the function

fww(9) == Bw((9A — Ag)v,w) = By (gAv,w) — By (gv, A ), g€ G.

13An invariant inner product on a (g, K )-module is one that is invariant under
both g and K, i.e., K-invariant and satisfying the equality B(av,w)+ B(v,aw) =0
for all a € g.
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Our job is to show that f,,(g) = 0. It suffices to check this when
v € VE-in as it is dense in V. In this case by Harish-Chandra’s
analyticity theorem, the function f, ,(g) is analytic on G. Also all its
derivatives at 1 vanish since bA — Ab = 0 for any b € U(g). This implies
that f,, is indeed zero, as desired. O

7.2. Dixmier’s lemma and infinitesimal character. The following
is an infinite-dimensional analog of Schur’s lemma.

Lemma 7.2. (Dizmier) Let A be a countable-dimensional C-algebra
and M a simple A-module. Then Enda(M) = C. In particular, the
center Z of A acts on M by a character x : Z — C.

Note that the condition of countable dimension cannot be dropped.
Without it, a counterexample is A = M = C(z) (the field of rational
functions in one variable), then End (M) = C(x).

Proof. Let D := Ends(M). By the usual Schur lemma, D is a division
algebra. Assume the contrary, that D # C. Then for any x € D\ C, D
contains the field C(x) of rational functions of = (as C has no finite field
extensions). But C(z) has uncountable dimension (contains linearly
independent elements m—ia, a € C), hence so does D. On the other hand,
let v € M be a nonzero vector, then M = Av and the map D — M
given by T' +— T'v is injective. Thus M is countable-dimensional, hence
so is D, contradiction. O

Now let g be a countable-dimensional complex Lie algebra and M a
simple g-module. By Lemmal7.2] the center Z(g) of U(g) acts on M by
a character, y : Z(g) — C. This character is called the infinitesimal
character of M.

In particular, for semisimple groups we obtain

Corollary 7.3. (Schur’s lemma for (g, K)-modules) Any endomor-
phism of an irreducible (g, K)-module M is a scalar. Thus the center
Z(g) of U(g) acts on M by a infinitesimal character x : Z(g) — C.

The character y is often also called the infinitesimal character of
M.

Exercise 7.4. Show that the action of Z(g) on every admissible (g, K)-

module M is locally finite.
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7.3. Harish-Chandra’s globalization theorem.

Theorem 7.5. (Harish-Chandra’s globalization theorem) Every uni-
tary irreducible Harish-Chandra module M for G uniquely integrates
(=globalizes) to an irreducible admissible unitary representation of G.

Proof. As before, fix a positive definite K-invariant inner product on
g, and consider the element C := Z;.h:n;g a? € U(g), where a; is an
orthonormal basis of g under this inner product. If Cj is the (suitably
normalized) quadratic Casimir of g, then Cf = Cy + 2C¢, where Cy is
the Casimir of £ := LieK corresponding to the restriction of the inner
product to €. If L, is the highest weight irreducible representation with
highest weight v then —C|r, = |v + pk|* — |pk|*, where py is the
half-sum of positive roots of K. Also Cy|ys = Cyy is a scalar. Thus if
MV := M*" then

~Cf e = 2v + pxl? 2okl — Car = qv).
Note that for v € MY we have

dim g dim g

2 2
> vl ==Y atv,v) = —(Civ,v) = q(v) |[o]|*;
Jj=1 Jj=0

in particular, ¢(v) > 0 and q(v) ~ 2|v|? for large v. It follows that for
any a € g,v € M",

lav]* < q(v) [la* flo]|*.
Now, for a € M" all components of a™v belong to M", where v =
v+ B+ ...+ B, and B; are weights of g as a K-module. So there exist
R, c = ¢(vy) > 0 such that

|a"v]| < (Rn+ c) |al| Ha"_lv” ,n>1.

Thus
[a"v]| < (R +¢)...(Rn+c) [la]]" [Jv]].

av
ey = E —_—
n!

n>0

converges absolutely in the Hilbert space M in the region |lal| < R71,

and convergence is uniform on compact sets with all derivatives, and
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defines an analytic function of a. Moreover, it is easy to check that
|le“v|| = |lv]| (since a is skew-symmetric under the inner product of

M). Thus the operator e* : M — M extends to a unitary operator
on M. The formal Campbell-Hausdorff formula then implies that this
(igﬁnes a continuous unitary action 7 of a neighborhood U of 0 in G on
M such that w(zy) = 7(z)n(y) if z,y,xy € U. It is well known that
this implies that m extends to a unitary representation of the universal
cover G of G on M. Now let K be the preimage of K in G (by the polar
decomposition, it is also the universal cover of K). Since by definition
7|7z extends to K, it follows that 7 actually factors through G. O

Thus, using Harish-Chandra’s admissibility theorem, we obtain

Corollary 7.6. For a semisimple Lie group G, the assignment V
VE=fn s an equivalence of categories between unitary representations of
G of finite length and unitary Harish-Chandra modules of finite length
(i.e., Harish-Chandra modules which admit an invariant positive Her-
mitian inner product).

However, while irreducible Harish-Chandra modules for any G have
been classified, determining which of them are unitary is a very difficult
problem which is not yet fully solved.

8. Highest weight modules and Verma modules

8.1. g-modules with a weight decomposition. Let us recall basic
results on highest weight modules and Verma modules for a complex
semisimple Lie algebra g.

Let g =n_ ® bh dn, be a triangular decomposition and A € h* be
a weight. We have ny = ®,cpr. 0o, where Ry are the sets of positive
and negative roots. Let ) C h* be the root lattice of g spanned by its
roots. Let e;, fi, h;,i = 1,...,7 be the Chevalley generators of g. Let
P C b* be the weight lattice, consisting of A € h* with A(h;) € Z for
all 2 and P, C P be the set of dominant integral weights, defined by
the condition A(h;) € Z>o for all 7. Finally, let @ C @ be the set of
sums of positive roots.

Definition 8.1. Let V arepresentation of g (possibly infinite-dimensional).

Then a vector v € V is said to have weight A\ if hv = A(h)v for all
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h € . The subspace of such vectors is denoted by V[A]. If V[A] # 0,
we say that A is a weight of V| and the set of weights of V' is denoted
by P(V).

It is easy to see that g,V[A] C VA + a].
Let V' C V be the span of all weight vectors in V. Then it is clear

Definition 8.2. We say that V' has a weight decomposition (with
respect to a Cartan subalgebra h C g), or is h-semisimple if V' =V,
Le., if V= @yep VA

Note that not every representation of g has a weight decomposition
(e.g., for V. = U(g) with g acting by left multiplication all weight
subspaces are zero).

Definition 8.3. A vector v in V[ is called a singular (or highest
weight) vector of weight \ if e;uo = 0 for all 4, ie., if n,o = 0.
A representation V' of g is a highest weight representation with
highest weight )\ if it is generated by such a nonzero vector.

8.2. Verma modules. The Verma module M, is defined as “the
largest highest weight module with highest weight \”. Namely, it is
generated by a single highest weight vector v, with defining relations
hv = A(h)v for h € h and e;uv = 0. More formally, we make the following
definition.

Definition 8.4. Let I, € U(g) be the left ideal generated by the ele-
ments h — A(h),h € h and e;, i = 1,...,r. Then the Verma module
M), is the quotient U(g)/I,.

In this realization, the highest weight vector v, is just the class of
the unit 1 of U(g).

Proposition 8.5. The map ¢ : U(n_) — M, given by ¢(x) = zv, is
an isomorphism of left U(n_)-modules.

Proof. By the PBW theorem, the multiplication map
(UM )@U(h@ny) = Ulg)
41



is a linear isomorphism. It is easy to see that {7!(I)) = U(n_) ® K},
where

Ky, _ZU bh®ny)(hi — Ak +ZU[;@n+

is the kernel of the homomorphism y, : (h @n,) — C given by
Xa(h) = A(h), h € b, xx(e;) = 0. Thus, we have a natural isomorphism
of left U(n_)-modules

U(ﬂ_) = U(n_) ® U(h @114_)/}()\ — M)\,
as claimed. O

Remark 8.6. The definition of My means that it is the induced mod-
ule Uf(g) ®u(pen,) Cx, where C, is the one-dimensional representation
of h @ ny on which it acts via x,.

Corollary 8.7. M, has a weight decomposition with P(M)) = A—Q,
dim My[A] = 1, and weight subspaces of M) are finite-dimensional.

Proposition 8.8. (i) If V is a representation of g andv € V is a vector
such that hv = A(h)v for h € h and e;uv = 0 then there is a unique
homomorphism 1 : My — V such that n(vy) = v. In particular, if V is
generated by such v # 0 (i.e., V is a highest weight representation with
highest weight vector v) then V' is a quotient of M.

(ii) Every highest weight representation has a weight decomposition
into finite-dimensional weight subspaces.

(111) Every highest weight representation V' has a unique highest weight
generator, up to scaling.

Proof. (i) Uniqueness follows from the fact that v, generates M. To
construct 7, note that we have a natural map of g-modules 77 : U(g) —
V' given by 7(x) = xv. Moreover, 7|7, = 0 thanks to the relations sat-
isfied by v, so 77 descends to a map n: U(g)/I, = My — V. Moreover,
if V' is generated by v then this map is surjective, as desired.

(i) This follows from (i) since a quotient of any representation with
a weight decomposition must itself have a weight decomposition.

(iii) Suppose v, w are two highest weight generators of V' of weights
A, p. If A = p then they are proportional since dim V[\] < dim My[\] =
1, as V is a quotient of M,. On the other hand, if A # u, then we can
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assume without loss of generality that A — u ¢ Q4 (otherwise switch
A, ). Then p ¢ A — Q4 hence p ¢ P(V), a contradiction. O

8.3. Irreducible highest weight g-modules.

Proposition 8.9. For every A\ € h*, the Verma module M), has a
unique 1rreducible quotient Ly. Moreover, Ly is a quotient of every
highest weight g-module V' with highest weight .

Proof. Let Y C M) be a proper submodule. Then Y has a weight de-
composition, and cannot contain a nonzero multiple of v, (as otherwise
Y = M,),so P(Y) C (A=Q4)\{\}. Now let J, be the sum of all proper
submodules Y C M,. Then P(J)) C (A — Q) \ {\}, so J, is also a
proper submodule of M) (the maximal one). Thus, Ly := M,/J, is an
irreducible highest weight module with highest weight \. Moreover, if
V' is any nonzero quotient of M) then the kernel K of the map M), — V
is a proper submodule, hence contained in Jy. Thus the surjective map
M, — L, descends to a surjective map V' — L,. The kernel of this
map is a proper submodule of V', hence zero if V' is irreducible. Thus
in the latter case V = L,. O

Corollary 8.10. Irreducible highest weight g-modules are classified by
their highest weight A\ € h*, via the bijection A\ — L.

Exercise 8.11. Let g = sl, with standard generators e, f, h and iden-
tify b* = C via A — A(h). Show that M, is irreducible if A ¢ Z>,
while for A a nonnegative integer we have Jy, = M_,_5, so L) is the
A + 1-dimensional irreducible representation of sls.

It is known from the theory of finite-dimensional representations of
g that its irreducible finite-dimensional representations are L, with
A € P,. Thus we have

Proposition 8.12. L, is finite-dimensional if and only if A € P,.

Note that the “only if” direction of this proposition follows immedi-
ately from Exercise [8.11]

8.4. Exercises.
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Exercise 8.13. Let g be a finite-dimensional simple complex Lie alge-
bra, and V a finite-dimensional representation of g. Let A\, u € h* be
weights for g, and X, Y be representations of g with P(X) C A — Q.
P(Y) C p— Q4, and X[\ = Cu,, Y[u] = Cuv, for nonzero vectors
vy, V. Given a linear map ® : X — V ®Y, let the expectation value
of ® be defined by

(@) == (Id® v, Pvy) €V
where vy, € Y[u]* is such that (v};,v,) = 1. In other words, we have
Pvy = (P) ® v, + lower terms

where the lower terms have lower weight than p in the second compo-
nent.

(i) Show that if ® is a homomorphism then (®) has weight A — p.

(ii) Let M) be the Verma module with highest weight A € b*, and
M—u be the lowest weight Verma module with lowest weight —pu, i.e.,
generated by a vector v_, with defining relations hv_, = —pu(h)v_,
for h € h and fiv_, = 0. Show that the map ® — (®) defines an
isomorphism

Homy(My, V@ M_,) = VX — 4]

where * denotes the restricted dual (the direct sum of duals of all weight
subspaces).
(iii) Let A € Py and V[v], be the subspace of vectors v € V[v] of

weight v which satisfy the equalities fi(k’aiv)ﬂv = 0 for all 2. Show that
amap ® € Homg(M,, V®Miu) factors through L, iff (®) € VA — puly,

ie., fi(/\’aiv)ﬂ((b) = 0 (for this, use that ejfi(/\’aiv)ﬂv,\ = 0, and that the
kernel of M, — L, is generated by the vectors fi(’\’ai )Hv)\). Deduce
that the map ® — (®) defines an isomorphism Homy(Ly,V ® Mi“) ~
VA= pl

(iv) Now let both A,y be in P,. Show that every homomorphism
Ly—V ®M*_# in fact landsin V® L, CV ® M*_“. Deduce that the

map ¢ — (P) defines an isomorphism

Homgy(Ly,V ® L,,) = VX — pl.
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(v) Let V' = C™ be the vector representation of SL,(C). Determine
the weight subspaces of SV, and compute the decomposition of 5™V ®
L, into irreducibles for all p € P, (use (iv)).

(vi) For any g, compute the decomposition of g® L,,, it € Py, where
g is the adjoint representation of g (again use (iv)).

In both (v) and (vi) you should express the answer in terms of the
numbers k; such that y =) k;w; and the Cartan matrix entries of g.

Exercise 8.14. (D. N. Verma) (i) Let g = n_ & h & n, be a finite-
dimensional simple complex Lie algebra, and A, € h*. Show that
every nonzero homomorphism M, — M, is injective. (Use that U(n_)
has no zero divisors). Deduce that if M) is reducible then there exists
NeXN—Qs, N # X with My C M,.

(ii) Show that for every A € b* there is N € A — Q4 with My C M,
and M, irreducible. (Assume the contrary and construct an infinite
sequence of proper inclusions

...M)\Q C M>\1 C M,.

Then derive a contradiction by looking at the eigenvalues of the qua-
dratic Casimir C' € U(g)).

(iii) Show that if M, is irreducible then dim Homgy(M,, M,) < 1.
(Look at the growth of the dimensions of weight subspaces).

(iv) Show that dim Homgy(M,, M) < 1 for any A, € h*. (Look at
the restriction of a homomorphism M, — M, to M, C M, which is
irreducible).

Exercise 8.15. (i) Keep the notation of Exercise [8.14 Let A € h* be
such that (A, o) = n — 1 for a positive integer n and simple root «;.
Show that there is an inclusion M)_,q, — M.

(ii) Let p be the sum of fundamental weights of g and W be the Weyl
group of g. For w € W, X € b* let w @ X := w(\ + p) — p (the shifted
action of W). Deduce from (i) that if A € P, then for every w € W,
there is an inclusion ¢, : Myen < M,, and that if w = wywy with
l(w) = l(wy) + €(ws) (where ¢(w) is the length of w) then ¢, factors
through ¢,,. In particular, we have an inclusion M ey <= M-
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(iii) Show that M, is irreducible unless (A 4+ p,a") = 1 for some
a € @y \0, where o¥ := (j;‘;) (look at the eigenvalues of the quadratic
Casimir).

(iv) For § € @, define the Kostant partition function K(5) to
be the number of unordered representations of 5 as a sum of positive
roots of g (thus K(8) = dimU(n,)[3]). Also define the Shapovalov
pairing

Bg(A) : Un)[f] x Un_)[-f] = C
by the formula
xyvy = Bg(\)(x, y)vy,
where z € U(ny)[f],y € U(n_)[—/], and v is the highest weight vector
of M)\. Let
DB(/\) = det Bﬁ()\),
the determinant of the matrix of Bz(\) in some bases of U (ny)[8], U(n_)[—f].
This is a (non-homogeneous) polynomial in A well defined up to scaling.
Show that the leading term of Dy is

Dg()\) = const - H ()\’ aV)Zn21 K(ﬁ—na)'

acER

(Hint: show that the leading term comes from the product of the di-
agonal entries of the matrix of the Shapovalov pairing in the PBW
bases).

(v) Show that

Dg(\) = const - H (A +p,a”) — 1)
a€Q+\0

for some nonnegative integers m, = m,(f). Then use (iv) to show that
moreover m, = 0 unless « is a multiple of a positive root.

(vi) Let V,U be finite-dimensional vector spaces over a field k of
dimension n and B(t) : V x U — k|[[t]] be a bilinear form. Denote
by Vo € V,Uy C U the left and right kernels of B(0). Suppose that
B'(0) is a perfect pairing Vo x Uy — k. Show that the vanishing order
of det B(t) at t = 0 (computed with respect to any bases of V,U)
equals dim Vy = dim Uy. (Hint: Pick a basis ey, ..., e, of Vy, complete
it to a basis ey, ...,e, of V. Choose vectors f,11,..., fn € U such that

B(0)(e;, f;) = 0i5 for m < 4,j < n. Let fi,..., fn, be the basis Uy dual
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to ey, ..., e, with respect to B’(0). Show that {f;} is a basis of U and
the determinant of B(t) in the bases {e;}, {fi} equals t™ + O(t™*1).)

(vii) Show that if A is generic on the hyperplane (A + p, ") = n for
n € Zso and a € Ry and my,(5) > 0 then M, contains an irreducible
submodule M)_,, and the quotient M)/M,_,, is irreducible. (Use
Casimir eigenvalues to show that the only irreducible modules which
could occur in the composition series of M) are Ly and Ly_,, and apply
Exercise .

(viii) Let A be as in (vii) and let B(8,t) := Bg(A + ta). Show that
B(p,t) satisfies the assumption of (vi) for all j.

Hint: Use that ®zKerB(f,0) is naturally identified with My_,,
and B'((,0) restricts on it to a multiple of its Shapovalov form, and
show that one has B (0)(Ux—na;Vr—na) # 0. For the latter, assume
the contrary and show that there exists a homogeneous lift u of vy_,q
modulo #? such that B,,(t)(u,w) = 0 modulo #* for all w of weight
A+ (t — n)a. Deduce that e;u vanishes modulo ¢ for all . Conclude
that

Cu= (A (t —n)a+ p)? — p?)u+ O(t?)
and derive a contradiction with
Cu = ((A+ta+p)? — pHu.

(ix) Deduce that m,.(8) = K(8 — na); in particular, in general

mna(ﬁ) S K(B - na).
(x) Prove the Shapovalov determinant formula:

Ds(\) = [T T+ p.a¥) — n)KGme)

acERy n>1

up to scaling.
(xi) Determine all A € bh* for which M) is irreducible.

9. Representations of SLy(R)

9.1. Irreducible (g, K)-modules for SLy(R). Let us now apply the

general theory to the simplest example — representations of the group

G = SLy(R) of real 2 by 2 matrices with determinant 1. Note that

SLy(R) = SU(1,1), and in this realization the maximal compact sub-

group SO(2) becomes U(1). So we have Lie(G) = g = su(1, 1), hence
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gc = sly(C) with standard basis e, f, h, so that a maximal compact
subgroup K of G consists of elements ¢, ¢ € [0,27). Thus a (g, K)-
module is the same thing as a gc-module with a weight decomposition
and integer weights.

Let us classify irreducible (g, K)-modules M. To this end, recall that
we have the central Casimir element C' € U(gc) given by

(h+1)?

4 Y
and note that by the PBW theorem, U(gc) is free as a right module
over the commutative subalgebra C[h, fe] = C[h, C| with basis 1, f™, e,
n > 1. Thus if v is a nonzero weight vector of M then M is spanned by
v, ffv,e™v. It follows that weight subspaces of M are 1-dimensional,
and P(M) is an arithmetic progression with step 2. Thus we have four
cases:

1. P(M) is finite. Then M = L,,, the m + 1-dimensional irreducible
representation.

2. P(M) is infinite, bounded above. In this case let v have the
maximal weight m. Then f"v, n > 0 is a basis of M, and we have
hv = mv,ev = 0. Thus M = M,, is the Verma module with highest
weight m € Z. This module is irreducible iff m < 0 (Exercise [8.11]).
Thus in this case we get modules M_,,, = M*  m > 1.

3. P(M) is infinite, bounded below. The situation is completely
parallel (with f replaced by e) and we obtain lowest weight Verma
modules M, for m > 1. The (g, K)-modules M., M~ are called the
discrete series modules for m > 2, and limit of discrete series for
m = 1.

4. P(M) is unbounded on both sides. Let ¢ be the scalar by which
C acts on M. We have two cases — the even case P(M) = 27Z and the
odd case P(M) = 2Z + 1. In both cases we have a basis v, n € P(M)
such that

C=fe+

(4) hv, = nv,, fv, = v,_2, €V, = AU, 40,
where A,, # 0. To compute A,,, we write

Aoy = fev, = (C = B2y, — (¢ — @2y,
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Thus
A, =c— @.

Let ¢ = %. Then
(5) Ap=3(s—1-n)(s+1+n).
Thus we can replace v,, by its multiple w,, so that
hw, = nw,, fw, = %(s — 14+ n)w,_o, ew, = %(s —1—n)wp,o.

These formulas define gc-modules for any s € C. We will denote these
modules by Py (s) (plus for the even case, minus for the odd case). The
(g, K)-modules P (s) are called the principal series modules. We
see that P, (s) is irreducible if s ¢ 2Z + 1 and P_(s) is irreducible iff
s ¢ 27, and Py (s) = Py(—s) in this case.

Moreover, when these conditions fail, we have short exact sequences

0— Loy, — Pr(2m+1) = MY, &M, ., —0, mE Zs,
0— My, _o® M, o — Pi(—2m —1) — Ly, — 0, m € Zs,
0= Lomy1 = P-(2m +2) = MY, s ® M, 53— 0, m € Zso,

0— My, @M, s — P (—=2m —2) = Lopy1 — 0, m € Zso,
and for s = 0 we have an isomorphism
P (0)2 M @M.

All these modules except P_(0) are indecomposable. Thus we see that
Py(s) 2 P.(—s) when it is reducible and s # 0.
As a result, we get

Proposition 9.1. The simple (g, K)-modules (or equivalently, Harish-
Chandra modules) are Ly,,m € Zso, M,,, M*, .. m € Zsy, and P, (s),

—m?’

s & 27+1, P_(s), s ¢ 27, with the only isomorphisms Py(s) = P.(—s).

Exercise 9.2. Let Er(s),lg_(s) be the modules defined by (4)),(5)); so
they are isomorphic to P, (s), P_(s) when s is not an odd integer, re-

spectively not a nonzero even integer. But we will consider Py (s) when
s =2k + 1 and P_(s) when s = 2k, k # 0 (where k is an integer).
(i) Compute the Jordan-Hoélder series of P, (s), P_(s) and show that

they are uniserial, i.e., have a unique filtration with irreducible succes-

sive quotients.
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(i) Do there exist isomorphisms P (s) & P, (s), P_(s) = P_(s)?
9.2. Realizations. Let us discuss realizations of these representations
by admissible representations of GG. For L,, there is nothing to discuss,
so we’ll focus on principal series and discrete series.

The realization of principal series has already been discussed in Ex-
ample 5.3l Namely, let B C G be the subgroup of upper triangular
matrices b with diagonal entries (¢(b),#(b)~!). As before we consider
the spaces

Vi(s) = {F € C*(G) : F(gb) = F(g)t(b)]""},
V_(s) = {F € C%(G) : F(gb) = F(g)[t(b)]" "sign(t(b))}.

These are admissible representations of G acting by left multipli-
cation. Let us compute Vi(s)i. To this end, note that the group
K =U(1) = S" acts transitively on G/B with stabilizer Z/2 = {+1}.
Thus, pulling the function F' back to K, we can realize V.(s) as the
space V4 of functions F € C*(S') such F(—z) = +F(z).

A more geometric way of thinking about this is the following. Given
a Lie group G and a closed subgroup B with Lie algebras g, b, every
finite-dimensional representation V' of B gives rise to a vector bundle
Ey := (G xV)/B over G/B, where the action of B on G x V is given
by (g,v)b = (gb,b"'v). For example, the tangent bundle T'(G/B) is
obtained from the representation V' = g/b. In our example, g/b is the
1-dimensional representation of B given by b+ t(b)"2. Thus sections
of the tangent bundle on G/ B (i.e., vector fields) can be interpreted as
functions F' on G such that

F(gb) = F(g)t(b)*.
It follows that elements of V. (s) can be interpreted as sections of the
bundle K2~ where K = T*(G/B) is the canonical bundle, which co-
incides with the cotangent bundle since dim(G/B) = 1 (this bundle is
trivial topologically but the action of diffeomorphisms of G/B = S*,
in particular, of elements of SLy(R) on its sections depends on s). In
other words, elements of V(s) can be interpreted as “tensor fields of
non-integer rank”: ¢(u)(d argu) =", where u = €%, 0 is the angle coor-
dinate on G/B = RP! and ¢ is a smooth function. Similarly, elements
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of V_(s) can be interpreted as expressions u%qb(u)(d argu) 2 , i.e., two-
valued smooth sections of the same bundle which change sign when one
goes around the circle. Thus the Lie algebra action on these modules
is by the vector fields

h=2ud,, f=20,, e=—u*0,,

but they act on elements of V4 (s) not as on functions but as on tensor
fields. Thus Vi(s) C Vi(s) is the subspace of vectors such that
¢ € Clu,u™']. Taking the basis wy, = u¥(d argu)z" in the even case
and wop1 = uk+%(d argu)l%s in the odd case, we have

hw, = nw,, fw, = %(s — 14+ n)w,_9, ew, = %(3 —1—n)wpyo.

Thus we get that V. (s)i" = P,(s) for all s € C.

In particular, at points where Py (s) are reducible, this gives realiza-
tions of the discrete series. Namely, consider the modules V. (—r) for
odd r > 1 and V_(—r) for even r > 1. The space V. (—r) consists of
elements gb(u)(‘j—g)HTT where ¢ is smooth (note that d argu = 2). So

it has the subrepresentation V9 (—r) of forms that extend holomorphi-
147

cally to the disk |u| < 1. Thus means that ¢(u) = Y ysganu™ 12,
where ay is a rapidly decaying sequence (faster than any power of N).
In other words, V9 (—r) consists of elements W(u)(du)s", where 9 is
smooth on the disk |u| < 1 and holomorphic for |u| < 1. Thus the
eigenvalues of h on V (—r) are 1+ r 4+ 2N, hence V9 (—r)i = M ;.

Also, V. (—r) has a subrepresentation V(—r) of forms that ex-
tend holomorphically to |u| > 1 (including infinity), which means that

+r

d(u) = Y ysoanu N7z . In other words, V2°(—r) consists of ele-

ments 1(u!)(du!)"s", where ¢ is smooth on the disk |u| < 1 and
holomorphic for |u| < 1. Thus we get V°(—r)in = M* .
Similarly, for even r we get VO (—r)i = M7 |, Voo(—r)i = M,

—r—1"

9.3. Unitary representations. These Fréchet space realizations can
easily be made Hilbert space realizations, by completing with respect
to the usual L2-norm given by

o
ol = 5= | 1ot Pav.
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However, this norm is only preserved by G when s is imaginary. In this
case we obtain that the completed representations V. (s), in particular

V0 (0), V>°(0), are unitary. It follows that the Harish-Chandra modules
Py(s) for s € iR and M, , M*, are unitary.

It turns out, however, that there are other irreducible unitary repre-
sentations. Let us classify them. It suffices to classify irreducible uni-
tary Harish-Chandra modules. Note that the relevant anti-involution
on g is given by ef = —f, f1 = —e, hf = h. Let M be irreducible and
v € M a vector of weight n. Then if (, ) is an invariant Hermitian form
on M then

(ev,ev) = —(fev,v) = (("31)" = o) (v,v),

where c is a Casimir eigenvalue on M. We see that a nonzero invariant
Hermitian form exists iff ¢ = % € R, and such a form can be chosen
positive definite iff ¢ < (2+)? for every n € P(M). This shows that
all discrete series representations are unitary and also determines the
unitarity range of s for the principal series representations. Thus we
obtain the following theorem.

Theorem 9.3. (Gelfand-Naimark |GN|, Bargmann |Bal). The irre-
ducible unitary representations of SLy(R) are Hilbert space completions
of the following unitary Harish-Chandra modules:
e Discrete series and limit of discrete series M, M~
e Unitary principal series Pi(s), s € iR, s # 0;
e The complementary series P, (s), s€ R, 0 < |s] <1;
e The trivial representation C.
Here P.(s) & P.(—s) and there are no other isomorphisms.

m & Zzl;

Let us discuss explicit Hilbert space realizations of the unitary rep-
resentations. We have already described such unitary realizations of
principal series in L?(S!), except the complementary series. For dis-
crete series we only gave realizations for m = 1, as M, , M, are direct
summands in P_(0). However, one can give a realization for any m. To
this end, note that G = SLy(R) acts by fractional linear transforma-
tions on the disk |u| < 1. Moreover, we have the Poincaré (hyperbolic)

metric on the disk which is G-invariant. The volume element for this
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metric looks like

~ dudu

(=)
Thus for expressions w = 1 (u)(du)? where m > 2 is an integer and
¥ (u) is holomorphic for |u| < 1 we may define the G-invariant norm

w|)? = Bk — Ju))™ 2dudm.

m]
ul<l M2

Hence the Hilbert space completion Mﬂ; may be realized as the space
H,, of holomorphic Z-forms w = ¥ (u)(du)? for |u| < 1 for which
|w||* < oo (note that this space is nonzero only if m > 2).

Likewise, M~ can be similarly realized via antiholomorphic forms.

(1) (1) (of determinant —1) defines
an outer automorphism of SLy(R) which is induced by complex con-

jugation on the unit disk, and this automorphism exchanges M, = with
Mt

Indeed, conjugation by the matrix

Exercise 9.4. Let G, be the (-fold cover of PSLy(R) (for example,
G = PSLy(R), Gy = SLs(R)). Classify irreducible admissible rep-
resentations (up to infinitesimal equivalence) and irreducible unitary
representations of G, for all /.

Hint. The maximal compact subgroup of G, is Ky, the ¢-fold cover
of PSO(2). Thus irreducible Harish-Chandra modules for G, are ir-
reducible sly(C)-modules on which the element h acts diagonalizably
with eigenvalues in %Z.

Exercise 9.5. Compute the matrix coefficients of the principal series
modules, ¥y, ,(9) = (W, gw,), g € SLa(R).
Hint. Write g as g = U; DU, where

U, = exp(i@kh) € 50(2), 0, € R/Q’]TZ

for k = 1,2 and D = diag(a,a™') is diagonal, and express ¥, ,(g) as
¢! (n02=m01)4)y(m, n, a, s). Write the function ¥(m,n, a, s) in terms of the
Gauss hypergeometric function o Fj.
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Exercise 9.6. (i) Show that for —1 < s < 0 the formula

/ F@)aly — 2|~ dyd=

defines a positive definite inner product on the space Cy(R) of continu-
ous functions f : R — C with compact support (Hint: pass to Fourier
transforms).

(ii) Deduce that if f is a measurable function on R then

0<(f, f)s < o0,

so measurable functions f with (f, f)s < oo modulo those for which
(f, f)s = 0 form a Hilbert space H, with inner product (, ), which is
the completion of Cy(R) under (,)s.

(iii) Let us view H; as the space of tensor fields f(y)(d y) , where f
is asin (ii). Show that the complementary series unitary representatlon
P, (s) of SLy(R) may be realized in H, with G acting naturally on such
tensor fields. (Hint: show that the differential form (jyd)2 is invariant

under simultaneous Mdbius transformations of y, z by the same matrix).

10. Chevalley restriction theorem and
Chevalley-Shephard-Todd theorem

10.1. Chevalley restriction theorem. Let g be a semisimple com-
plex Lie algebra with Cartan subalgebra b, and let W be the corre-
sponding Weyl group. Given F' € Cl[g]?, let Res(F) be its restriction to

b.

Theorem 10.1. (Chevalley restriction theorem) (i) Res(F) € C[h]"
(ii) The map Res : Clg]® — C[h]" is a graded algebra isomorpohism.

Proof. (i) Let G be the adjoint complex Lie group corresponding to
g. Then Clg]* = C[g]%, so F is G-invariant. Thus, denoting by H
the maximal torus in G with LieH = bh, we see that the normalizer
N(H) preserves Res(F'). Since H acts trivially on b, we get that W =
N(H)/H preserves Res(F'), as desired.

(ii) It is clear that Res is a graded algebra homomorphism, so we just

need to show that it is bijective. The injectivity of this map follows
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immediately from the fact that Res(F') determines the values of F' on
the subset of semisimple elements g, C g, and this subset is dense in g.
It remains to prove the surjectivity of Res. Consider the functions

Fyn(x) :=Trp, (2") = xal2"), v €9
in C[g|®, where x, is the character of L. We’ll show that the functions
Res(F),,) for various A span C[h]"[n] = (S"h*)" for each n, which
implies that Res is surjective.
To this end, for every dominant integral weight A € P, let m, be the

orbit sum
= Z et e C[P\W
HEWA
We have
X\ = Z Nyumy,,
p<A

where p < X\ means that A — p is a (possibly empty) sum of positive
roots, and N,, is the matrix of weight multiplicities (in particular,
Ny, = 1). This matrix is triangular with ones on the diagonal, so we
can invert it and get

(6) mx = Z N/\MXM

H<A

for some integers N au- Now, for h € b, let

Myn(h) = > p(h)" ’!MV/VAII > Aw

HEWA weW

(note that p(x)™ = p(z™)). By (6) we have

M)\m(h) = Z NA“an(h)

H<A

Thus it suffices to show that M) ,(h) for various A span (S™h*)"[n] for
each n. Since averaging over W is a surjection S™h* — (S"h*)"V, it
suffices to show that the functions A" for A € P, span S™h*.

Denote the span of these functions by Y. Since P, is Zariski dense

in b*, we find that A\ € Y for all A\ € h*. Thus Y C S"ph* is a
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subrepresentation of GL(H*). But S™h* is an irreducible representation
of GL(h*), hence Y = S™h*. This completes the proof of (ii). O

Remark 10.2. 1. Since the Killing form allows us to identify g = g*
and h = bh*, the Chevalley restriction theorem is equivalent to the
statement that the restriction map Res : C[g*]® = (Sg)? — C[h*]"V =
(SH)" is a graded algebra isomorphism.

2. The Chevalley restriction theorem trivially generalizes to reductive
Lie algebras.

Example 10.3. Let g = gl,,(C). Then by the fundamental theorem on
symmetric functions, C[h]" = Clxy, ..., z,]%" = Cley, ..., e,] where

ei(:cl,...,xn) = Z Ly - Tk,

are elementary symmetric functions. The Chevalley restriction the-
orem thus says that restriction defines an isomorphism between the
algebra C[g]® of conjugation-invariant polynomials of a single matrix A
and Cley, ..., e,]. Namely, let a; := Tr(A*A) be the coefficients of the
characteristic polynomial of A (up to sign). Then C[g]® = Clay, ..., ay,]
and a;|y = €;(x1,...,7,). Another set of generators are b; := Tr(AY),
1 <i < n; we have b;|y = p;(x1, ..., z,), where

n
Pi(T1, ey Ty) = Zx}c
k=1

are the power sums, another set of generators of the algebra of sym-
metric functions. Yet another generating set is ¢; := Tr(S*A) which
restrict to complete symmetric functions

hi(xl,...,:cn) = Z Ly - L -
k1<...<k;
Thus
CLZ(A) = €i($1, ....,In), bZ<A) = pi(l'l, ...,Jln), CZ(A) = hi<x1, ...,Jj‘n),
where x4, ..., ¥, are the eigenvalues of A. Note that a;(A) = b1(A) =
c1(A) = Tr(A) and a,(A) = det A.
For g = sl,, (type A,_1), the story is the same, except that e; = p; =

hy =0 and a; = by = ¢; = 0, so they should be removed.
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Example 10.4. Similarly, for g = $09,.1(C) and g = sp,,,(C) (types
B,, and C,,) we have

C[H]Y = Clay, ..., 2] E2" =

C[ZB%, ) ZEQ]S" = Cleg, €4, .., €2n] = C[p2, P4, ..., P2n] = Clha, ha, ..., hay],

“ey n

where ey, py, hi. are symmetric functions of 2n variables evaluated at the

point (o1, ..., Tn, —Tn, ..., —71), and ey = agily, P2 = baily, hoi = caily
(note that the odd-indexed symmetric functions evaluate to 0). This is
so because the eigenvalues of A are zq, ..., x,, —,, ..., —x1, and also 0

in the orthogonal case.

The case g = s02,(C) (type D,,) is a bit trickier. In this case the
Weyl group is W = S, x (Z/2)", where (Z/2) is the group of binary
n-dimensional vectors with zero sum of coordinates. Thus it is easy to
check that

C[h]w = C[627 <oy €2n—2, 1/ 6211]'
where e; = (21, ..., Ty, —Tp, ..., —21). The polynomial /ey, = i"z;...x,
is the restriction of the Pfaffian Pf(A) = v/det A. Thus

(C[g]g = C[CLQ(A)a s a2n72<A)7 Pf<A)}
The generators of C[g|? for exceptional g are less explicit, however.

10.2. Chevalley-Shephard-Todd theorem, part I. In Examples
, we observe that the algebras C[h]"Y of Weyl group invariant
polynomials for classical groups are free (polynomial) algebras. This
is not true for a general finite group: e.g. if G = Z/2 acting on C?
by (z,y) — (—z,—y) then the ring of invariants C[z,y]%/? is C[a, b, ]
where a = 22,b = zy,c = y?, and it is not free — it has a relation
ac = b* (and the set of generators is minimal). It turns out, how-
ever, that this is true for all Weyl groups and more generally complex
reflection groups.

Definition 10.5. A diagonalizable automorphism g : V. — V of a
finite-dimensional complex vector space V' is called a complex reflec-
tion if rank(g—1) = 1; in other words, in some basis g = diag(\, 1, ..., 1)
where A # 0,1. A complex reflection group is a finite subgroup

G C GL(V) generated by complex reflections.
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For example, the Weyl group W C G'L(h) of a semisimple Lie algebra
g and, more generally, a finite Coxeter group is a complex reflection
group, but there are others, e.g. S, X (Z/m)" acting on C" for m > 2,
or, more generally, the subgroup G(m,d,n) in this group consisting of
elements for which the sum of Z/m-coordinates lies in d - Z/m for some
divisor d of m.

It is easy to see that any complex reflection group is uniquely a prod-
uct of irreducible ones, and irreducible complex reflection groups were
classified by Shephard and Todd in 1954. Besides symmetric groups S,
acting on C"™! and G(m,d,n) acting on C" (which includes dihedral
groups), there are 34 exceptional groups, which include 19 subgroups of
G Lo, 6 exceptional Coxeter groups of rank > 3 (Hs, Hy, Fy, Fg, Er, Eg),
and 9 other groups.

Theorem 10.6. (Chevalley-Shephard-Todd theorem, part I, [Che], [ST])
Let V' be a finite-dimensional complex vector space and G C GL(V') be
a finite subgroup. Then C[V]Y is a polynomial algebra if and only if G
18 a complex reflection group.

11. Proof of the CST theorem, part I

11.1. Proof of the CST theorem, part I, the “if’ direction. We
first need a lemma from invariant theory. Let G C GL(V) be a finite
subgroup, and I C C[V] be the ideal generated by positive degree
elements of C[V]¢. Let fi,..., f, € C[V]® be homogeneous generators
of I (which exist by the Hilbert basis theorem).

Lemma 11.1. The algebra C[V]% is generated by fi, ..., f»; in particu-
lar, it is finitely generated.

Proof. We need to show that every homogeneous f € C[V]% is a poly-
nomial of fi,..., f,. The proof is by induction in d = deg f. The base
d = 0 is obvious. If d > 0, we have f € I, so

f=sifit .. +sf
where s; € C[V] are homogeneous of degrees < d.
For h € C[V] let h* := ﬁ > gec 9h € C[V]9 be the G-average of h.
Then we have

f=sifi+..+s.fr
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But by the induction assumption, s; are polynomials of fi, .., f., which
proves the lemma. 0

Remark 11.2. Let A be a finitely generated commutative C-algebra
with an action of a finite group G. LemmalI1.T]implies that the algebra
A€ is also finitely generated (the Hilbert-Noether lemma). Indeed,
pick generators ay, ..., a,, of A and let V' C A be the (finite-dimensional)
G-submodule generated by them. Then A is a quotient of (SV)¢ =
C[V*]¢, which is finitely generated by Lemma[11.1]

The next lemma establishes a special property of algebras of invari-
ants of complex reflection groups which will allow us to prove that they
are polynomial algebras.

Lemma 11.3. Assume that G is a complex reflection group. Let I
be as above, F, ..., F,, € C[V]Y be homogeneous, and suppose that I
does not belong to the ideal in C[V|% generated by Fs, ..., Fy,. Suppose
gi € C[V] for 1 <i < m are homogeneous and » ;" g;F; = 0. Then
g1 € 1.

Proof. Let J = (Fy, ..., F,,) C C[V]. We claim that F} ¢ J. Indeed, if
Fy = s9Fs + ... + sy By, then Fy = s5F5 + ... + 57 F,,,, contradicting our
assumption.

We prove the lemma by induction in D := degg;. If D = 0 then
g1 =0, as I} ¢ J. This establishes the base of induction.

Now assume D > 0. Let o0 € G be a complex reflection and a be
the linear function on V' defining the reflection hyperplane V7 (i.e., the
eigenvector of o in V* with eigenvalue # 1). Then og; — g; vanishes on
V7, so is divisible by a. Thus

0g; — gi = hy«

for some polynomials h; with deg h; = deg g; — 1, in particular deg h; =
D — 1. Applying the operator o — 1 to the relation " ¢;F; = 0 and
dividing by «, we obtain

i hiF; = 0.
i=1

By the induction assumption hy € I, so 0g1 — g1 € I. Since W is

generated by complex reflections, this implies that wg; — g; € [
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for any w € G. Thus g7 — g1 € I. But gj is a positive degree invariant,
so g7 € I. Hence g; € I, which justifies the induction step. 0

Now we are ready to prove the “if” direction of the Chevalley-Shephard-
Todd theorem. Suppose that fi, ..., f, € C[V] are homogenous of

positive degree and form a minimal set of homogeneous generators of
I.

Lemma 11.4. fi,..., f, are algebraically independent.
Proof. Assume the contrary, i.e.,

(7) h(fl""?fT‘):O7

where h(yi,...,y,) is a nonconstant polynomial. Let d; := deg f;. We
may assume that h is quasi-homogeneous (with degy; = d;), of the
lowest possible degree. Let x; be linear coordinates on V, 0y := %.
Differentiating with respect to x; and using the chain rule, we get

(8) > hi()def; =0,

where f := (fi,..., f) and h; = g—:. By renumbering f; if needed,

we may assume that h(f), ..., h,,(f) is a minimal generating set of the
ideal (hy(f), ..., h,(f)) C C[V]. Moreover, since h is nonconstant, h; # 0
for some j € [1,7], and since h is of lowest degree, this implies that
h;(f) # 0. So m > 1. Then for ¢ > m we have

hi(f) = Zgz‘jhj(f)

for some homogeneous polynomials g;; € C[V] of degree
deg hz — deg hj = dj — dz
Substituting this into (§)), we get

> pihi(f) =0,
j=1
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where

pi =00kl + Y 9Okt
1=m—+1
Since hi(f) & (ha(f), ..., hyn(f)), by Lemma applied to F; = h;(f),
1 <i <m, we have p; € I. Thus

O f1+ Z 9Ok fi = Z%’kfia
i=m+1 =1

where ¢, € C[V] are homogeneous of degree d; —d; — 1. Let us multiply
this equation by x; and add over all k. Then we get

(9) difi+ Y gadifi =Y aifi,
i=1

i=m+1

where ¢; := >, xrq;r. In particular, ¢; are homogeneous of strictly
positive degree. All terms in this equation are homogeneous of the
same degree di, so we must have ¢ = 0. Thus @D implies that f; €
(fay vy fr), a contradiction with our minimality assumption. O

Now, by Lemmas and [11.1} we have C[V]¢ = C[fy, ..., f,]. This
proves the “if” direction of the Chevalley-Shephard-Todd theorem.

Remark 11.5. Note that r = trdeg(C(V)%) = trdeg(C(V)) = n,
where n = dim V' and trdeg denotes the transcendence degree of a field,
since transcendence degree does not change under finite extensions.

11.2. A lemma on group actions.

Lemma 11.6. Let U be an affine space over C and G a finite group
acting on U by polynomial automorphisms.
(i) Let u € U be a point with trivial stabilizer in G. Then there ezists
a local coordinate system on U near u consisting of elements of C[U]%.
(i1) Maximal ideals in C[U] (i.e., characters x : C[U]Y — C) are in
bijection with G-orbits on U, which assigns to an orbit Gu the character

Xu(f) := f(u). Thus the set of mazimal ideals in C[U|¢ is U/G.

Proof. (i) Pick a basis {e;} of T*U. Since gu # u for any g € G, g # 1,
there exist y; € C[U], 1 < < dim U such that the linear approximation
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of y; at gu is zero for all g # 1, y;(u) = 0, and dy;(u) = e;. Let y} be
the average of y; over G. Then {y}} form a required coordinate system.

(i) Suppose v,u € U,v ¢ Gu, then Gu N Gv = (), so there exists
f € C[U] such that f|g, =0, fleu = 1. Moreover, by replacing f by
f*, we may choose such f € C[U]%. Then x,(f) = 0 while x,(f) =1,
SO Xu 7 Xu, hence u +— X, is injective. To show that it’s also surjective,
take a maximal ideal m C C[U]®. It generates an ideal I C C[U]
whose projection to C[U]% is m. Thus [ is a proper ideal, so by the
Nullstellensatz, its zero set Z C U is non-empty. Let u € Z, then for
any f € m, x.(f) = f(u) = 0. Hence m = Kery,, as desired. O

[113]1.3. Proof of the CST theorem, part I, the “only if”’ direction.

Let G C GL(V) be a finite subgroup. Let H be the normal subgroup
of G generated by the complex reflections of G. Then by the “if” part
of the theorem, C[V]# is a polynomial algebra with an action of G/H.
In other words, using Lemma [11.6]ii), U := V/H is an affine space with
a (possibly non-linear) action of G/H.

Moreover, we claim that G/H acts freely on U outside of a set of
codimension > 2. Indeed, if 1 # s € G/H and a € s then a is not a
reflection, so Y, := U,e,V* has codimension > 2. Now, for any v in the
preimage of U® in V and a € s we have av = h~!v for some h € H,
thus hav = v and v € Y;. Thus U? is contained in the image of Y, in
U, hence codim(U®) > 2, as claimed.

Now assume that C[V]% is a polynomial algebra, and let V/G = W
be the corresponding affine space. Consider the natural regular map
n:V/H=U — V/G = W between n-dimensional affine spaces, and
let J € C[U] be the Jacobian of this map (well defined up to scaling).
If u € U and the stabilizer of v in G/H is trivial then by Lemma [11.6]
n is étale at u, hence J(u) # 0. But as shown above, the complement
of such points has codimension > 2. This implies that J = const, as
a nonconstant polynomial would vanish on a subset of codimension 1.
Thus by the inverse function theorem 7 is an isomorphism near 0, in
particular bijective, hence H = G.

M This proof uses some very basic algebraic geometry.
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Remark 11.7. Let X be an smooth affine algebraic variety over C
and G be a finite group of automorphisms of X. Then by the Hilbert-
Noether lemma, C[X]% is finitely generated, so X/G := SpecC[X]%
is an affine algebraic variety. The Chevalley-Shephard-Todd theorem
implies that X/G is smooth at the image z* € X/G of z € X if and
only if the stabilizer G, of x is a complex reflection group in GL(T,X).
In particular, X/G is smooth iff all stabilizers are complex reflection
groups. This follows from the formal Cartan lemma: any action of a
finite group G on a formal polydisk D over a field of characteristic zero
is equivalent to its linearization (i.e., to the action of G' on the formal
neighborhood of 0 in the tangent space to D at its unique geometric
point).

12. Chevalley-Shephard-Todd theorem, part II

12.1. Degrees of a complex reflection group. The degrees d; of the
generators f; of C[V]“ for a complex reflection group G are uniquely
determined up to relabelings (even though f; themselves are not). In-
deed, recall that for a Z-graded vector space M with finite-dimensional
homogeneous components its Hilbert series is

H(M,q) = dim M[i]q’
i€
(also called Hilbert polynomial if dim M < co0). Then the Hilbert series
of C[V]% is
1
[[ (1 —q%)
which uniquely determines d;. These numbers are usually arranged in
non-decreasing order and are called the degrees of G. For instance,
for Weyl groups of classical simple Lie algebras we saw in Examples
that in type A,_; the degrees are 2,3,...,n, for B, and C,
they are 2,4,...,2n, and for D, they are 2,4,...,2n — 2 and n. In
particular, in the last case, if n is even, the degree n occurs twice.

H(C[V]%,q) =

12.2. C[V] as a C[V]9-module. Let R be a commutative ring. Let A
be a commutative R-algebra with an R-linear action of a finite group

G.
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Proposition 12.1. (Hilbert-Noether theorem) (i) A is integral over
AC . In particular, if A finitely generated then it is module-finite over
AC.

(ii) If R is Noetherian and A is finitely generated then so is A%,

Proof. (i) We will prove only the first statement, as the second one then
follows immediately. For a € A, consider the monic polynomial

P,(x) := H(m — ga).

geG

It is easy to see that P, € A%[x] and P,(a) = 0, which implies the
statement.

(ii) This follows from (i) and the Artin-Tate lemma: If B C A is
an R-subalgebra of a finitely generated R-algebra A over a Noetherian
ring R and A is module-finite over B then B is finitely generated.ﬁ 0J

This shows for any finite G C GL(V), the algebra C[V] is module-
finite over C[V]9. Note that in (ii) we again proved that C[V]¢ is
finitely generated.

Theorem 12.2. (Chevalley-Shephard-Todd theorem, part 11, [Che], [ST])
If G is a complex reflection group then for any irreducible representation
p of G, the C[V]%-module Homg(p, C[V]) is free of rank dim p. Thus
the G-module Ry = Clxy,...,x,|/(f1, .., fn) is the reqular representa-
tion and [[;_, di = |G|. Moreover, the Hilbert polynomial H(Ry,q) =
> s dim Ro[N]g" is

n

H(Ro,q) = [ [1dis

i=1

5Recall the proof of the Artin-Tate lemma. Let a1,...,2,, generate A as an
R-algebra and let y1, ..., y, generate A as a B-module. Then we can write

T; = Zbijyja YiYj = Zbijkyk
J k

with b;j,bi5% € B. Then A is module-finite over the R-algebra By C B generated
by bij, bijr (namely, it is generated as a module over By by the y;). Using that R
and hence By is Noetherian, we obtain that B is also module-finite over By. Since
By is a finitely generated R-algebra, so is B.
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where [d], = % =1+q+..+q¢ L
Thus we see that the Hilbert polynomial of Homg(p, Ry) is some
polynomial K,(¢) with nonnegative integer coefficients and K,(1) =
dim p. It is called the Kostka polynomial. We have
> Ky(q)dimp = H(Ro,q) = [ [ldi,.
p =1
For example, for G = S3 and V' the reflection representation we have

three irreducible representations: C, (trivial), C_ (sign) and V. We
have K¢, (¢) =1 and

14+2Kv(q) + Ke (@) = (1+q)(1+¢*) =1+2¢+2¢* + ¢°.
It follows that
Kyv(q) =q+¢* Kc_ (q) =¢"

12.3. Graded modules. For the proof of Theorem [12.2] we need to
recall some basics from commutative algebra, which we discuss in the
next few subsections.

Let k be a field, S a Z,-graded (not necessarily commutative) k-
algebra with generators f; of positive integer degrees deg f; = d;;, M a
Z-graded left S-module, and My := M /S, M, where S, C S is the
augmentation ideal.

Lemma 12.3. (i) Any homogeneous lift {v}} of a homogeneous basis
{vi} of My to M is a system of generators for M; in particular, if
dim My < oo then M 1is finitely generated.

(i) If in addition M is projective, then {v}} is actually a basis of M
(in particular, M is free). Thus if dim My[i] < oo for all i then

H(M, q) = H(Mo, q)H(S,q).
In particular, if S = k[f1, ..., fn] then
H(MOaQ>
[T (1 —q%)

Proof. (i) We prove that any homogeneous element v € M is a linear

combination of v} with coefficients in S by induction in degu (with
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obvious base). Namely, if g is the image of u in My then up = ), ¢;v;
for some ¢; € k (¢; = 0 unless degv; = degu), and so

u— Zcivf = Z fiug,
( J
with u; € M, degu; = degu — d;. So by the induction assumption
wj =Y it}
for some homogeneous p;; € S of delgree degu —d; —degv}, and we get

*
u = E piv;,
%

where p; == ¢; + fjpij.m

(ii) Let M’ be the free graded S-module with basis w; of degrees
degw; = degw;, and f : M’ — M be the surjection sending w; to v;.
Since M is projective, the map

fo:Hom(M,M') — Hom(M, M)

is surjective, so we can pick a homogeneous g : M — M’ of degree 0
such that fog =1idy,. Then go f : M’ — M’ is a projection which
identifies M’ with M @ Kerf as a graded S-module. But the map
fo : My — My induced by f sends the basis w; of M{ to the basis v;

of My, so is an isomorphism. It follows that (Kerf), =0, so Kerf =0
and f is an isomorphism, as claimed. O

12.4. Koszul complexes. Let R be a commutative ring and f € R.
Then we can define a 2-step Koszul complex Kg(f) = [R — R] with
the differential given by multiplication by f (the two copies of R sit in
degrees —1 and 0). We have H°(Kr(f)) = R/(f), and Kg(f) is exact
in degree —1 if and only if f is not a zero divisor in R. This allows us
to define the Koszul complex of several elements of R:

Kgr(fi, - fm) = Kr(f1) ®r ... @ Kp(fm)
with HY(Kg(f1, ..., fm)) = R/(f1, .., fm). Thus
Kr(fi, -y fm) = Kr(f1s -, f—1) @r Kr(fm)-

6Note that for each i, one of these two summands is necessarily 0.
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For example, let R := k[xq,...,x,] for a field k. Then the com-

plex K, = Kg(xy,...,7,) = K" is acyclic in negative degrees and
has H° = k. Thus for any commutative k-algebra S, the complex
Kgrgs(zi,...yxy) == Kg(xy,...,x,) ® S is acyclic in negative degrees

and has H® = S. By taking S = R and making a linear change of
variable, this yields a free resolution of R as an R-bimodule called the
Koszul resolution, which we’ll denote it by K,,:

0= RIN'K"QR — ... > RON’k"®R - RQk"®R — R®R — R.

Moreover, this exact sequence is split as a sequence of R-modules (under
right multiplication by R), since all participating R-modules are free.
Hence if M is any R-module then K, ®g M is a free resolution of M
of length n. Thus we obtain

Proposition 12.4. If i > n then for any k[vy, ..., z,]-modules M, N,
one has Ext'(M,N) = 0.

12.5. Syzygies. Now assume that M is a finitely generated graded
module over R = k[xy, ..., z,]. Then M =: My is a quotient of R ® Vj,
where 1} is a finite-dimensional graded vector space. By the Hilbert
basis theorem, the kernel M; of the map ¢y : R ® Vo — M is finitely
generated, so is a quotient of R® V) for some finite-dimensional graded
space Vi, and the kernel Ms of ¢ : R ® Vi — M is finitely generated,
and so on. The long exact sequences of Ext groups associated to the
short exact sequences

0= Mj1, >RV, — M; =0

and Propositionthen imply by induction in j that Ext’(M;, N) = 0
for any R-module N if ¢ > n — 7. In particular, the module M, is
projective, hence free by Lemma [12.3] i.e., we may take V), such that
M, = R® V,. This gives a free resolution of M by finitely generated
graded R-modules:

0—- RV, —> .. >RV, — M.
Thus, taking graded Euler characteristic we obtain
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Theorem 12.5. (Hilbert syzygies theorem) We have

p(q)
(1—=qm

where p is a polynomial with integer coefficients.

H(M,q) =

Proof. Indeed, p is just the alternating sum of the Hilbert polynomials
of Vj. ([l

12.6. The Hilbert-Samuel polynomial. Let R be a commutative
Noetherian ring and m C R a maximal ideal. Then R/m = Fk is
a field and m¥/m™*! is a finite-dimensional k-vector space. Thus
gr(R) := ®ysom” /mV*! (where m° := R) is a graded algebra gen-
erated in degree 1. So by the Theorem [12.5] the Hilbert series

H(gr(R),q) = Y _ dim(m" /m"*)g"

N>0

p(q)

(g where p is a polynomial and

is a rational function of the form

m = dimy(m/m?). Hence
N-1
Prw(N) = Z dimyg (m? /m/*1) = length(R/m™)
=0

is a polynomial in N for large enough N called the Hilbert-Samuel
polynomial of R at m. The degree of this polynomial equals the order
of the pole of H(gr(R),q) at ¢ = 1. We call this degree the dimension
of R at m, denoted dim,, R. For example, if R = k[xy,...,z,] and m is
any maximal ideal then Pgn,(N) = (N+"_1), so dimy, R = n.

Lemma 12.6. Let f € m. Then dimy,(R/f) > dim, R — 1.

Proof. The ideal (f) in R/m" is the image of fR/m"~1. So we have
Pr/rm(N) = length((R/m™)/f) > length(R/m") — length(R/m" 1)
— Pan(N) = Pan(N = 1),
which implies the statement. O

Let k be an algebraically closed field and m, C k[zy, ..., z,] be the

maximal ideal corresponding to p € k™.
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Corollary 12.7. Let fi,..., fm € k[z1,...,x,] be homogeneous polyno-
mials of positive degrees. Let Z be an irreducible component of the zero
set Z(f1, ..., fm) C k™. Then dimy, k[Z] > n —m.

Proof. Let p € Z be not contained in other components of Z(f1, ..., fim)-
Applying Lemma repeatedly, we get dimy,, k[Z] > n —m. But
gr(k[Z]/m)) (the associated graded under the filtration induced by the
grading on k[Z]) is a quotient of k[Z]/m}. Thud"|

dimp, k[Z] > dimy,, k[Z],
so dimpy, k[Z] > n —m. O

12.7. Regular sequences. Let R be a commutative ring. A sequence
fi,.., fa € R is called a regular sequence if for each j € [1,n], f; is
not a zero divisor in R/(f1,..., fj—1), and R/(f1,..., fn) # 0.

Lemma 12.8. If fi,..., fu € R is a regular sequence then the complex
Kr(f1,.., fn) is exact in negative degrees.

Proof. The proof is by induction in n with obvious base. For the in-
duction step, note that by the inductive assumption Kg(fi, ..., fn_1) is
exact in negative degrees with H® = R/(f1, ..., fa_1), so the cohomol-
ogy of Kg(fi,..., fn) coincides with the cohomology Kr/(s,. .. .fn_1)(fn);
which vanishes in negative degrees since f, is not a zero divisor in

R/(fla"'afnfl)' U
Now let k£ be an algebraically closed field.

Proposition 12.9. Suppose fi, ..., fn € R := klx1, ..., z,] are homoge-
neous polynomials of positive degree such that the zero set Z(f1, ..., fn)
consists of the origin. Then f1,..., fn 1S a reqular sequence.

Proof. We need to show that for each m < n — 1, f,,.1 is not a zero
divisor in Ry, = k[z1, ..., zn)/(f1y oy fim). Let Zyy = Z(f1, 0y frn). Tt
suffices to show that f,,.; does not vanish on any irreducible component
of Z,,. Assume the contrary, i.e., that it vanishes on such a component

7?0 . By Corollary [12.7, we have dimy, k[Z%] > n —m. Since f,11 =0

on Z° . using Lemma |12.6] repeatedly, we get
dimmo k[Zgn]/(fm-‘rl? ) fn) Z 17

"In fact these dimensions are equal (to dim Z), but we don’t use it here.
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which is a contradiction, as the zero set of f, 41, ..., fn on Z° consists
just of the origin, so this dimension must be zero. 0

Proposition 12.10. Suppose fi, .., fn € R := k[x1, ..., x,] are homoge-
neous polynomials of degrees dy, ..., d,, > 0 such that R is a finitely gen-
erated module over S := k[fi, ..., fu]. Then this module is free of rank
[1;, di. Moreover, the Hilbert polynomial of Ry = k[x1, ..., xp)/(f1s s fin)
(or, equivalently, of a space of free homogeneous generators of this mod-
ule) is
(10) H(Ry,q) = H[di]q'

i=1
Proof. By Lemma [12.3] it suffices to show that R is a free S-module.
By assumption R, is finite-dimensional, i.e., the equations

have only the zero solution. By Proposition [12.9] this implies that
f1, -, fn is a regular sequence, so by Lemma the Koszul complex
Kr(f1,..., fn) associated to this sequence is exact in negative degrees.
Now, write S as klay, ..., a,] with dega; = 0 and consider the complex
Kres(fi — a1, ..., fn — a,). This complex is filtered by degree with
associated graded being

Kres(fi, - fn) = Kr(f1, . fa) @ S.
Thus Kgrgs(fi — a1, ..., fa — ay,) is also exact in nonzero degrees with

HO - k[xl’ ooy Ty A1, "'7an}/(fl — az, 7fn - an) = R.

and the associated graded under the above filtration is gr(R) = Ry® S
as an S-module. This module is free over S, hence so is R. 0

Remark 12.11. Let fy,..., f, be a regular sequence of homogeneous
polynomials in k[zy, ..., z,| of positive degree and Z,, C k™ be the zero
set of f1,..., fm- Then f,, 1 is not a zero divisor in k[x1, ..., x,]/(f1, -y fin),
hence does not vanish identically on any irreducible component of Z,,.
So by induction in m we get that the dimension of every irreducible
component of Z,, is < n —m. By Corollary [12.7] this implies that this
dimension is precisely n —m; in particular, » < n, and every irreducible
component of the affine scheme Z := Speck[zy,...,z,|/(f1, ..., fr) has
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dimension n — r. Such a scheme is called a complete intersection.
In fact, it follows by induction in r that Z is a complete intersection
precisely when all its irreducible components have dimension < n — r
(in which case they have dimension exactly n — r). In particular, if
r = n, this means that the only k-point of Z is the origin, as indicated
in Proposition Thus the converse of this proposition also holds.

12.8. Proof of the CST Theorem, Part II. We are now ready to
prove Theorem [12.2] Tt follows from Proposition [12.10, Lemma [12.1
and Theorem that C[V] is a free C[V]%module. Since C[V] =
®,Home(p, C[V])®@p, it follows by Lemmal[12.3](ii) that Home(p, C[V])
is also a free C[V]%module (as it is graded and projective). Finally,
the rank of this module equals

dime(y)e (C(V)® @cpyje Home(p, C[V])) = dimg(vye Homg(p, C(V)),

which equals dim p by basic Galois theory (C(V) is a regular represen-
tation of G over C(V)%).

13. Kostant’s theorem

13.1. Kostant’s theorem for Sg. Let g be a semisimple complex Lie
algebra.

Theorem 13.1. (Kostant) Sg is a free (Sg)®-module. Moreover, for
every finite-dimensional irreducible representation V' of g, the space
Homgy(V, Sg) is a free (Sg)® module of rank dim V'[0], the dimension of
the zero weight space of V.

The rest of the subsection is dedicated to the proof of this theorem.
Introduce a filtration on Sg by setting deg(g,) = 1 for all roots o and
degh = 2. Then gr(Sg) = Sn_ ® Sh ® Sn, and by the Chevalley
restriction theorem, gr(Sg)?® is identified with the subalgebra (Sh)W
of the middle factor. Thus by the Chevalley-Shephard-Todd theorem,
gr(Sg) is a free gr(Sg)%-module. It follows that Sg is a free (Sg)9-
module (namely, any lift of a homogeneous basis of the graded module
is a basis of the filtered module).

Now recall that

(11) Sg = Ovenr(g)V & Homg(V, Sg).
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Thus Homgy(V, Sg) is a graded direct summand in Sg. It follows that
Hom,(V, Sg) is a projective, hence free (Sg)%-module (using Lemma
12.3(ii)).

It remains to prove the formula for the rank of Homy(V, Sg). To this
end, consider the @)-graded Hilbert series of Sg, i.e., the generating
function of the characters of symmetric powers of g:

o(Sg.q) ==> (D dim S™g[ule")g™ € C[Q)([q])-

m>0 peQ

Since Sg = Sh® @ ,cp S¥a, We have

1 1
Hg(Sg,q) = ;
ol58.9) (1—Q)’“g1—qea
where 7 = rank(g). On the other hand, by (1)),

HQ(SgaQ): Z H(HomG(V7Sg)aQ)XV>

Velrr(g)

where Yy is the character of V.
Now, by the Chevalley restriction theorem (Sg)® = (Sh)", so

H(Homy(V, Sg),q) = H(Homg(V, (Sg)o), ) H((SH)" . q).
Thus by the Chevalley-Shephard-Todd theorem,

A

1
H(Homg(V, Sa).q) = H(Homy(V. (Sa)o), ) [ 1=
i=1
So we get
" d;
> H{Homy(V.(Sgh).ov = Hz(ll [_]qea).
Velrr(g) a€R q

By character orthogonality, H(Homgy(V, (Sg)o),¢) is the inner product
of the right hand side of this equality with yy:

HHom(V. (Sl 0) = (et s v ).
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Recall that the inner product on C[P] making the characters orthonor-
mal is given by the formula

1 * _ eoc
(6,9) = WCT(W (XEHRG ),

where where CT denotes the constant term and * is the automorphism
of C[P] given by (e*)* = e #. Thus, using that x{, = xv+, we get

[Tz [di] 1 —e”
(12)  H(Homy(V,(Sg)o),q) = ==—=CT | xv~ :
! Wi }l 1 — ge
In this formula ¢ is a formal parameter, but the right hand side con-
verges to an analytic function in the disk |g| < 1, since it can be written
as an integral:

HHom,(V. (Sa)o)) = Lt [ e ]

1 — eia(:v)

1— qeia(z) dl’,

where Q" is the coroot lattice. If 0 < ¢ < 1, this can also be written as

(13) )
r ' ' . eia(x)
H(Homg(V, (Sg)o)’ q) _ Hz:l[dl]q \/h o Xv+ (ew) H 1 dzx.

’W‘ acER 1- qeia(m)
Lemma 13.2. Asq — 1in (0,1), the function Fy(z) := [],cp, 11_’;—;(8)
goes to 1 in L2(h/Q") [

Proof. If x € R, |z| < 1 then mingep (1 — 2¢gz +¢*) is 1 if 2 < 0 and
1—2%if x > 0. So if 2 = o + 4y is on the unit circle and 0 < ¢ < 1 then
2
— — — <
‘1 P 2(1 — ) <{2(1 ), 2<0 _

1—gqz :1—2(]3:—1—(]2_ 14%7 x>0

Note also that by the residue formula

/1 dt 1 / 2 ldz 1
o L—qer™ 2 2mi Ji o (1—q2)(1—qz7!) 1—¢*

18Note however that F,(z) does not go to 1 pointwise (hence not in C'(h/Q))
since F,(0) = 0.
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Thus

1 — p2mit 2

it |2
1-em (g = 1)er
1— qe27rit

l—gq
1 — ge2nit L=

1 1
dt:/ _1-q
/0 0 I+q

So =2 — las ¢ — 1in L*(S'). But if X is a finite measure space
qz

and for j =1,...N, f¥ = f0 in L*(X) as n — oo and |f£7)(z)| <C
for all 2 € X and all n, j then []; F9 = [1, fj in L*(X). This implies
the statement. O

By Lemma [13.2] we may take the limit ¢ — 1 under the integral in
(13]). Then, using that [[;_, d; = |W|, we get

dim Homg(V, (Sg)o) = / v+ (e™)dx =
b/QY
CT(xv-) = dim V*[0] = dim V[0],

which concludes the proof of Kostant’s theorem.

13.2. The structure of Sg as a (Sg)?-module. As a by-product, we
obtain

Theorem 13.3. (Kostant) For A € P, we have

* :_ dl 1— e®
H(Hom, (L3, (Sa)0). o) = Litec (H . qeaxh> -
acR

T €>\ Ha€R+<1 _ ea)
E[dz]q -CT ( HaeR(l — qea) > .

Indeed, the first expression is and second expression is obtained
from using the Weyl character formula for x, and observing that
all terms in the resulting sum over W are the same.

Substituting A = 0, we get

Corollary 13.4.

1 IT—e*\ [Tocr, (1 —€%) _ 1
Wit (H = qea) -t (HaeRu - qea>) T




For example, if g = sly, this formula looks like
(14)

_ _ 1 —
ECT (I—2)(1—27") _oT 1—2 _ 1 ,
2 (1—qz)(1—qz7) (1-g2)(1—¢z7")) 1+4¢q
which is easy to check using the residue formula.
For g = sl,, we obtain the identity

Lor( T ) eI s

X; : X;
1<i<j<n (1 - qz)(l - QYZ 1<i<j<n (1—- Q%)(l - QY])
1
A4+ gt g

13.3. The structure of U(g) as a Z(g)-module. Recall that the
universal enveloping algebra U(g) of any Lie algebra g has the stan-
dard filtration defined on generators by deg(g) = 1, which is called the
Poincaré-Birkhoff-Witt filtration.

Let g be a semisimple complex Lie algebra of rank r, and W be the
Weyl group of g with degrees d;,1 =1, ...,r.

Theorem 13.5. (Kostant) (i) The center Z(g) = U(g)? of U(g) is a
polynomial algebra in r generators C; of Poincaré-Birkhoff-Witt filtra-
tion degrees d;.

(11) U(g) is a free module over Z(g), and for every irreducible finite-
dimensional representation V' of g, the space Homy(V,U(g)) is a free
Z(g)-module of rank dim V[0].

Proof. By the Poincaré-Birkhoff-Witt theorem, for any Lie algebra g
we have gr(U(g)) = Sg. Moreover, we have the symmetrization map
Sg — U(g) given by

1

a X ... R a, — E Z As(1)---As(n) s
sESn

a; € g, which is an isomorphism of g-modules. Using this map, any
homogeneous element of (Sg)? can be lifted into U(g)?. It follows that
gr(U(g)®) = (Sg)?. Thus Theorem implies all the statements of

the theorem. O
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Example 13.6. Suppose g is simple. Then d; = 2 and (] is the
quadratic Casimir of g.

Exercise 13.7. Consider the Lie algebra g = sl,,(C) spanned by ele-
mentary matrices E;; with Y | Ej; = 0.
(i) Show that the center Z(g) is freely generated by the elements

n k

Ck,l = Z HE/[:j?ijJFl’ k= 2, oy N

where j is viewed as an element of Z/k.

Hint: It is slightly more convenient (and equivalent) to consider
g = gl,(C), in which case one also has the generator Cy. Identify g
with g* using the trace pairing on g. Let T}, : g®* — C be the g-module
map defined by Ty(a; ® ... ® a;) := Tr(ay...a;). Let T} : C — g®* be
the dual map. Show that

015yt =1

Use that this element is g-invariant to show that the element C}_; is
central.

(ii) Generalize these statements to §0s,41(C) and sp,,(C). What
happens for s0,,7

14. Harish-Chandra isomorphism, maximal quotients

14.1. The Harish-Chandra isomorphism. Let g be a complex semisim-
ple Lie algebra. Fix a triangular decomposition g =n_ @& hHHn,. By
the PBW theorem, we then have a linear isomorphism

p:Um)@U(h) @ Uny) — Ulg)
given by multiplication. We also have the linear map

B:Un )@ U®M) @ U,) - U(h)
given by

a- ®h®ay — ela_)e(ap)h, ax € Uny),h € U(h),
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where ¢ : U(ny) — C is the augmentation homomorphism (the counit).
Thus we get a linear map

HC:=fop ' :U(g) = U(h) = Sh=C[h7|
called the Harish-Chandra map.

Theorem 14.1. (Harish-Chandra) (i) If b € U(g) and c € Z(g) then
HC(bc) = HC(b)HC(c). In particular, the restriction of HC to Z(g)
1s an algebra homomorphism.

(ii) Define the shifted action of W on b* by wex := w(x+p)—p where
p is the half sum of positive roots (or, equivalently, sum of fundamental
weights). Then HC maps Z(g) into the space of invariants C[h*]"®.
That is, for any b € Z(g) we have HC(b)(N) = fo(A + p) for some
fo € ClH* .

(1i) If V' be a highest weight representation of g with highest weight
A then

Jo(A+p) = (v}, bvy)
where vy 1s a highest weight vector of V' and v} the lowest weight vector
of V* such that (vi,vn) = 1. Thus if b € Z(g) then HC(b)(\) is the

scalar by which b acts on a highest weight module with highest weight
A

(iv) The map HC : Z(g) — C[h*]"* is a filtered algebra homomor-
phism and gr(HC') = Res, the Chevalley restriction homomorphism
(Sg)® — (Sh)™.

(v) HC is an algebra isomorphism.

The isomorphism HC : Z(g) — C[h*]""* is called the Harish-
Chandra isomorphism.

Proof. Let b =a_ha, € U(g). We have
(03, bua) = (v, a-haivy) = e(a-)e(ay)A(h) = HC(D)(A).
Thus
HC(be)(N) = (vy, bevy) = (v, buy) (v, con) = HC(b)(A)HC(c)(N)

since c is central; namely, the last factor is just the eigenvalue of ¢ on
V. This proves (i).
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To establish (ii),(iii), it remains to show that for b € Z(g), HC(b)
is invariant under the shifted action of all w € W. To this end, it
suffices to show this for w = s;, a simple reflection. For this purpose,
consider the Verma module M, with (A + p,«;') = n € Z-y. Then
fl'un generates a copy of My_,a, = M;,en inside M,. Thus we get
HC(b)(A) = HC(b)(s; ® \). Since this holds on a Zariski dense set, it
holds identically, which yields (ii),(iii).

(iv) follows immediately from (iii).

Finally, (v) follows from (iv) and the Chevalley restriction theorem,
since any filtered map whose associated graded is an isomorphism is
itself an isomorphism. O

Remark 14.2. Kostant theorems and the Harish-Chandra isomor-
phism extend trivially to reductive Lie algebras.

14.2. Maximal quotients. Let g be a semisimple Lie algebra and M
a g-module on which the center Z(g) acts by a character

x:Z(g) —C

(for example, M is irreducible). In view of the Harish-Chandra isomor-
phism theorem, we have y = y,, where

xa(z) = HO(2) ()
for a unique A € h* modulo the shifted action of W. As mentioned in
Subsection the element x, is called the infinitesimal character
or central character of M.

If M is a g-bimodule then it carries two actions of Z(g), by left and
by right multiplication. If these actions are by characters, then they
are called the left and right infinitesimal characters of M. The
infinitesimal character of M is then the pair (6, x) where 6 is the left
infinitesimal character and y the right infinitesimal character of M.

For a character x : Z(g) — C let

Uy = Ux(g) == U(9)/(z = x(2), 2 € Z(g)).
This algebra is called the maximal quotient of U(g) with infinitesimal
character x, as every U(g)-module with such infinitesimal character
factors through U,. Note that U, is a g-bimodule with infinitesimal

character (x,x) (as it is a U,-bimodule).
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Theorem [13.5] immediately implies

Corollary 14.3. For any finite-dimensional irreducible g-module V' we
have dim Homy(V, U,) = dim V[0], where g acts on U, by the adjoint
action. Thus U, is a Harish-Chandra g-bimodule.

Corollary 14.4. If V is a finite-dimensional g-bimodule then V & U,
1s a Harish-Chandra g-bimodule.

Proof. This follows from Corollary and Exercise [5.12] U

Corollary 14.5. (i) Every irreducible g-bimodule M locally finite under
the adjoint g-action is a quotient of V@ U, for some finite-dimensional
wrreducible g-module V' with trivial right action of g, where x is the
right infinitesimal character of M.

(i1) Every irreducible g-bimodule locally finite under the adjoint g-
action is a Harish-Chandra bimodule.

Proof. (ii) follows from (i) and Corollary [14.4] so it suffices to prove (i).
By Dixmier’s lemma (Lemmal7.2), M has some infinitesimal character
(0,x). Let V.C M be an irreducible finite-dimensional subrepresenta-
tion under g.q. Let us view V* as a g-bimodule with action

(af)(z) = =flaz), fb=0
for a,b € g,x € V, f € V* and consider the tensor product V* @ M,
which is a g-bimodule with action

ao(f@m):=af@m+ fRam, (f@m)ob:= f®mb.

The canonical element u € V*®@V C V*® M is gag-invariant (i.e., com-
mutes with g). Thus we have a bimodule homomorphism ¢ : U(g) —
V*®@M given by ¥(c) := uc = > vi ®v;c, where v; is a basis of V and v
the dual basis of V*. Moreover, since the right infinitesimal character of
M is x, this homomorphism descends to ) : Uy, — V*® M. This gives
rise to a nonzero homomorphism of bimodules { : V ® U, — M, where
the right g-module structure of V' is trivial. Since M is irreducible, &
is surjective. Thus the result follows from Corollary O

15. Category O of g-modules - 1

15.1. Category O. Let g be a semisimple complex Lie algebra.
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Definition 15.1. The category O = Oy is the full subcategory of g-
mod, which consists of finitely generated g-modules M with weight
decomposition and P(M) C U™, (A — Q4 ), where Ay, ..., A\, € b*.

It is clear that O is closed under taking subquotients and direct
sums, so it is an abelian category (recall that a submodule of a finitely
generated g-module is finitely generated since U(g) is Noetherian).

Also it is easy to see that any nonzero object M € O has a singular
vector (namely, take any nonzero vector of a maximal weight in P(M)).
Thus the simple objects (=modules) of O are Ly, A € h*.

Example 15.2. All highest weight g-modules, in particular a Verma
module M, and its simple quotient L) belong to O. Another example
is M~ \, the restricted dual to the lowest weight Verma module M _j,
introduced in Exercise [8.13|(ii). This module is called the contragre-
dient Verma module and denoted M.

Lemma 15.3. If M € O then the weight subspaces of M are finite-
dimensional.

Proof. Let vy, .., v, be generators of M which are eigenvectors of b (they
exist since M is finitely generated and has weight decomposition). Let
E:=%" Ub®n )y, =" Ung)y,. Then E is finite-dimensional
by the condition on the weights of M. On the other hand, the natural
map U(n_) ® E — M is surjective. The lemma follows, as weight
subspaces of U(n_) ® E are finite-dimensional. 0

Let R be the ring of series F' := ZuEh* cue”, where ¢, € Z and the
set P(F') of u with ¢, # 0 is contained in a finite union of sets of the
form A\ — Qy, A € h*. If M is an h-semisimple g-module with finite-
dimensional weight spaces and weights in a finite union of sets A — Q)
then we can define the character of M,

ch(M) = dim M[Ne* € R.
Aeh*

For example,
o

[oer, (1 —e)
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We have ch(M ® N) = ch(M)ch(N) and
ch(M) = ch(L) + ch(N)

when 0 - L - M — N — 0 is a short exact sequence. Lemma [15.3
implies that we can define such characters ch(M) for M € O.

Corollary 15.4. The action of Z(g) on every M € O factors through
a finite-dimensional quotient.

Proof. Since Z(g) is finitely generated, it suffices to show that every
z € Z(g) satisfies a polynomial equation F(z) = 0in M. Let puq, ..., i
be weights such that M is generated by F := Mu1| @ ... & M[ux]. By
Lemma [15.3] this space is finite-dimensional, and it is preserved by z.
Let F' be the minimal polynomial of z on E. Then F(z) = 0 on E,
hence on the whole M (as z is central and E generates M). U

Exercise 15.5. Show that the action of Z(g) on any Harish-Chandra
(g, K)-module factors through a finite-dimensional quotient. (Mimic

the proof of Corollary [15.4)).

Exercise 15.6. (i) Show that for any u € h*, Exty, (M, M,) = 0.
(ii) Show that Ext'(M,, M,) (Ext in the category of all g-modules)
1s nonzero.

Corollary 15.7. (i) Any M € O has a canonical decomposition
M = @xeh*/WM(X)a

where M (x) is the generalized eigenspace of Z(g) in M with eigenvalue
X, and this direct sum is finite. In other words,

0= ea><6h*/WOx7

where O, is the subcategory of O of modules where every z € Z(g) acts
with generalized eigenvalue x(z).

(it) Each M € O, has a finite filtration with successive quotients
having infinitesimal character x.

Proof. (i) Let R := Z(g)/Ann(M) be the quotient of Z(g) by its anni-
hilator in M. This algebra is finite-dimensional, so has the form R =
[1:2, Ri, where R; are local with units e;, corresponding to the general-
ized eigenvalues x1, ..., Xm € h*/W of Z(g) on M. So M = &, M(x;),
where M(x;) = e;M.
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(ii) If M € O, then the algebra R is local. Let m be its unique
maximal ideal. Then the required finite filtration on M is

M >mM D> m?M...
[l

Thus the simple objects of O, are L,_,, where x = x,, i.e., u € x.

We can partition the W-orbit y into equivalence classes according to
the relation p ~ v if p — v € Q. It is clear that this partition defines
a decomposition O, = @50, (S), where S runs over the equivalence
classes in x under the relation ~. Namely, O, (5) is the subcategory of
modules with all weights in y — p+ @, where u € S.

Example 15.8. Suppose that A € h* is such that wA — X ¢ @ for any
1 # w € W. In this case the equivalence relation on WA is trivial,
so for any p € WA the category O,,(u) has a unique simple object
M,,_,. It thus follows from Exercise for any p € WA, the category
Oy, () is equivalent to the category of finite-dimensional vector spaces
(as M,_, has no nontrivial self-extensions), and the category O,, is
semisimple with |W| simple objects.

Lemma 15.9. Every object of O has finite length.

Proof. By Corollary [I5.7 we may assume that M has infinitesimal char-
acter y,. We may also assume that P(M) C u+ @ for some p € bh*.
Recall that the quadratic Casimir C' of g acts on M in the same way as
in M,_,, i.e., by the scalar \* — p?. Suppose that v is a singular vector
in a nonzero subquotient M’ of M of some weight v € p + @ (it must
exist since weights of M’ belong to a finite union of A; — @),). Then
Cv = (7? — p?*)v, so we must have

72 — AQ.

Since the inner product on @ is positive definite, this equation has a
finite set .S of solutions v € p + Q.

For a semisimple h-module Y set Y[S] := @©,csY[7]. It follows that
M'[S] # 0. Also by Lemma we have dim M[S] < oo. Thus
length(M) < dim M'[S] < dim M[S] is finite, as claimed. O
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15.2. Partial orders of h*. Introduce a partial order on h*: we say
that p < Nif A—p e Qp and p < A if p < XA but u # \. We write
A>piftp < Xdand A > pif p > A

If p = suA for some o € Ry and p < A (ie., (A\,a¥) € Z>; and
w=A— (A a")a), then we write 1 <, A\. We write u < X if there exist
sequences !, ...,a™ € Ry and p = po, fi1, ..., flmy = A such that for all
iy i1 <ai i, and write g < X if g < X but g # A (i.e., m # 0). We
write A = pif g < Aand A = pif p < A

Remark 15.10. It is easy to see that if 4 < A then y < XA and u €
WA, but the converse is false, in general. For example, consider the
root system of type As, and let us realize h* as C*/ Caiagonal- Let g =
(0,3,1,2), A = (1,2,3,0). Then g € WA and p < A, since A — p =
(1,—1,2,-2) = a3 + 2a3. However, u 4 A. Indeed, otherwise there
would exist a € R, such that yu < s, A < A, and it is easy to check that
there is no such a.

15.3. Verma’s theorem.

Theorem 15.11. (D. N. Verma) Let A\, € b* and p < X. Then
dimHom(M,,_,, Mx_,) = 1 and M,_, can be uniquely realized as a
submodule of Mx_,. In particular, L,_, occurs in the composition series
Of M)\_p.

Proof. By Exercise [8.14] dim Hom(M,,_,, M,_,) < 1 and any nonzero
homomorphism M,,_, — M)_, is injective, so it suffices to show that
dim Hom(M,,_,, Mx_,) > 1. By definition of the partial order =<, it
suffices to do so when u <, A for some o € R, i.e., when p = s\ =
A — na where n := (\, ") € Z,. For generic A with (A\,a¥) =n € Z,,
this follows from the Shapovalov determinant formula (Exercise ,

and the general case follows by taking the limit. 0

We will see below that the converse to Verma’s theorem also holds:
if L,_, occurs in the composition series of My_, then 1 < A. This was
proved by J. Bernstein, 1. Gelfand and S. Gelfand, see Theorem [20.13
below.

15.4. The stabilizer in W of a point in h*/Q. Let z € h*/Q and

W, C W be the stabilizer of z.
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Proposition 15.12. W, is generated by the reflections s, € W,. More-
over, the roots o such that s, € W, form a root system R, C R, and
W, is the Weyl group of R,. The corresponding dual root system RY is
a root subsystem of R, i.e., RY = spany(RY) N R".

Proof. Let T := h*/Q. The ring C[T/W] := C[T]" is freely generated
by the orbit sums m; = > BeWwy e, where wy are the fundamental
coweights. Hence T'/W is smooth (in fact, an affine space). It follows
by the Chevalley-Shephard-Todd theorem that for each x € T the sta-
bilizer W, is generated by a subset of reflections of W. Moreover, if
Sa,Sp € Wy then sosgs, = s5,(3) € W, which implies that the set R,
of av such that s, € W, is a root system in R, and W, is its Weyl group.
Moreover, picking a preimage x of x in h*, we see that a € R, if and
only if (o, 7) € Z. Thus R) is a root subsystem of R". O

Remark 15.13. 1. Note that unlike the case x € h*, for = € h*/Q the
group W, is not necessarily a parabolic subgroup of W i.e., it is not
necessarily conjugate to a subgroup generated by simple reflections. In
fact, the Dynkin diagram of R, or RY may not be a subdiagram of
the Dynkin diagram of W. Such subgroups are called quasiparabolic
subgroups.

For example, if R is of type B, with simple roots ay = (1,0) and
oy = (—1,1) then for z = (1,0), R, is the root system of type A; x A;
consisting of £ay and £(a; + ay). The same example shows that R,
is not necessarily a root subsystem of R, as oy + (a1 + ) ¢ R,.

2. If GV is the simply connected complex semisimple Lie group corre-
sponding to R then T is the maximal torus of GV, and it is easy to see
that RY is the root system of the centralizer 3, of z in g¥ := Lie(G").

16. Category O of g-modules - 11

16.1. Dominant weights. Let us say that a weight A € h* is dom-
inant for the partial order < (respectively, <) if it is maximal with
respect to this order in its equivalence class (or, equivalently, in its
W-orbit).

Corollary 16.1. The following conditions on a weight A € h* are equiv-

alent:
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(i) X is dominant for <;

(i1) X is dominant for =<;

(i11) For every root o € Ry, (A, ") & Zp.
(iv) For every w € Wxiq, wA = A.

(v) For every w € Wyiq, wA < A.

Proof. 1t is clear that (iv) implies (v) implies (i) implies (ii). It is also
easy to see that (ii) implies (iii), since if (A, ") € Z-o then s,A ~ A
and s,A > A so A is not maximal under < in its equivalence class. It
remains to show that (iii) implies (iv). By Proposition Wiio is
the Weyl group of some root system R’ C R, and the equivalence class
S of A is simply the orbit Wy;oA. By our assumption, for o € R/, we
have (A, ") € Z\ Z«o = Z>o. Thus, A = X + v where X is a dominant
integral weight for R’ (meaning that (A, ") € Zso for a € R/) and
(v,a¥) = 0 for all @« € R'.. Now for any w € W q, fix a reduced
decomposition w = s;,,...s;,, where s; = sg, and [3; are the simple
roots of R'. Let A\ := s;,...5, A, s0 A\g = A and \,, = wA. Setting
Ay = S ...5y N = A\, — v, we then have

Ap—1— A = 2,1 - ;c = ( 2717 Z\;)/Blk - ()‘,7 Siy--Sig_q zvk)ﬁlk

The coroot sil...sik71ﬁ¥ is positive, so we get that A\ =< Ap_1, which
yields (iv). O

Corollary shows that every equivalence class of weights contains
a unique maximal element with respect to each of the orders < and <,
namely the unique dominant weight in this class. The same is true for
minimal elements by changing signs.

16.2. Projective objects. Let C be an abelian category over a field
k. Recall that C is said to be Noetherian if any ascending chain of
subobjects of any object X € C stabilizes. This holds, for instance,
when objects of C have finite length.

Recall also that an object P € C is projective if the functor Hom(P, —)
is (right) exact, and that C is said to have enough projectives if ev-
ery object L € C is a quotient of a projective object P. Note that if
objects of C have finite length then it is sufficient for this to hold for

every simple L, then the property can be proved for all L by induction
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in length. Indeed, suppose we have a short exact sequence
0—>L;—L—Ly,—0

with Ly, Ly # 0 and projectives Py, P, with epimorphisms p; : P; — L;.
Then the map ps lifts to ps : P, — L, which yields an epimorphism
p1+p2: PL® P, — L.

Suppose that Hom spaces in C are finite-dimensional. Then by the
Krull-Schmidt theorem, every object of C has a unique representa-
tion as a finite direct sum of indecomposable ones (up to isomorphism
and permutation of summands).

Proposition 16.2. Let C be a Noetherian abelian category with enough
projectives and finite-dimensional Hom spaces over an algebraically closed
field k. Then

(i) Let I be the set labeling the isomorphism classes of indecomposable
projectives P; of C. Then the isomorphism classes of simple objects L;
of C are labeled by the same set I, and dimHom(P;, L;) = 6,5, 4,5 € 1.

(it) For M € C of finite length, the multiplicities [M : L;] equal
dim Hom(FP;, M).

Proof. Let P € C be an indecomposable projective. Then End(P) has
no idempotents other than 0,1, so End(P) = k& N where N is the
nilradical, i.e., it is a local algebra.

Suppose ) C P is a maximal proper subobject (it exists by Zorn’s
lemma since C is Noetherian). Let Q)" C P be a subobject not contained
in Q. Then Q + Q" = P. So we have an epimorphism @ & Q" — P,
which, by the projectivity of P, gives a surjection

Hom(P, Q) ® Hom(P, Q') — End(P).

So we have 1p = a + @/, where a,a’ : P — P factor through Q, Q'
Thus a is not an isomorphism (since @ is proper). As End(P) is local,
it follows that o’ is an isomorphism, so Q' = P.

It follows that P has a unique maximal proper subobject J(P), and
Lp := P/J(P) is simple. Moreover, if L := P/Q is simple then ) =
J(P), so L = Lp. So if I’ labels the isomorphism classes of simples in
C, then we get a map ¢ : [ — I’ such that ¢(P) = Lp, and we have
dim Hom(P;, L) = 64;),». Moreover, ¢ is surjective since every simple L
is a quotient of some projective P which may be chosen indecomposable
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(if P - L and P = @Y P, where P, are indecomposable then there
exists ¢ such that the map P, — L is nonzero, hence an epimorphism
as L is simple).

It remains to show that ¢ is injective, i.e., if L,, = L,, then P,, = P,.
To this end, note that the epimorphisms aq : P,, = Ly, by : P, = L,,
liftt to morphisms a : P, — P,, b : P, — P, such that ab €
End(P,) and ba € End(P,,) are not nilpotent (as they define iso-
morphisms on the corresponding simple quotients). Since the algebras
End(P,), End(FP,,) are local, it follows that ab and ba are isomorphisms,
as claimed.

This proves (i). Part (ii) now follows from the exactness of the functor
Hom(PFP;, 7). O

The object P; is called the projective cover of L;, and L; is called
the head of P;; by Proposition [16.2] it is the unique simple quotient of
P,

Remark 16.3. In general, objects of a category satisfying the assump-
tions of Proposition need not have finite length. An example when
they can have infinite length is the category of finitely generated Z-
graded C[z]-modules, where deg(z) = 1. The simple objects in this
category are l-dimensional modules L,, n € Z, which sit in degree n
(with x acting by zero). The projective cover of L,, is P, = Clz],,
the free rank 1 module sitting in degrees n,n + 1, ..., which has infinite
length.

16.3. Projective objects in O.

Proposition 16.4. If A is dominant then M,_, is a projective object
in O

Proof. Our job is to show that the functor Hom(M,_,, ) is exact on
O. It suffices to show this on O,, (S), where S is the equivalence class
of A. To this end, note that all weights of any X € O,,(S) are not
> XA — p. Thus every v € X[\ — p| is singular, so there is a unique
homomorphism M,_, — X sending vy_, to v. It follows that that
Hom(M)_,, X) = X[\ — p], which implies the statement. O

9Note that this does not mean that M) is a projective U(g)-module; in fact, it
is not.
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Now let V' be a finite-dimensional g-module. Then we have an exact
functor Ve : O — O.

Corollary 16.5. (i) If P € O is projective then so is V &® P.
(1t) If X € b* is dominant then the object V@ M,_, € O is projective.
Proof. (i) For X € O
Homy(V ® P, X) = Homy (P, V* ® X),
which is exact since P is projective.

(ii) follows from (i) and Proposition [16.4] O

Corollary 16.6. (i) For every p € b*, there exists dominant A € b*
and a finite-dimensional g-module V' such that Hom(V®M,_,, L,) # 0.
Thus O has enough projectives.

(ii) Every projective object P of O is a free U(n_)-module.

Proof. (i) We have
Hom(V ® M)_,, L,) = Homg(My_,,V*® L,).

Now take V = V* = Ly, for large N and A = pu+ (N + 1)p. It is clear
that A is dominant, and Homy(M,_,,V* ® L,) = C, as claimed.

(ii) This follows by Lemma [I2.3]since every indecomposable projec-
tive object P € O is an h*-graded direct summand in V' ® M,_,, which
is a free graded U(n_)-module. O

It follows that every simple object L) of O has a projective cover Pj,
with dim Hom(Py, L,,) = 6.

17. The nilpotent cone of g

17.1. The nilpotent cone. Let (Sg)o be the quotient of Sg by the
ideal generated by the positive degree part of (Sg)?, i.e. by the free
homogeneous generators py, ..., p, of (Sg)? (which exist by Kostant’s
theorem). The scheme

N = Spec(Sg)o C 9" = g
is called the nilpotent cone of g. It follows from the Kostant theo-
rem that pq, ..., p, is a regular sequence, i.e., this scheme is a complete
intersection of codimension r in g (see Remark|12.11)), i.e., of dimension
dimAN =dimg —r = |R| = 2|R+| = 2dimny,
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the number of roots of g.

Let x € g be a nilpotent element. Recall that then z is conjugate
to an element y € ny and Ad(t*")y — 0 as t — 0, where p” is the
half-sum of positive coroots of g. Thus p;(z) = p;(y) = 0 and hence
xz € N(C). On the other hand, if z is not nilpotent then ad(z) is not a
nilpotent operator, so Tr(ad(z)") # 0 for some N, hence z ¢ N(C). It
follows that N (C) is exactly the set of nilpotent elements of g, hence
the term “nilpotent cone”.

For example, for g = sl, we have r = 1 and

pi(A) = —det A = 2"+ yz

for A = (i —yx> € g, so N is the usual quadratic cone in C* defined
by the equation 2% + yz = 0.

17.2. The principal sl, subalgebra. The principal sl; subalgebra
of g is the subalgebra spanned by e := Y7 e, f = > . ¢ f; and
h = le, f] = >, cihi = 2pY. Thus ¢; are found from the equations
> ciaj = 2 for all j, where A = (a;;) is the Cartan matrix of g.

Lemma 17.1. The restriction of the adjoint representation of g to its
principal sly-subalgebra is isomorphic to Loy, ®...@B Loy, for appropriate

Proof. Consider the corresponding action of the group SLs(C). The
element —1 € SLy(C) acts on g by exp(2mip¥) = 1 since p" is an
integral coweight. Thus only even highest weight sl,-modules may occur
in the decomposition of g. Since p" is regular, the 0-weight space of this
module (the centralizer Zy(p")) is b, i.e., has dimension 7. Thus g has r
indecomposable direct summands over the principal sls, as claimed. [J

The numbers m; (arranged in non-decreasing order) are called the
exponents of g. We will soon see that m; = d; — 1, where d; are the
degrees of g.

17.3. Regular elements. Recall that x € g is regular if the dimen-
sion of its centralizer is r = rankg (the smallest it can be). Thus regular

elements form an open set greg C 9.
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Lemma 17.2. The element e =Y., e; is regqular.

Proof. By Lemma [17.1} the centralizer Z;(e) is spanned by the highest
vectors of the representations Loy, , ..., Loy, , hence has dimension .  [J

Corollary 17.3. Let By be the Borel subgroup of G with Lie algebra
by :=b&ny. Then Ad(By)e is the set of elements 3 .p Caq wilh
co € C and c,, # 0 for alli.

Proof. Since by Lemma dim Z(e) = r, we have
dim[67n+] Z |R+| — T = dim[n+, n_|_].

Since [e,ny] C [ng,ny], we get that [e,n;] = [ny,ny]. It follows that
if N; = exp(ny) then Ad(N;)e = e+ [ng,ny] is the set of expressions

acR, Ca€a with ¢,, = 1 for all 7. The statement follows by adding
the action of the maximal torus H = exp(h), which allows to set ¢,, to

arbitrary nonzero values. 0

17.4. Properties of the nilpotent cone.
Proposition 17.4. The nilpotent cone s reduced.
Proposition is proved in the following exercise.

Exercise 17.5. Let g be a finite-dimensional simple Lie algebra.

(i) Let Ry be the graded algebra in Theorem[12.2] Show that the top
degree of this algebra is D := > (d; — 1) and Ry[D] = CA, where
A = [[,ep, @ Deduce that 3, (d; — 1) = [R.], , the number of
positive roots.

(i) Let g = ®!_, Loy, be the decomposition of g as a module over
the principal sly-subalgebra (e, f, h) given by Lemma i.e., m; are
the exponents of g. Show that m; =1 and ) ;_, m; = |[R,|. Moreover,
show that if 14 is the partition (m,, ..., m;) then the conjugate partition
,ug is (n1,...,nn_1), where n; is the number of positive roots « of height
i (ie., (pY,a) = i) and h := m, + 1. Conclude that h = (p¥,0) + 1
where 6 is the maximal root, i.e., the Coxeter number of g.

(iii)(a) Let b; be the lowest weight vectors of La,,,, and
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be the centralizer of f. Show that g = 3; ® 7.0, where O, = Ad(G)e
is the orbit of e. Thus the affine space e + 3, is transversal to O, at e.
This affine space is called the Kostant slice.

(iii)(b) Consider the C*-action on g given by

tox = t%ad(h)_lﬂ

Show that this action preserves the decomposition of (ii), and the linear
coordinates by on 3 have homogeneity degrees m;+1 under this action.

(iv) Let (Sg*)? = C|p, ..., pr], degp; = d;, and let p;(y) := pi(e + y),
y € 3y. Show that p; are polynomials of b7 homogeneous under the
C*-action of (iii) of degrees d;. Deduce from this and the identity

>.;(di —1) =", m; proved in (i),(ii) that

and thus p; = bf (under appropriate choice of basis). Conclude that
the differentials dp; are linearly independent at e € g.

(v) Work out (i)-(iv) explicitly for g = sl,,.

(vi) Prove Proposition [17.4 Hint: View O(N) as an algebra over
R := Sn, ®Sn_. Use the arguments of Subsection to show that it
is a free R-module of rank |W|. Show that the specialization of O(N)
at a generic point z € n X n* is a semisimple algebra of dimension
(W] (use (iv)). Now take f € O(N) such that f* = 0 for some &, and
deduce that the specialization of f at z is zero. Conclude that f = 0.

Proposition 17.6. (i) The orbit O, := Ad(G)e is open and dense in
N.

(i) All regular nilpotent elements in g are conjugate to e.

(iii) N is an irreducible affine variety. Thus (Sg)o is an integral
domain.

Proof. (i) This follows from Corollary and the fact that every nilpo-
tent element in g can be conjugated into n,.

(ii) The orbit O, of every regular nilpotent element x has the same
dimension as O,, so the statement follows from (i). Indeed, since O,
is open and dense, N\ O, has smaller dimension than N, hence can’t
contain O,.

(iii) follows from (i) and Proposition [17.4] since O, is smooth and

connected (being an orbit of a connected group), hence irreducible. [J
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Corollary 17.7. U, is an integral domain for all x.
Proof. This follows from Proposition [17.6[(iii) since gr(Uy) = (Sg)o. U

Exercise 17.8. Let e be a nilpotent element in a semisimple complex
Lie algebra g, and g° be the centralizer of e. Let (,) be the Killing form
of g.

(i) Show that (e,g¢) = 0 (prove that for any x € g¢, the operator
adead, is nilpotent).

(ii) Show that there exists h € g such that [h,e] = 2e (use that
Im(ad,.) = g°* to deduce that e € Im(ad,)).

(iii) Show that in (ii), A can be chosen semisimple (consider the
Jordan decomposition h = s + n). From now on we choose h in such a
way.

(iv) Show that Ch @ g€ is a Lie subalgebra of g.

(v) Assume that g° is nilpotent. Show that there is a basis of g in
which the operator ad, is upper triangular for all z € Ch@ g° (use Lie’s
theorem). Deduce that (h,x) =0 for all x € g°.

(vi) Show that if g° is nilpotent then there are h, f € g such that
[h,e] = 2e, [e,f] = h and [h, f] = —2f. In other words, there is
a homomorphism of Lie algebras ¢ : sly — g such that ¢(F) = e,
¢(H) = h, ¢(F) = f. Show that h is semisimple and f is nilpotent.

(vii) (Jacobson-Morozov theorem, part I) Show that the conclusion of
(vi) holds for any e (without assuming that g¢ is nilpotent). (Hint: use
induction in dim g. If g° is not nilpotent, use Jordan decomposition to
find a nonzero semisimple element x € g° and consider the Lie algebra
g”. Show that g’ := [g”, g”] is semisimple and e € ¢’).

(viii) Show that for given e, h, the homomorphism ¢ in (vi,vii) is
unique (i.e., f is uniquely determined by e, h).

(ix) (Jacobson-Morozov theorem, part II) Show that for a fixed e,
exp(g®) (the Lie subgroup corresponding to g¢) is a closed Lie subgroup
of the adjoint group G,q corresponding to g, and the element h (hence
also f) can be chosen uniquely up to conjugation by exp(g.). (Hint:
Let h' be another choice of h, and consider the element A’ — h € g°.)

(x) Explain why the Jacobson-Morozov theorem extends to reduc-

tive Lie algebras (where by a nilpotent element we mean one that is
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nilpotent in any finite-dimensional representation). Give an elementary
proof of this theorem for g = gl,, using only linear algebra.

(xi) Show that there are finitely many conjugacy classes of nilpotent
elements in g, i.e., the nilpotent cone A has finitely many G,q-orbits.
(Hint: Consider the variety X of homomorphisms ¢ : sls — g and
show that it is a disjoint union of finitely many closed G,q4-orbits. To
this end, show that the tangent space to X at each x € X coincides
with the tangent space of the orbit Gz at the same point, using that
EXtilz (Cv g) = 0)

18. Maps of finite type, Duflo-Joseph theorem

18.1. Maps of finite type. Let M, N be g-modules. Let Homg, (M, N)
be the space of linear maps from M to N which generate a finite-
dimensional g-module under the adjoint action a o T := [a,T]. The
elements of Homg, (M, N) are called linear maps of finite type. For
example, a module homomorphism is a map of finite type, as it gener-
ates a trivial 1-dimensional g-module.

Exercise 18.1. Show that any map of finite type has the form
(f ®1) o ®, where f € V* for some finite-dimensional g-module V'
and & : M — V ® N is a module homomorphism.

Note that Homg, (M, N) is a g-bimodule with bimodule structure
given by
(a,b) o T := aT + Tb,
a,b € g. Moreover, it is clear that if M has infinitesimal character y
and N has infinitesimal character § then Homg, (M, N) has infinitesimal
character (6, x).

Proposition 18.2. If M, N € O then Homg, (M, N) is an admissible
g-bimodule.

Proof. We must show that for every simple finite-dimensional g-module
V', the space
Homg(V, Homg, (M, N)) = Homy(V, Home (M, N))

is finite-dimensional. Let pu(M, N, V) be its dimension (a nonnegative

integer or infinity). Since the functor (M, N) — Hom¢ (M, N) is exact
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in both arguments, for any short exact sequence
0— M, — My — M;—0
we have
,M(MQa N7 V) = N(Mb N; V) + M(M?)a N7 V)7
M(Nv M27 V) = ,U(N, Mla V) + M(Na MS) V)
Thus, since M, N have finite length, it suffices to establish the result
for M, N simple. Then M is a quotient of M, and N a submodule of

M/ for some A, j1, so Home (M, N) C Home (M), M)/). But by Exercise
8.13] for any finite-dimensional g-module V/,

Hom,(V, Home (M, M) = Homy(V @ My, M)]) =
Homy (M, V* ® M,}) = V*[\ — pj.
This implies the statement. 0

Proposition 18.3. For M, N € O and a finite-dimensional g-module
V' we have

Homg, (M, V @ N) =V ® Homg, (M, N).
Exercise 18.4. Prove Proposition [18.3]

Proposition 18.5. Let V' be a finite-dimensional g-module. Then for
any A € b*, we have

dim Homy(My, V' ® M, ) = dim V[0].
Thus the multiplicity of V' in Homg, (My, M) equals dim V[0].

Proof. By Exercise [8.14] the statement holds if M) is irreducible, i.e.,
generically. Thus dim Homy (M, V®M,) > dim V[0], and it remains to
prove the opposite inequality. Let M, be the simple Verma submodule
of My. Given ® : M, — V ® M,, we claim that the restriction of
® to M, must land in V' ® M,. Indeed, otherwise we will have a
nonzero (hence injective) homomorphism M, — V ® (M,/M,,), which
is impossible by growth considerations.

But by Exercise [8.14] the statement holds if A is replaced by . So if
it does not hold for A then there is a nonzero ® which kills M,,. Thus
® defines a nonzero homomorphism M) /M, — M, ® V, which is im-

possible since My ® V' is a free, hence torsion free U(n_)-module, while
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every homogeneous vector in M, /M, is torsion (as this module does
not contain free U(n_)-submodules by growth considerations). This
establishes the proposition. O

Remark 18.6. Note that Proposition does not extend to maps
My, — V ® My where v € P is nonzero. Namely, if M), is irre-
ducible then we have dim Homg (M), V ® M)) = dim V[v], so in gen-
eral dim Homg(My4,, V ® My) > dim V[v], and the inequality can, in
fact, be strict. The simplest example is g =sl,, V=C, A\ =0, v = -2,
in which case the left hand side is 1 and the right hand side is 0.

Also the expectation value map

<,> : HOng<M)\,V & M)\> — V[O]

need not be an isomorphism, even though its source and target have
the same dimension. The simplest example is g = slp, A =0, and V is
the adjoint representation. We have

dim Homg(My, V @ My) = dim Homg(Mo, V @ M_5) =1,

so the only (up to scaling) nonzero homomorphism ® : My — V ® M,
in fact lands in V ® M_y C V ® M. Thus (@) = 0.

18.2. The Duflo-Joseph theorem.

Proposition 18.7. The action homomorphism
QZ5 : UXA+p — HOIIlﬁn(MA, M)\)
18 1njective.
Proof. Let M,, C M) be a simple Verma submodule with highest weight
vector v. Let B,z : Uny)[B] @ U(n_)[—pF] — C be the pairing defined
by the equality
abv = B, 3(a, b)v.

As M, is simple, this pairing is nondegenerate.
Consider the multiplication map

E:Um)@Umy) - U

XA+p*

We claim that the map ¢ o £ is injective, hence so are & and @|pme.

Indeed, let z € U(n_) ® U(n, ) be a nonzero element. We can uniquely

write £ = ) .o, Ta, Where 2, € Un-) ® U(ny)[a]. Let § € Q4 be a
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minimal element such that xg = Y. b; ® a; # 0, where {a;} is a basis
of U(ny)[B]. Let {a;} be the dual basis of U(n_)[—/] with respect to
Bltﬂ‘ Then

(po&)(x)ajv = bjuv.
Since b; are not all zero, there exists j such that bjv # 0. It follows

that (¢ o &)(x) # 0, as claimed.
Thus, denoting the PBW filtration by F),, we have

dim F,,(Uy, ,, /Ker¢) > dim F,,(U(n_) ® U(ny)) > Cn®™e"

for some C' > 0. On the other hand, assume that Ker¢ # 0 and consider
the nonzero ideal

gr(Kerg) C (Sg)o = O(N).
This ideal contains a principal ideal O(N)f, where f € O(N) is a

nonzero homogeneous element. Since O(N) is a domain (Proposition

17.6[(iii)), this ideal is a free O(N)-module generated by f.
dim F,(Uy, ., /Ker¢) = dim gr,, (O(N)/gr(Ker¢))

<dimgr_,(O(N)/OWN)f) < C'ntmer1,

for some C" > 0. So we get that Cndme—" < O'pdime—=1  This is a
contradiction, so Ker¢ = 0 and thus ¢ is injective. 0

Corollary 18.8. (The Duflo-Joseph theorem) ¢ is an isomorphism.

Proof. Consider the restriction ¢y of ¢ to the V*-isotypic component.
Thus

¢v : Homg(V*, (UX)\-H;)ad) — Homg(M)\, V& MA)

By Kostant’s theorem, the source of this map has dimension dim V'[0],
while by Proposition so does the target. Since by Proposition [18.7
¢y is injective, it follows that ¢y is an isomorphism for all V', hence so
is ¢. [l

Corollary 18.9. IfV s a finite-dimensional g-module then the natural
map V @ Uy, — Homg,(My,V ® M)) is an isomorphism.

Atp

Proof. This follows from Proposition and Corollary O
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18.3. infinitesimal characters of Harish-Chandra bimodules.

Corollary 18.10. Let V be a finite-dimensional g-module and X\ € h*.

(1) The left infinitesimal characters occurring in V & Uy, are Xty
where v runs over weights of V.

(i1) If M is a g-module with infinitesimal character x, then the infin-
itesimal characters occurring in 'V & M are among X+, where v runs
over weights of V.

(ii) If M is a nonzero Harish-Chandra g-bimodule with infinitesimal
character (xx, x,) then there is w € W such that wA — € P.

Proof. (i) This follows from Corollary [18.9}
(ii) follows from (i) and the isomorphism

VeM=(VeU,) ey, M.

(iii) This follows from (i) since by Corollary any irreducible
Harish-Chandra bimodule is a quotient of V' @ U, for some p, V. [

Let HCy,(g) be the category of Harish-Chandra g-bimodules with
generalized infinitesimal character (6, x).

Corollary 18.11. The category of Harish-Chandra g-bimodules HC'(g)
has a decomposition according to generalized infinitesimal characters:
HO(Q) = @’Y,)\HCXA-Q—'WX/\ (g)a

where v € Py and A € h*/Stab(~y) (here Stab(vy) is the stabilizer of
in W). In particular, if (0, x) cannot be written as (X4, Xr), A € b*,
v € Py, then HCy,(g) = 0.

Proof. This follows from Exercise and Corollary [18.10 U

19. Principal series representations
19.1. Residual finiteness of U(g).
Proposition 19.1. The homomorphism ¢ : U(g) — [[ cp, End(Ly) is
mjective.

Proof. Let x € Kerg, and G be the simply connected group with Lie
algebra g. Then by the Peter-Weyl theorem, z acts by zero on O(G) :=

®xrep, Ly ® L} (where 2 acts only on the first component). This means
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that the right-invariant differential operator on G defined by z is zero,
ie,rz=0. 0

Exercise 19.2. Give another proof of Proposition which does not
use the Peter-Weyl theorem. Take x € Kerg.

(i) Show by interpolation that x acts by zero in every Verma module
M.

(ii) Show that if z € U(g) acts by zero in M, for all A then z = 0.

Note that Proposition implies that any z € U(g) which acts by

a scalar in all Ly belongs to Z(g). Indeed, in this case for any = € U(g),
[z, z] acts by zero in Ly, hence [z, z] = 0.

19.2. Principal series. Let \, u € h*, A\—p € P. Define the principal
series bimodule
M(A, 1) := Homgy, (M, Ml—p) S HCX;MXA (9)-
Then we have
(15) M()‘a :u) = EBVeirr(g)‘/ V" [)\ - ,LL]
The bimodule M(\, 1) represents a certain functor that has a nice

independent description.

Proposition 19.3. Let X € HC(g). Then
Homgfbimod(Xa M()‘a /L)) = Hom(bf,bJF)—bimod(X & C)\fm Cufp)'

where the (b_,b.)-bimodule structure on C,_, is defined by the char-
acter (u — p,0) and on C,_, by the character (0, \ — p).

Proof. We have
Homgfbim0d<X; M(/\7 ,LL)) = Homgfbimod(X & M)\fpa Mv )7

p—p
where the right copy of g acts trivially on M ;Y— , and the left copy of g
acts trivially on M,_,. Frobenius reciprocity then yields

Homgfbimod(X, M()\, /L)) = Hom(m,g)_bimod(X X (C)\,p, M/\L/fp)'
Since X ® C,_, is diagonalizable under the adjoint action of b, on

the right hand side we may replace M), with its completion M pap
(the Cartesian product of all weight spaces). Then applying Frobenius

reciprocity again, we get the desired statement. O
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Let us give an explicit realization of M(X, n). By (15), M(A, ) is
spanned by elements ®,,: My, — M v €V, € V*[\ — pu], where
P, u = (v®1,Pm),
and @, : My, = V*® M} is the homomorphism for which (®,) = ¢,
for finite-dimensional g-modules V. Moreover these elements easily
express in terms of such elements for simple V. Thus for any V' and
y € V ® V*[0] we can define the linear map ®v(y) : My_, — M,
which depends linearly on y with @y (v ® ¢) = @, 4, and every element

of M(A, i) is of this form.

Proposition 19.4. The right action of g on M(\, ) is given by the
formula

Qy(v@ L) b= Deer(b@ ] QA —p) @ L+ > f2® fall).
aERy

Proof. Consider the homomorphism

Uy =) b @ P My, = g" @V @ M,

p=p>
where {b;} is a basis of g and {b}} the dual basis of g*. We have
(Te) = b @ (i) € g" @V,

where the expectation value map (,) is defined in Exercise m But

(Beh) = (A= p, )L, (Prea) =0, (Pefa) = faol
for a € R,. Thus we get

(T)=A=p)@L+ D> fr® ful,
acR4
hence
Ve = Q)b+ S acr, fa®lal:
This implies the statement since
(Pv(v@0)-bu=(v®1,Pbu) = (bRve 1 V), ue Mc_,.

U
99



This leads to a geometric construction of the principal series. Namely,
let G be the simply connected group with Lie algebra g, B = B, be
the Borel subgroup of G' whose Lie algebra is b, and H = B/[B, B|
the corresponding torus. Fix A\,u € b* with A — u € P. Define a
real-analytic character

Yau: H— C*
by
Uaul(@) = Ma)p(a™) ™,
where x* is the image of x under the compact antiholomorphic involu-

tion o : H — H (i.e., such that H = H,, the compact real form of

H). For example, for G = SLy, A\, ;1 are complex numbers with A —

an integer and z* =7~ !, so

Paulz) = T = 2Nz
Define C5°,(G/B) to be the space of smooth functions on G' satisfying
F(gb) = F(g)¢au(b).

This is naturally an admissible representation of G: we have G/B =
G./H., so the multiplicity space of V' in C5%,(G// B) is V*[A—p]; namely,
O (G/B)™ = OF (G/H,)™, the space of G -finite functions on G,
(under left translations) such that

F(gz) = F(g)M(z)pu(z) ™

for x € H..

Proposition 19.5. We have an isomorphism

£: M\ p) = O, ,_,(G/B)™
as Harish-Chandra bimodules. Namely, £(®, ) is the matriz coefficient
wv,f(g) = (’U,g€>, g € Gc-

Exercise 19.6. Prove Proposition [19.5 Hint: Use Proposition [19.4
to show that ¢ is a well defined isomorphism of g,q-modules, and after
applying £ the right action of g looks like

(- 0)(g) = (A = p)(Ad(9)b)v(g) + Y fi(Ad(g)b)(R(fa)¥)(9),

a€ERL
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where R(f,) is the left-invariant vector field equal to f, at 1. Then
show that the right action of g on CF° G/ B) is given by the same
formula.

19.3. The functor H,. Define the functor Hy : Oy — HCy,, given
by

p,u—p(

H,\(X) = HOmﬁn<M)\,p, X)
Note that Hy(M,/_,) = M(A, p).
Proposition 19.7. The functor Hy exact when X\ is dominant.
Proof. It V' is a finite-dimensional g-module then
Homgy(V, H\(X)) = Homy(V ® M,_,, X),

which is exact as V' ® M) _, is projective. U

20. BGG reciprocity and BGG Theorem

20.1. A vanishing lemma for Ext groups.

Lemma 20.1. Let X € O be a free U(n_)-module. Then for any u € b*
we have

Exty (X, M) =0, i > 0.
Proof. Fix a projective resolution P, of X in O and consider the com-
plex Homg(P,, M l ) which computes the desired Ext groups. Since P,
have a weight decomposition,

Homg(P., M) = Homg(P., M),

where ]/\4\;/ = [I3eq- M,/ [B] is the completion of M. We have
M, = Coindy_(C,) := Hom,_(U(g),C,,) = Home(U(n,),C,).

Thus, Frobenius reciprocity yields

Homy (P, ]\/J\l\f) = Hom,_(P,,C,).
By Proposition [16.6{(ii), P; are free U(n_)-modules, so the exact se-
quence of U(n_)-modules

o= P> F—>X =0

is split. Thus the complex Hom, (F,,C,) is exact in positive degrees,

which implies the statement. O
101



20.2. Standard filtrations. A standard (or Verma) filtration on
X € O is a filtration for which successive quotients are Verma modules.
X is called standardly filtered if it admits a standard filtration. It
is clear that every standardly filtered object X is necessarily a free

U(n_)-module.

Corollary 20.2. If X is standardly filtered then Extl, (X, M) =0 for
all p € b* and i > 0.

Proof. This follows from Lemma [20.1] U
The converse also holds. In fact, we have

Theorem 20.3. X s standardly filtered if and only if
Exty (X, MY) =0
for all A € b*.

Proof. Let E be a finite-dimensional vector space, and suppose we have
a short exact sequence in O:

0O-K—-FEM,—2Z—0
with K[\ = 0.

Lemma 20.4. If Ext},(Z, M) =0 for all p € b* then K = 0 and
Z = E® M,.

Proof. The long exact sequence of cohomology yields
... = Hom(E @ My, M,}) — Hom(K, M)) — Exty,(Z, M,]) = 0.

For A # p1, we have Hom (M), M) = 0, so it follows that Hom (K, M)/) =
0. But we also have Hom(K, M) = 0, as K[\] = 0, while every nonzero
submodule of M) contains Ly. It follows that K = 0. O

Now let us prove the theorem. We only need to prove the “if” di-
rection. We argue by induction in the length of X (with the base
case X = 0 being trivial). Let A be a maximal weight in P(X) and
E = X[\. Let Z be the submodule of X generated by FEj; it is a
quotient of E'® M, by a submodule K with K[\] = 0. We have a short
exact sequence

0—-2Z2—-X—->Y —0.
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Thus from the long exact sequence of cohomology we get an exact
sequence

.. = Hom(Z, M) — Ext}(Y, M))) — Exty(X, MY) = 0.

It follows that for y # X we have Exty (Y, M) = 0, as in this case
Hom(Z, M}/) = 0 (since Z is a quotient of F'® M). On the other
hand, if ;4 = A then by the argument in the proof of Lemma [20.1] we
have
Exto (Y, M) = Exte (Y, Cy),
where C is the category of h-semisimple b_-modules. But Ext;(Y,C,) =
0, as all weights of Y are not > A\ and hence any short exact sequence
of b_-modules
0—-C, — Y 5Y =0

canonically splits. By the induction assumption, it follows that Y is
standardly filtered, so by Corollary Ext' (Y, M ) =0foralli>1,
in particular for ¢ = 1,2. Thus the long exact sequence of Ext groups
gives

Ext'(Z, M) = Ext'(X, M) = 0,
hence Z = EF ® M), by Lemma [20.4f This completes the induction
step. 0

Corollary 20.5. (i) Every X € O which is a free U(n_)-module is
standardly filtered. In particular, for any X € b* and finite-dimensional
g-module V', the module V& M) is standardly filtered.

(ii) Any projective object P € O is standardly filtered.

Proof. (i) Follows from Theorem and Lemma [20.1]
(ii) Immediate from Theorem [20.3] O

20.3. BGG reciprocity. Denote by d), the multiplicity of L, in the
Jordan-Holder series of M. Since characters of L, are linearly inde-
pendent, these numbers are determined from the formula

; dyuch(L,) = ch(M)) = i

e
a€R+(1 - €_a> '

Thus the knowledge of d,, is equivalent to the knowledge of the char-
acters ch(Ly).
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Since by Corollary [20.5(ii) the projective covers Py of Ly are stan-
dardly filtered, we may also define the multiplicities d}, of M, in Py.
These are independent of the choice of the standard filtration and are
determined by the formula

ch(Py) =Y dj,ch(M,) =) d;un

Theorem 20.6. (BGG reciprocity) We have d}, = d.

6>\

(1—e)

acER

Proof. We compute dim Hom(Py, M) in two ways. First using the
standard filtration of Py and Lemma [20.1, we have dim Hom(Py, M)/) =
dy,- On the other hand, using that the multiplicity of Ly in M is d,.,
we get dim Hom(Py, M) = d,». O

Let ¢, = dim Hom(Py, P,) be the entries of the Cartan matrix C' of
O. They are equal to the multiplicities of Ly in P,.

Corollary 20.7. We have
Coap = Z dzx)\du,u-

In other words, C = DTD where D = (dy,,).

Note that since D is upper triangular with respect to the partial
order < with ones on the diagonal, it can be uniquely recovered from
C by Gauss decomposition. Thus the knowledge of D is equivalent to
the knowledge of C.

Example 20.8. Consider the structure of the category O, for g =
sly. The only interesting case is x = xa41 for A € Zso. Then the
simple objects are X = L, (finite-dimensional) and Y = M_,_,. By
Proposition [16.4] the projective cover Px is just the Verma module
M, which has composition series [ X, Y], starting from the head X. To
determine Py, consider the tensor product P := M_; ® Ly.y. This is
projective with character

ch(P) = ch(M,) + ch(My_2) + ... + ch(M_,_5).
104



Thus denoting by II, the projection functor to the generalized infini-
tesimal character y .1, we get that

ch(ILy(P)) = ch(My) + ch(M__s).

Note that M_j,_5 is not projective since Exty,(M_y_o, Ly) # 0 (there is
a nontrivial extension M’). Thus II,(P) is indecomposable (otherwise
one of the summands in the decomposition would have to be M_,_5),
i.e., ITy(P) = Py. Since it maps to Y and receives an injection from M,
its composition series is [Y, X, Y]. This is the big projective object
of O,. We this get for O,:

o e ()

We can now compute the (basic) algebra A whose module category is
equivalent to O,. This is the algebra A = End(Px & Py), and it has
dimension Zl i Cij = 5. The basis is formed by 1y, 1y and morphisms
a:Px — Py, b: P — Px and ab : Py — Py. Moreover, we have
ba = 0. Thus the algebra A is the path algebra of the quiver with two
vertices x,y with edges a : x — y and b : y — x with the only relation
ba = 0.

20.4. The duality functor. Let 7 : g — g be the Cartan involution
given by 7(e;) = fi, 7(fi) = e;, 7(h;) = —h;. For X € O let X7 be the
module X twisted by 7, and XV = (X7);, the b-finite part of (X7)*.
The following proposition is easy:

Proposition 20.9. (i) XV € O and has the same character and com-
position series as X.

(i1) (My)Y = MY, LY = L,.

(i11) the assignment X — XV is an involutive equivalence of cate-
gories O — O which preserves the decomposition into O, (S).

Corollary 20.10. O has enough injectives, namely the injective hull
of Ly is Py.

20.5. The Jantzen filtration. It turns out that every Verma mod-

ule M, carries a canonical finite filtration by submodules called the
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Jantzen filtration, which plays an important role in studying cat-
egory O. In fact, this filtration is defined much more generally, as
follows.

Let k be a field and V,U be free k[[t]]-modules of the same rank
d < oo, and let B € Hom(V, W) be such that det B := A%B is nonzero.
Let Vp := V/tV. Define V,,, C V; to be the space of all vy € V such
that there exists a lift v € V of vy for which Bv € t™W. It is clear
that Vo D V4 D V4 D ... with V} = KerB(0), and V,, = 0 for some m.
Thus we get a finite descending filtration {V;} of Vj called the Jantzen
filtration attached to B.

Exercise 20.11. (i) Show that there exist unique nonnegative integers
ny < ... < ng such that for some bases eq,...,eq of V and fi, ..., fq of
W over k[[t]] one has Be; = t" f;, and that CokerB = @¢_, (k[t]/t") as
a k[[t]]-module. Deduce that the order of vanishing of det B at t = 0
equals dimy, CokerB = Zle n;.

(ii) Suppose dimV; = d; (so dy = d). Show that for all j € Z>,,
n; = j if and only if d — d; < ¢ < d — d;41, and deduce the Jantzen
sum formula: the order of vanishing of det B at t = 0 equals } -, d;.

(iii) Suppose that V, W are modules over some k[[t]]-algebra A with
Ap == AJtA (for example, A = Apl[t]] and V, W are Ap-modules), and
B is an A-module homomorphism. Show that the Jantzen filtration of
Vi attached to B is a filtration by Ag-submodules.

The Jantzen filtration on M) is now defined using the homomorphism
B : Mg — M/\\/(t) over Ay := U(g) corresponding to the Shapovalov
form, where A\(t) := X\ + tp. Namely, we define it separately on each
weight subspace. For example, (M,); = J, is the maximal proper
submodule of M.

Exercise 20.12. (Jantzen sum formula for M,) Use the Jantzen sum
formula of Exercise 20.11] and the formula for the determinant of the
Shapovalov form (Exercise [8.15)) to show that

San)= Y )
i>1 a€Ry:(MpaY)ELsy

20.6. The BGG theorem. The following is the converse to Theorem
1511
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Theorem 20.13. (Bernstein — 1. Gelfand — S. Gelfand) If L,,_, occurs
in the composition series of My_, (i.e., dx_,,—p # 0) then p =< \.

Proof. 1t is clear that A — u € Q. The proof is by induction in the
integer n := (A — pu,p¥). If n = 0, the statement is obvious, so we
only need to justify the induction step for n > 0. Then L,_, occurs
in Jy_, = (My_,)1, the degree 1 part of the Jantzen filtration of M.
Thus by the Jantzen sum formula (Exercise 20.12), L,_, must occur in

My_p—ravya = Mg, for some a € Ry such that (X, a") € Z>,. By
the induction assumption, we then have u < s, A. But spA < A, so we
get < A O

Corollary 20.14. The following conditions on u < X\ are equivalent.
(1) p = A
(11) L,—, occurs in My_,.

(111) dim Hom(M,,_,, M,_,) # 0.

21. Multiplicities in category O

The multiplicities d), are complicated in general, and the (even-
tually successful) attempt to understand them was one of the main
developments that led to creation of geometric representation theory.
These multiplicities are given by the Kazhdan-Lusztig conjecture
(1979) proved by Beilinson-Bernstein and independently by Brylinski-
Kashiwara in 1981. By now several proofs of this conjecture are known,
but they are complicated and beyond the scope of this course. However,
let us give the statement of this result. To simplify the exposition, we
do so for O,, when A € P,; it turns out that this case captures all the
complexity of the situation, and the general case is similar.

21.1. The Hecke algebra. Even to formulate the Kazhdan-Lusztig
conjecture, we need to introduce an object which seemingly has nothing
to do with our problem - the Hecke algebra of W. Namely, recall that
W is defined by generators s;,7 = 1, ..., subject to the braid relations

8iSj... = 8jSi..ey 1 F J,

where the length of both words is m;; such that a;;a;; = 4 cos? ﬁ(for

1,

J
ajiai; = 0,1,2,3, my; = 2,3,4,6), and also the relations s? = 1. The
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same relations of course define the group algebra ZW  in which the last
relation can be written as the quadratic relation (s; + 1)(s; — 1) = 0.

The Hecke algebra H,(W) of W is defined over Z[q%,q’%] by the
generators T; satisfying the same braid relations

TT;...=1T;..., i # j,
and the deformed quadratic relations
(T; + 1)(Ti — q) = 0.

For every w € W we can define the element T,, = T;,...T;, for ev-
ery reduced decomposition w = s;,....s; . This is independent on the
reduced decomposition since any two of them can be related by using
only the braid relations. Moreover, it is easy to see that the elements
T, span H, (W), since any non-reduced product of T; can be expressed
via shorter products by using the braid and quadratic relations for 7;.
Moreover, we have

Proposition 21.1. T,,,w € W are linearly independent, so they form
a basis of Hy(W). Thus H,(W) is a free Z[q=, ¢~ 2)-module of rank |W|.

Proof. Let V' be the free Z[q%,q_%]—module with basis X,,w € W.
Define a left action of the free algebra with generators 7; on V' by
T Xy = Xsw
if {(s;w) = f(w) + 1 and
T Xy =(¢— D)Xy + ¢Xs0

if £(s;w) = £(w) — 1. We claim that this action factors through H,(W).
To show this, define a right action of the same free algebra on V' by

Xwﬂ = sti
if {(ws;) = ¢(w) + 1 and
XwT’i = (C] - 1)Xw + qusi

if {(ws;) = ¢(w) — 1. It is easy to check by a direct computation that
these two actions commute:

(16) (TX,)T; = Ti(X,T)).
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Also the elements X;T,, clearly span V. Thus to prove the relations
of H,(W) for the left action, it suffices to check them on X, which is
straightforward.

Since T,,X; = X, are linearly independent, it follows that T, are
linearly independent, as claimed. U

Exercise 21.2. Check identity ((16]).

The quadratic relation for 7T; implies that it is invertible in the Hecke
algebra, with inverse

T =¢ (Ti+1-q).
These inverses satisfy the relation (7, ' + 1)(T}" 1) =0 (obtained
by multiplying the quadratic relation for 7T; by T2 q ~1), and also the
braid relations. It follows that the Hecke algebra has an involutive

automorphism D that sends q% to q’% and each T; to T, '. More
generally one has D(T,,) = Tuj,ll

21.2. The Bruhat order. Recall that the partial Bruhat order on
W is defined as follows: y < w if a reduced decomposition of y can be
obtained from a reduced decomposition of w by crossing out some s;;
thus y < w implies that ¢(y) < ¢(w), and if the equality holds then
y = w. Moreover, if {(w) = {(y) + 1 then y < w iff y = 192 and
w = Y15,y for some i, where ¢(y) = {(y1) + €(y2). In this case we say
that w covers y, and y < w iff there exists a sequence y = z¢y < 11 <
.. < &, = w such that x4, covers z; for all j (here m = {(w) — {(y)).

Exercise 21.3. Show that if y < w then for any dominant A\ € P,
wA =y, and the converse holds if A is regular (i.e., W, = 1).

Example 21.4. For type A; the Bruhat order is the covering relation
1 < s. For type As the covering relations are

1 < 51,89 < S5189,89581 < §18981 = S95159.
21.3. Kazhdan-Lusztig polynomials.

Theorem 21.5. There exist unique polynomials P,,, € Z[q| such that
(a) Py, =0 unless y < w, and Py, = 1;
(b) If y < w then P,,, has degree at most %;
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(c) The elements

satisfy D(Cy) = Cly.

Proof. Let y = s;,...s;, be a reduced decomposition of y. Then we have

! !
Ty_}l — HTJI = q W H(Tij +1—2q).
j=1

J=1

Thus there exist unique polynomials R, , € Z[g| such that
D(T,) = Tg;ll = Z q_é(m)Rw,y(q_l)Txa

with R, , = 0 unless z = y (in which case R, ,(q) = 1) or £(z) < {(y). It
is easy to check that R, , can be computed using the following recursive
rules: for a simple reflection s,

R:L‘,y = Rsx,sy; sT < x,8y <Y,

R,y = (¢ —1)R, s + qRsz sy, 5T > 2,5y < y.

(we have R, ; = 0,1 and for y # 1 there is always ¢ such that s;y < y).
This implies by induction in ¢(y) that R, , = 0 unless x < y. Indeed, if
x' = sx < x,y = sy <y then R, = Ry, so if this is nonzero then
by the induction assumption =’ < 3/, hence sz’ < sy/, i.e., x < y. On
the other hand, if sz > z, sy < y and R,, # 0 then either R, ,, # 0
or Ry e # 0, hence either z < sy or sz < sy. But each one of the
inequalities x < sy, sr < sy implies x < y.

We also see by induction that deg R, , < {(y) — {(z).

Now it is easy to compute that the condition that D(C,) = C, is
equivalent to the recursion

Lw)—t(z) (z)—£(w)
2 2

Y4
Pw(g™") —q Pyw(q) =

. — (@) +20(5)~ t(w) _
S (=) O TTETTE R, (67 Pya(q)-

z<y
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We can now see that this recursion has a unique solution P, with
required properties, as the two terms on the left are supposed to be
polynomials in q% and q_% without constant terms. 0]

The elements C,, form a basis of the Hecke algebra called the Kazhdan-
Lusztig basis, and the polynomials P,, are called the Kazhdan-
Lusztig polynomials.

21.4. Kazhdan-Lusztig conjecture. The Kazhdan-Lusztig conjec-
ture (now a theorem) is:

Theorem 21.6. (i) P,,, has non-negative coefficients.
(1t) The multiplicity [Myex : Lyer] equals Py, (1).

The polynomials P, ,, have the property that if y < w then P, ,,(0) =
1, so if in addition ¢(w) — ¢(y) < 2 then P,,(¢) = 1 (indeed, it has to
be a polynomial of degree 0). Also if w = wy then P, ,, =1 for all y.

Example 21.7. For type A, (g = sl3) we have the following decomposi-
tions in the Grothendieck group of O,, (where we abbreviate s;,...5;, - A
as ’ll’lk

k

Mgy = L1
Mg = Lig + L1z
My = Loy + L1z
My = Ly + Lia + Loy + L1
My = Lo+ L2 + Loy + L1z
My = Lo+ L1+ Ly + Li2 + Loy + Li21.

Exercise 21.8. Compute the Cartan matrix of the category O,, for
g = sl for regular weights A.

22. Projective functors - I

22.1. Projective functors and projective §-functors. Let Rep(g);
be the category of g-modules in which the center Z(g) of U(g) acts
through its finite-dimensional quotient. We have

Rep(g); = @oep+/w Rep(g)s,
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where Rep(g)g is the category of modules with generalized infinitesimal
character 6. Recall that for a finite-dimensional g-module V' we have
an exact functor Fy : Rep(g) — Rep(g) given by X — V ® X (e.g.,
Fc =1d), and that if M has infinitesimal character x, then

Fy(M) = (V@ Uy,) ®u,, M.

Recall also that the infinitesimal characters occurring in the left g-
module V ® U,, are x ;s for § € P(V) (Corollary ; thus the
infinitesimal characters occurring in Fy (M) belong to the same set. It
follows that

Fy(Rep(g)y,) C @perv) Rep(@)y, s

hence Fyy maps Rep(g)s to itself. Finally note that Fy« is both right
and left adjoint to Fy .

Definition 22.1. A projective functor is an endofunctor of Rep(g)
which is isomorphic to a direct summand in Fy for some V.

Example 22.2. For § € h*/W let IIy : Rep(g); — Rep(g)s be the
projection. Then Id = @®gey-/wlly, hence Il is a projective functor.

It is easy to see that projective functors form a category which is
closed under taking compositions, direct summands and finite direct
sums, and every projective functor admits a left and right adjoint which
are also projective functors (we’ll see that they are isomorphic). It is
also clear that every projective functor F' has a decomposition

F — @G,XEE*/WHX O F (e} H@.

Finally, projective functors obviously map category O to itself and by
Proposition (1) send projectives of this category to projectives.

For a infinitesimal character 6 : Z(g) — C let Rep(g); C Rep(g)s
be the subcategory of modules annihilated by (Kerf)™. In other words,
Rep(g)j is the category of left modules over the algebra

U = U(g)/(Ker)"U(g)-

Every M € Rep(g)y is the nested union of submodules M,, C M of

elements killed by (Kerf)", and M, € Rep(g)j. Note that Uél) = Uy

and Rep(g) is the category of modules with infinitesimal character 6.
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For a projective functor F' denote by F(6) the restriction of F' to
Rep(g);.

Definition 22.3. A projective #-functor is a direct summand in
Fy(0).

For example, if F' is a projective functor then F'() is a projective
f-functor.

Theorem 22.4. Let Fy, Fy be projective 0-functors for 6 = x. Let
i)\ : Hom(Fl, FQ) — Hom(Fl(M)\,p),Fé(M)\,p)).
Then iy is an isomorphism.

Proof. 1t suffices to assume F; = Fy, (), j = 1,2. Let V = V" ® V3.
Then Hom(Fy, F») = Hom(Id(9), Fy/(6)) and

Hom(Fy(M)_,), F5(M,_,)) = Homy(My_,,V ® M,_,).
Thus it suffices to show that the natural map
iy : Hom(Id(0), Fy/(0)) — Homy(M)_,,V ® M,_,)

is an isomorphism.

Recall that for associative unital algebras A, B, a right exact functor
F : A—mod — B — mod has the form F(X) = F(A) ®4 X, where
F(A) is the corresponding (B, A)-bimodule. Thus if F}, F» are two such
functors then Hom(Fy, F5) = Hom g a)—bimod (F1(A), F2(A)). Applying
this to A = Uy and B = U(g), we get

Hom(1d(6), Fy(6)) = Homt(g).t75)—bimod (Us, V @ Ug) = (V & Up)®.
Moreover, upon this identification the map i, becomes the natural map
ir: (V@ Uy, )% — Hom(My_,, V @ My_,)%.

But this map is an isomorphism by the Duflo-Joseph theorem, as it is
obtained by restricting the Duflo-Joseph isomorphism

Uy, = Homg, (My—,, My—,)

to the multiplicity space of V*. 0J
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22.2. Lifting projective #-functors.

Proposition 22.5. (i) If Fy, F, are projective functors then every mor-
phism ¢ : F1(0) — F»(0) lifts to a morphism ¢ : F}\\Rep(g)g _>,\F2|Rip(9)9'
(11) If Fy = Fy and ¢* = ¢ then we can choose ¢ so that ¢* = ¢.

(111) If ¢ is an isomorphism then so is ¢.
Proof. (i) It suffices to show that there exist morphisms
o Filrep(e)y = F2lRrep(a)y

such that ¢, restricts to ¢,_1 and ¢; = ¢; then g/g is the projective
limit of ¢,,. As before, we may assume without loss of generality that
Fy =1d and F; = Fy. As explained in the proof of Theorem [22.4] we
have

Hom (F1[Rep(g)p s F2[Rep(o)y) =

Hom U™V @U™) = (Ve UM,

(U(g),U(g"))fbimod(

This implies the statement, as the map UQ(”) — Ue("_l) is onto and

V® Ug(n) is a semisimple g,q4-module.

(ii)) Let F' be a direct summand in Fy,. Let p : Fyy — Fy be the
projection to F. Let A := End(F(0)) = pEnd(Fy(0))p and ¢ € A. Let
F™(#) be the restriction of F to Rep(g)j, so that F'(§) = F(f). We
have

A, = End(F"(0)) = pEnd(F(0))p = p(EndV @ U\ )%dp.
So we have a chain of surjective homomorphisms
o= A, A .. A=A
and our job is to show that ¢ admits a chain of lifts

P Py Py P =@

such that ¢, € A, and ¢2 = ¢,.

To this end, note that the kernel I of the surjection A, — A,_1
satisfies I? = 0, so [ is a left and right module over A, /I = A,_;. So
we can construct the desired chain of lifts by induction in n as follows.
Pick any lift e, of eg :== ¢,_;. Then e, —e? = a € I, and ega = aey. We
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look for an idempotent e in the form e = e, + b, b € I. The equation

e? = e is then equivalent to

eob + beg — b = a.
Set b = (2¢9 — 1)a. Then
eob + beg — b = 2epa + (1 — 2eg)a = a,

as desired. Now we can set ¢,, = e.

(iii) If ¢ : F1(0#) — F5(0) is an isomorphism then it has the inverse
W F5(0) — F1(6) such that potp =1, 9P o¢p = 1. Let b = (¢n) be a
lift of ¢. Our job is to show that ¢, are isomorphisms for all n, which
yields (iii). We prove it by induction in n.

The base is trivial, so we just need to do the induction step from n—1
to n. By the induction assumption, ¢,_; is invertible with ¢, !, = ¥, _;.
Let 1, be a lift of v,,_; and consider the composition 1, o ¢, in the
corresponding algebra A,,. Let I be the kernel of the map A, — A, _1.
Then v,,0¢, = 1+a where a € I. Since I? = 0, setting v/, := (1—a)ot,,
we get ¢! o, = 1. Similarly we can construct /! such that ¢, oy = 1.
Thus ¢!, = 1! is the inverse of ¢,. This completes the induction
step. 0

Corollary 22.6. (i) Let Fi, F5 be projective functors. Then: any iso-
morphism Fy(My_,) = Fo(M,_,) lifts to an isomorphism

FilRepa)x, — F2IRep(a)yy ;

(11) Let F' be a projective functor. Then any decomposition F/(M,_,) =
@i M; can be lifted to a decomposition F' = @;F; where F; are projective
functors and Fy(My_,) = M;;

(i1i) Every projective 0-functor is of the form F(0) for a projective
functor F.

Proof. (i) follows from Proposition [22.5(1),(iii) and Theorem [22.4]
(ii) follows from Proposition
To prove (iii), let H be a projective f-functor, so H & H' = Fy(0).
Thus H(My_,)®H'(Mx_,) = Fy(Mx_,). So by (ii) there is a projective
functor F with F\(0)(M,_,) = F(My_,) = H(M)_,). Thus H = F(0)

by Theorem [22.4] O
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22.3. Decomposition of projective functors.

Proposition 22.7. (i) Each projective functor F is a direct sum of
indecomposable projective functors. Moreover, for F o Ily this sum is
finite.

(i1) If F = F oll,, for dominant X\ is an indecomposable projective
functor then F(My_,) = P,_, for some p € bh*.

Proof. (i) We have F' = @gcp-w F o Ily, so it suffices to show the state-
ment for F' olly. Let # = x», and consider F o Ily(M)_,) € O. Let
us write this object as a finite direct sum of indecomposables, & | M;.
Then by Corollary (ii) we get a decomposition F oIl = &N, F;,
and all F; are indecomposable.

(ii) Since F' is indecomposable and M,_, is projective, F(M,_,) is
indecomposable and projective, so the statement follows. 0

23. Projective functors - II

23.1. The Grothendieck group of O. The Grothendieck group K (O)
of O is freely spanned by the classes of simple modules [Ly_,] or, more
conveniently, by the classes of Verma modules [M),_,], which we’ll de-
note dy; so it is a basis of K(O). Put an inner product on K(O) by
declaring this basis to be orthonormal. Note that if P is projective then

([P], [M]) = dim Hom(P, M).

Indeed, in this case dim Hom(P, M) is a linear function of [M], and for
M = M, by the BGG reciprocity we have:

dim HOHI(P,\7 Mu) = du)\ = Zd,\y v+ps ,u+p ([PA]v [MM])

Since every projective functor F'is exact, it defines an endomorphism
[F] of K(O). For example,

[Fv]6n = > mv(B)dais,
B

where my () is the weight multiplicity of 5 in V. Clearly [F} & Fy] =
[Fl] + [Fg] and [Fl o FQ] = [Fl][FQ]
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Theorem 23.1. (i) If Fy, Fy are projective functors with [Fi] = [F3]
then F1 = FQ.

(i1) If (F, FY) are an adjoint pair of projective functors then [F] is
adjoint to [F"] under the inner product on K(O).

(i1i) For a projective functor F, its left and right adjoint are isomor-
phic.

Proof. (i) By Corollary [22.6] to prove (i), it suffices to show that
Fi(My-p) = Fp(My—,)

for all dominant X. These objects are projective, so it is enough to
check that they have the same character (or define the same element of
K (0O)). This implies the claim.

(ii) We need to show that ([F]z,y) = (z,[F]y). It suffices to take
x = [P] for projective P and y = [M]. Then, since F'(P) is projective,
we have

([F[P], [M]) = ([F(P)]; [M]) = dim Hom(F(P), M) =

dim Hom(P, F¥'(M)) = ([P], [F™(M)]) = ([P], [F][M]),
as claimed.
(iii) follows from (i),(ii). O

23.2. W-invariance. We have an action of the Weyl group W on
K(O) by wdA = 5w)\.

Theorem 23.2. If F' is a projective functor then [F| commutes with
W on K(O).

Proof. We may assume that F' = II, o F' oIy for x,6 € h*/W and F is
indecomposable. Let A be a dominant weight such that 8 = x,. Define
S={per+P:x,=x}

Let us say that A dominates x if for every p € S we have A — € Py.

Lemma 23.3. When A dominates x then

(i) Theorem holds;
(ii) For each p € S there exists an indecomposable projective functor
E, sending My_, to P,_,,.
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Proof. (i) For a finite-dimensional g-module V', let Gy := I, o Fy, o 1ly.
Since the character of V' is W-invariant, [Fy] commutes with W, hence
so does [Gy|. Thus its suffices to show that [F] is an integer linear
combination of [Gy| for various V.

By Proposition 22.7(ii), F(Mx_,) = P,_,, where p € S. Let 3 :=
A — p. By our assumption, 8 € P,. Define n(53) := (5,2p"), a non-
negative integer. We will prove the required statement by induction in
n(8).

The base of induction is n(8) = 0, hence § = 0 and p = A. So
F(My_,) = Px»_, = M)_,. This implies that F' = Ily, so [F] is clearly
commutes with W.

So it remains to justify the induction step. Let L := L7, a finite-
dimensional g-module. Consider the decomposition of the functor G,
into indecomposables (which we have shown to exist in Proposition
22.7(ii)): Gp = @;F,,, where v; € S and F, (My_,) = P,,_, (this
direct sum may contain repetitions). So Gr(My_,) = @;F,,_,. Thus

(Grlor =Y d; 0, = d,,0, Za + 3 dy,d
Jny Y

7 Y>Vj

On the other hand,
(GL]ox = [GL(My—p)] = [T (L ® My_p)] = [TI,] Y mp(n)drn =

ZmLB 6)\ n = Z mLB (77)6)\—77 - Z mLﬁ (/6+M_V)51/ =

TXA-n=X VX=X
S, + Z mp, (B + p—v)d,.
V> iXy=X

These two formulas for [G]0, jointly imply that v; > p for all j, and
only one of them equals g, i.e.,

(17) GL:FM@ @ cu,uFV

veSv>pu

for some constants ¢,,, € Z>o. But if v > p then n(A —v) < n(A — p),
so by the induction assumption [F,] for all ¥ > y in this sum are linear
combinations of [Gy] for various V. Thus so is F,,. But F(M,_,) =

F,,(Mx_,), so F = F, and the induction step follows.
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(ii) The functor F), from has the desired property. O

Now we are ready to prove the theorem in the general case. So A
no longer needs to dominate y. However, for sufficiently large integer
N, the weight A + Np dominates both x and 6. Let On = xainp-
We have shown in Lemma [23.3(ii) that there exists an indecomposable
projective functor G = Iy o G olly,, such that G(Myyn-1),) = Pr—p =
M)_,. Moreover, by Lemma [23.3(i), W commutes with both [G] and
[F o G] = [F]|G]. Thus for w e W,
wlF]ox = w[F[Gloxinp = [FI[Glwinin, = [Flw[Glorinp = [Flwoy = [Floun.
So for u e W,

U[F0pn = uw[F|0y = [Fluwdy = [Fludyn,

ie.,

for all i € b*, as claimed. O

Lemma 23.4. Let A € b* be dominant and ¢, € A+ P, ¢ < ¢. Then
A —¢)2 < (A=), and if (A — ¢)> = (A —)? then ¢ € Wyo.
Proof. Consider the subgroup Wy,o C W. By Proposition [15.12} it is

the Weyl group of a root system R’ C R. Let us first prove the result
when p <, A\, @ € R, i.e., ) = s,0, ¥ # ¢. Then a € R’ and thus by

Proposition [16.]]
()\,Oév) =ac ZZh (qb, Oév> = —<¢,Oév) =be ZZO‘

We have A = saa+ N, ¢ = sba+ ¢/, 1 = —1ba + ¢'. where X, ¢ are
orthogonal to a. Thus

A=) = (A= 9)” = ((%37)* — (%52)?)a® = aba’.
So this is > 0, and if it is zero then either b = 0, in which case ¢ = ¥
and there is nothing to prove, or a = 0, so s,A = A and s, € W), as

claimed.
Now let us consider the general case. By assumption, there is a chain

1/] = wm <aqm ¢m—1-'- <al l/)o = ¢7

where ol ...,a™ are positive roots of R. Thus, as we’'ve shown,

A=) <A —ti1)”
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for all i > 1, so (A — @)% < (A — )% Moreover, if (A — ¢)? = (X — ¢)?
then (A — ;1) = (A — ;)% for all i > 1 so ;1 € Wy, hence
b € Who. 0

Remark 23.5. The last statement of Lemma fails if the partial
order < is replaced with <. For example, take R = Az and ¢ =
(0,3,1,2), ¢ = (1,2,3,0), as in Remark [15.10] (so ¢ < ¢ but ¢ £ ¢),
and let A := (1,1,0,0). Then (A — ¢)* = (A — ¢)? = 10, but Wy, =
(12), (39)), 50 0 ¢ Who.

23.3. Classification of indecomposable projective functors. De-
note by =, the set of pairs (A, 1) of weights in h* such that A — p € P,
and let = := Z,/W. So in general an element £ € = can be represented
by more than one pair. Let us say that the pair (i, \) representing &
is proper if \ is dominant and p is a minimal element of Wyu with
respect to the partial order < (where W), is the stabilizer of A in W). It
is clear that any & has a proper representative. This representative is
not unique in general, but for every dominant A in the W-orbit of the
second coordinate of £, there is a unique p such that (u, A) is a proper
representation of £ (indeed, Wypu has a unique minimal element).

Theorem 23.6. For any £ € = there exists an indecomposable projec-
tive functor Fe such that F¢(M,_,) = 0 if x, # x» and Fe¢(My_,) =
P,_, for any proper representation (p, \) of . The assignment § — Fy
1s a bijection between = and the set of isomorphism classes of indecom-
posable projective functors.

Proof. For a projective functor F' let

ap(p, A) == (0, [F0x)
be the matrix coefficients of [F]. If A is dominant then F(M,_,) is
projective, so ap(p, \) > 0 for all € h*. Since by Theorem [23.2] [F]
commutes with W, this holds for all A € h*.

Let S(F) := {(u,\) € b* x b* : ap(u,\) > 0}. Since ap(u, A) > 0,
if F¥' = @,F; then S(F) = U;S(F;). Also it is clear that S(Fy) C Zy.
It follows that S(F) C Z, for any F, so for (u,A\) € S(F) we have
A—upeP.

Let S.(F) be the set of elements of S(F') for which (A — u)? has

maximal value (it is clear that (A — u)? is bounded on S(F), so S.(F)
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is nonempty if F' # 0). Since by Theorem [F] commutes with W,
both S(F') and S.(F) are W-invariant.

We claim that if F' is indecomposable, then S.(F) is a single W-
orbit. More specifically, recall that F' = F' o II,, for some dominant A
and F(M,_,) = P,_, for some p.

Lemma 23.7. In this case S,(F') = & :== W (u, A) and (i, \) is a proper
representation of .

Proof. 1t suffices to check that if (¢, \) € S.(F) then ¢ € Wyp and
= ¢. Solet (¢, \) € S.(F). Since F is indecomposable, x,, = X4, SO
there exists w € W such that u = w¢. Moreover, by Theorem [20.13]

[Pu—p] = Z dfm‘sm
B=n
we get that p < 1. Thus we may apply Lemma with ¥ = p. It
follows that (A — ¢)> < (A — p)?. But by the definition of S,(F), we
have (A — ¢)? > (A—p)?. Thus (A—¢)? = (A — u)?. Then Lemma 23.4]
implies that ¢ € W, as claimed. O

Thus to every indecomposable projective functor F' we have assigned
€ = S.(F)/W € E. If (u,\) is a proper representation of £ then it
follows that F(M,_,) = P,_,, so F' is completely determined by & by
Corollary 22.6] It remains to show that any £ € = is obtained in this
way. To this end, let & = W (u, \) (a proper representation), and let
V be a finite-dimensional g-module with extremal weight 4 — A. Then
(u — A)? > 2 for any weight 3 of V', so (i, \) € S.(Fy). This implies
that (u, A) € S.(F') for some indecomposable direct summand F' of Fy .
Since S, (F)/W consists of one element, this ' must correspond to the
element &. OJ

24. Applications of projective functors - I

24.1. Translation functors. Let 0,x € h*/WW and V be a finite-

dimensional irreducible g-module. Write F) v for the projective func-

tor I, o Fy oIy, and let us view it as a functor Rep(g)s — Rep(g),-
Pick dominant weights A, u € b* such that 0 = x\,x = x,, and

A — p € P (this can be done if F) v # 0, which we will assume).
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Theorem 24.1. If Wy = W, and V has extremal weight n — X then
Fy.ve : Rep(g)g — Rep(g), is an equivalence of categories. A quasi-
inverse equivalence is given by the functor Fpy~ .

Proof. 1t suffices to show that
FX,V,G(MAfp) = M#,p,
Indeed, then
Fovep 0 Fyvio(Ma-p) = My—p, Fvgo Fovey(Mu—p) =M,

H=p>

F9,V*,X(Mufp) = M.

SO
Ep v x 0 Fyxvig = Idrep(g)gr Fxvio © Fovex = ldrep(g), s

ie., F\ve, Fp v+, are mutually quasi-inverse equivalences.

We only prove the first statement, the second one being similar. We
have

Fyvo(My—p) = TL(V @ My_p).

By Corollary 20.5(1), V ® M,_, has a standard filtration whose com-
position factors are My, 3_, where 3 is a weight of V. The only ones
among them that survive the application of II, are those for which
XatB = Xpu» 1€, A+ = wp for some w € W. So wp < p (as p is
dominant). Thus, applying Lemma with ¢ = u, ¥ = wu, we get

A= n)? < (A —wp)* = %
On the other hand, since u — X is an extremal weight of V', we have
(A — u)* > B2 Tt follows that (A — p)? = 8% = (A — wu)?. Thus by
Lemma we may choose w € Wy. But since W, C W,, it follows
that wp = p, so f = p—A. Since the weight multiplicity of an extremal
weight is 1, it follows that F) ve(Mx_,) = M,_,, as claimed. O

Theorem shows that for dominant A the category Rep(g),, de-
pends (up to equivalence) only on the coset A + P and the subgroup
Wy € W. In view of Theorem [24.1] the functors Fy vy are called
translation functors (as they translate between different infinitesi-
mal characters).

Remark 24.2. Suppose we only have Wy C W, instead of W, = W,

(with all the other assumptions being the same). Then the proof of
Theorem m still shows that F\ vo(My_,) = M,_,. Thus [F, v]d =
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du, and since by Theorem [23.2] [F\ v,g] is W-invariant, it follows that
[F\velo, =0, for all v € W,

On the other hand, we no longer have Fyy«,(M,_,) = M,_,, in
general. Namely, the proof of Theorem shows that Fp v« (M,_,)
has a filtration whose successive quotients are M,_,, v € W, A, each oc-
curring with multiplicity 1 (so the length of this filtration is |W,/W,]).

Thus
[Fowvenlby =Y 6.
VEW,A
It follows that
[Fxvol[Fo,vex]0u = (W /W6y,

hence F) v o Fyp v+ (M,—,) = \Wu/W,\| _, (as the left hand side is
projective). Thus F) v o Fyv«, = |W, /W,\|Id.

Remark 24.3. Let C C Rep(g) be a full subcategory invariant under
all Fyy and Iy, and Cy := II4C = C N Rep(g)g. Then Theorem [24.1]
implies that if Wy = W, then the functors F) v, Fy v+, are mutually
quasi-inverse equivalences between Cy and C,. Interesting examples of
this include:

1. C = O. In this case we obtain that for dominant A\ the category
O,, up to equivalence depends only on A + P and the stabilizer W.
In particular, for regular dominant integral A all these categories are
equivalent.

2. C is the category of g-modules which are locally finite and semisim-
ple with respect to a reductive Lie subalgebra ¢ C g. If £ is the
fixed subalgebra of an involution of g, this category contains the cate-
gory of (gr, K)-modules for any connected compact group K such that
LieK = ¢. Namely, it is just the subcategory of modules that integrate
to K.

24.2. Two-sided ideals in Uy and submodules of Verma mod-
ules. Let 8 = x, for dominant A\. Let 2y denote the lattice of two-
sided ideals in Uy (i.e., the set of two-sided ideals equipped with the
operations of sum and intersection). Likewise, let Q()\) be the lattice
of submodules of M,_,. We have a map v : Qy — Q()) given by
v(J) = JMy_,. It is clear that v preserves inclusion and arbitrary

sums.
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Theorem 24.4. (i) I C J iff v(I) C v(J). In particular, v is injective.
(1) The image of v is the set of submodules of My_, which are quo-

tients of direct sums of P,_, where x, = xx, p = X and p = Wyp.
(i) If X is regqular (i.e., Wy = 1) then v is an isomorphism of lattices.

Proof. (i) Let F be a projective f-functor, and ¢ : F' — Idy a morphism
of functors Rep(g); — Rep(g). Let M (¢, F) be the image of the map
by, F(My—p) — My, and J(¢, F') the image of ¢y, : F(Up) — Up.
Note that ¢y, is a morphism of (U(g), Up)-bimodules, so J(¢, F') is a
subbimodule of Uy, i.e., a 2-sided ideal. Let a : Uy — My_, be the
surjection given by a(u) = uvy_,. Then by functoriality of ¢

a o que = qu)\_p oa.

Hence
v(J(9,F)) = J(o, F)My—, = J (&, F)ur-p = a(J (¢, F)) =

Im<a © ¢U9) = Im(¢M)\7p o a) - Im(ng)\fp) - M(d)? F)

Let us show that any 2-sided ideal J in Up is of the form J(¢, F')
for some F, ¢. Since Uy is Noetherian, J is generated by some finite-
dimensional subspace V' C J which can be chosen g,q-invariant. Then
by Frobenius reciprocity the gaq-morphism ¢ : V' — Uy can be lifted
to a morphism of (U(g),Uyp)-bimodules ¢ : V @ Uy = Fy(Uy) — Uy,
i.e., to a functorial morphism ¢ : Fy(0) — Idy. It is clear that then
J=J(p,F).

We are now ready to prove (i), i.e., that M (¢, F') C M (¢, F’) implies
J(¢, F) C J(¢', F'). Since F(M,_,), F'(M,_,) are projective, the in-
clusion M (¢, F') — M(¢', F') lifts to a map a : F(M,_,) — F'(M,_,),
ie., ¢/MA,,J oa = ¢u,_,. But by Theorem morphisms of projec-
tive f-functors are the same as morphisms of the images of M),_, under

these functors. Thus there is a : F — F’ which maps to a and such
that ¢’ o a« = ¢. Hence

J(¢> F) = Im(¢U€) - Im(gblUg) = J(¢/>F/>7

and (i) follows.
(ii) The proof of (i) implies that the image of v consists exactly of

the submodules M (¢, F'). Such a submodule is the image of F'(M)_,)

under a morphism. But F' is a projective f-functor, so by Corollary
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22.6(iii), it is of the form F(f), where F is a projective functor. Also
by Theorem @L F is a direct sum of F¢, so F(My_,) is a direct sum
of P,_,, where (u,\) is a proper representation of {. Thus g < A
and pu = Wyu. Conversely, if for such g we have a homomorphism
v Pup = Fe(My_,) = My, then v = ¢y, where ¢ @ Fe(0) — Idy.
So Im(vy) = v(J(¢, Fe(0))). Since v preserves sums, (ii) follows.

(iii) Every submodule of M)_, is a quotient of a direct sum of P,_,
with x, = xap < A Hence by Proposi o= A, as A is
dominant. (This also follows from Theorem [20.13)). So if W) = 1 then
by (ii) v is surjective, hence bijective by (i). Since I N J is the largest
of all ideals contained both in I and in J and similarly for submodules,
v also preserves intersections by (i). Thus v is an isomorphism of
lattices. U

Corollary 24.5. Let 0 = x\ where X is dominant. If My_, is irre-
ducible then Uy 1s a simple algebra. Conversely, if Uy is simple then
M,,_, is irreducible for all p with x, = 0.

Proof. The direct implication follows from Theorem [24.4] For the re-
verse implication, suppose for some distinct pi, e € WA, we have
M, -, — M,,_, and M, _, is simple. Then in view of the Duflo-
Joseph theorem we have an inclusion

J := Homg,(M,,—p, My, ) — Homg, (M

u2—p>s MM*P) = Uy,
and J is a proper 2-sided ideal (as it does not contain 1) which is not
zero (as My, , = M} and hence for a finite-dimensional g-module

V, Hom(My,—p, V @ My, —p) = Vpz — ). O

Using the determinant formula for the Shapovalov form, this gives
an explicit description of the locus of 6 € h*/W where Uy is simple.

25. Applications of projective functors - II

25.1. Duflo’s theorem on primitive ideals in U,. Recall that a
prime ideal in a commutative ring R is a proper ideal I such that
if vy € I then x € I or y € I. This definition is not good for non-
commutative rings: for example, the zero ideal in the matrix algebra

Mat,,(C), n > 2, would not be prime, even though this algebra is simple;
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so Mat,,(C) would have no prime ideals at all. However, the definition
can be reformulated so that it works well for noncommutative rings.

Definition 25.1. A proper 2-sided ideal [ in a (possibly non-commutative)
ring R is prime if whenever the product XY of two 2-sided ideals
X,Y C R is contained in I, either X or Y must be contained in I.

Note that for commutative rings this coincides with the usual defini-
tion. Indeed, if I is prime in the noncommutative sense and if zy € [
then (z)(y) C I, s0 (z) C [ or (y) C I, i.e. z oryisin I. Conversely,
if I is prime in the commutative sense and X,Y are not contained in
I then there exist x € X,y € Y not in I, so zy ¢ I, i.e., XY is not
contained in /. But in the noncommutative case the two definitions
differ, e.g. 0 is clearly a prime ideal (in the noncommutative sense) in
any simple algebra, e.g. in the matrix algebra Mat, (C).

A ring R is called prime if 0 is a prime ideal in R. For example, if
R is an integral domain then it is prime, and the converse holds if R
is commutative. On the other hand, there are many noncommutative
prime rings which are not domains, e.g. simple rings, such as the matrix
algebras Mat,,(C),n > 2. Also it is clear that an ideal I C R is prime
iff the ring R/I is prime (thus every maximal ideal is prime, so prime
ideals always exist). If moreover R/I is a domain, one says that [ is
completely prime.

Another important notion is that of a primitive ideal.

Definition 25.2. An ideal I C R is primitive if it is the annihilator
of a simple R-module M.

It is easy to see that every primitive ideal [ is prime: if X,Y are
2-sided ideals in R and XY C [ then XYM = 0, so if Y is not
contained in [ then Y M # 0. Thus YM = M (as M is simple), hence
XM =XYM =0,s0 X CI. Also for a commutative ring a primitive
ideal is the same thing as a maximal ideal. Indeed, if I is maximal then
R/I is a field, so a simple R-module, and I is the annihilator of R/I.
Conversely, if [ is primitive and is the annihilator of a simple module
M then M = R/J is a field and I = J, so I is maximal.

Exercise 25.3. Show that every maximal ideal in a unital ring is prim-

itive, and give a counterexample to the converse.
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We see that in general a prime ideal need not be primitive, e.g. the
zero ideal in Clz]. Nevertheless, for Uy we have the following remarkable
theorem due to M. Duflo:

Theorem 25.4. Every prime ideal J C Uy is primitive and moreover is
the annihilator of a simple highest weight module L, ,, where x, = 0.

Proof. The module M := M,_,/v(J) has finite length, so let us endow
it with a filtration by submodules F, = F,M with simple successive
quotients Ly, ..., L, (Ly = Fy/Fy_1). Let I C Uy be the annihilators
of Ly. Since JM = 0, we have J C I for all k. Also I F}, C Fy_1, so
I..I,M = 0, hence I...I,M\_, C JM,_,. By Theorem m(i), this
implies that I;....I,, C J. Since J is prime, this means that there exists
m such that I,,, C J. Then J = I,,, i.e. J is the annihilator of L,,. But
L, = L,_, for some 1 such that x, = x» = 0. OJ

Note that the choice of i is not unique, for example, for J = 0 and
generic 0, any of the |WW| possible choices of p is good. In fact, the proof
of Duflo’s theorem shows that for every dominant A such that 8 = y,,
we can choose p € WA such that p < A.

25.2. Classification of simple Harish-Chandra bimodules. De-
note by HCy the category of Harish-Chandra bimodules over g annihi-
lated on the right by the ideal (Kerf)"™. These categories form a nested
sequence; denote the corresponding nested union by HCy. Recall that
we have a direct sum decomposition HC' = ®gey+/w HCCy. This implies
that every simple Harish-Chandra bimodule belongs to HCj for some
infinitesimal character 6.

Recall also that for a finite-dimensional g-module V', in HCj we have
the object V ® Uy. Moreover, this object is projective: for Y € HC}
we have

Hom(V @ Uy, Y) = Homy_pimea(V ® U(g),Y) = Hom,_,(V,Y),

which is an exact functor since Y is a locally finite (hence semisimple)
gag-module. Finally, since Y is a finitely generated bimodule locally
finite under g.q, there exists a finite-dimensional g,q-submodule V C Y
that generates Y as a bimodule. Then the homomorphism
T VeUlg) —Y
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corresponding to ¢ : V < Y is surjective and factors through the
module V' ® Uy. Thus Y is a quotient of V ® Uy. Thus we have

Lemma 25.5. The abelian category HCj has enough projectives.

We also note that this category has finite-dimensional Hom spaces.
Indeed, If Y1,Y, € HCj then V) is a quotient of V @ Uy for some V,
so Hom(Y;,Ys) € Hom(V ® Uy, Y2) = Homy,,(V,Y>), which is finite-
dimensional. Finally, note that this category is Noetherian: any nested
sequence of subobjects of an object stabilizes.

It thus follows from the Krull-Schmidt theorem that in HC}, every
object of HC} is uniquely a finite direct sum of indecomposables, and
from Proposition the indecomposable projectives and the simples
of HC} labeled by the same index set. It remains to describe this
labeling set.

Theorem 25.6. The simples (and indecomposable projectives) in HC}
are labeled by the set =, via § € = L¢, Pe. Namely, if € = (p, A) is a
proper representation then P¢ is the unique indecomposable projective
in HC} such that Pe ®@ug) Mr—, = Py,

Proof. Every indecomposable projective is a direct summand of V ® Uy.
But (V ® Up) ®ug) Y = Fv(0)(Y). Thus from the classification of
projective functors (Theorem it follows that the indecomposable
summands of V ® Uy are P¢ such that P.®@ = F¢(6). O

Corollary 25.7. Objects in HC}, hence in HCy and HC, have finite
length.

Proof. Recall that HCy = @&, H Cx g, the decomposition according to
left generalized infinitesimal characters. By Theorem [25.6] each sub-
category H C1 has finitely many simple objects. Thus the statement

follows from Propos1t10n [16.2 O

25.3. Equivalence between category O and category of Harish-
Chandra bimodules. Let § = x, where \ is dominant. Let O, p be
the full subcategory of O consisting of modules with weights in A + P.
Define the functor
T - HO; — O)\_HD
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given by T5(Y) =Y ®y(g) Ma—,. Also let O(A) be the full subcategory
of Oy, p of modules M which admit a presentation

Q1 — Qo — M — 0,

where @), @1 are direct sums of P,_, with p € A+ P and p < Wypu.
Note that the functor T} is left adjoint to the functor H) defined in
Subsection [19.3} H)(X) = Homg, (My—,, X). Indeed,

Hom(T)\(Y), X) = Hom(Y ®pg Ma_,, X) =
Hom(Y, Hom(My_,, X)) = Hom(Y, Homg,(M)_,, X)) = Hom(Y, H\(X)).

Theorem 25.8. (J. Bernstein-S, Gelfand) (i) If X is a reqular weight
then the functor Ty is an equivalence of categories, with quasi-inverse
H,y.

(i) In general, Ty is fully faithful and defines an equivalence

HO@ = O(/\)v
with quasi-inverse Hy.

Remark 25.9. Note that if A is not regular then the subcategory
O(A) C O need not be closed under taking subquotients (even though
it is abelian by Theorem [25.8). Also the functor Ty (and thus the in-
clusion O(A) < O) need not be (left) exact. Soif f: X — YV isa
morphism in O(A) then its kernels in O(A) and in O may differ, and in
particular the latter may not belong to O()). See Example 26.2]

Proof. (i) is a special case of (ii), so let us prove (ii). To this end, we’ll
use the following general fact.

Proposition 25.10. Let A, B be abelian categories such that A has
enough projectives and T : A — B a right exact functor which maps
projectives to projectives. Suppose that T is fully faithful on projectives,
i.e., for any projectives Py, P, € A, the natural map Hom(P;, Py) —
Hom(T'(Py), T(Fy)) is an isomorphism. Then T is fully faithful, and
defines an equivalence of A onto the subcategory of objects Y € B which
admit a presentation

T(P) —T(P) —Y —0

for some projectives Py, P, € A.
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Proof. We first show that T is faithful. Let X, X' € Aanda: X — X'.
Pick presentations

Ph—P—X—0 P =P —X —0.

We have maps pg: Py = X, py : Py — X', pr: PL = Py, p}: P — P.
There exist morphisms ag : Py — P}, a; : P, — P| such that (ay,ag, a)
is a morphism of presentations.

Suppose T'(a) = 0. Then T'(p;)T(ap) = 0. Thus Y := ImT(ay) C
KerT(pp) = ImT(py). Thus the map T'(ao) : T(Fy) — Y lifts to b :
T(Py) — T(P]) such that T'(ag) = T'(p})b. Since T is full on projectives,
we have b = T'(¢) for some ¢ : Py — P}, s0o T'(ag) = T'(p})T(c) = T(pc).
Since T is faithful on projectives, this implies that ag = pjc. Thus
Imag C Imp| = Kerp|. It follows that pjag = 0, hence apy = 0. But pg
is an epimorphism, hence a = 0, as claimed.

Now let us show that 7"is full. Let X, X’ € Aand b: T(X) — T(X).
The functor 7" maps the above presentations of X, X’ into presentations
of T(X), T(X’) (as it is right exact and maps projectives to projectives):

T(P)—=T(P) —»T(X)—=0, T(P) = T(FPy) = T(X') =0,
and we can find by : T(Fy) — T(F;),by : T(Py) — T(P]) such that
(b1, bo,b) is a morphism of presentations. Since T is fully faithful on
projectives, there exist ag,a; such that T'(ag) = by, T(a;) = by and
aop1 = piag. Thus ap maps Imp; = Kerpy into Imp| = Kerpj. This
implies that ag descends to a : X — X', and T'(a)T(po) = T (pg)bo-
Hence (T'(a) — b)T(po) = 0, so since T'(pg) is an epimorphism we get
T(a) = b, as claimed.
If Y € Im(T) then Y = T'(X) where X has presentation
Ph—-F—X—=0.
Thus Y has presentation
T(P)—T(P) —Y —0.

Conversely, if Y has such a presentation as a cokernel of a morphism
f:T(P) — T(F) then f = T(g) where g : P, — Fy, and Y =
T (Coker(g)), which proves the last claim of the proposition. O

Now we are ready to prove Theorem m By Lemma [25.5, HC} has

enough projectives. Also the functor T) is right exact, as it is given
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by tensor product. Further, if P is projective then Hom(T)\(P),Y) =
Hom(P, H\(Y)) is exact in Y since H) is exact by Proposition and
P is projective. Thus T)(P) is projective. Finally, the fact that T} is
fully faithful on projectives was one of the main results about projective
functors (Theorem . So Proposition applies to A = HC},
B = Oy, p, T =T)\. Moreover, the image of T} is precisely the category
O(A) by the classification of projective functors (Theorem .

For an equivalence of categories, a right adjoint is a quasi-inverse.
Thus H, is quasi-inverse of T}, as claimed. The theorem is proved. [

Corollary 25.11. Every Harish-Chandra bimodule M with right in-
finitesimal character 0 is realizable as Vi where V is a (not necessar-
ily unitary) admissible representation of the complex simply connected
group G corresponding to g on a Hilbert space.

Proof. Let us prove the statement if § = y, where X is a regular domi-
nant weight (the general proof is similar).

We have seen in Subsection m that H,(M,_,) is the principal se-
ries module M(\, 1) = Homg, (My—p, M/ ). Thus by Theorem m
M(), ) is injective in HCy if p is dominant (since M,,_, is projective,
hence M lf p 18 injective). Moreover, since every indecomposable projec-
tive in Oy, p is a direct summand of V®M,,_, for some dominant p and
finite-dimensional g-module V', it follows that every indecomposable in-
jective is a direct summand in V ® M, l\f_ , for some V" and dominant pu.
Hence by Theorem , every indecomposable injective in HC} is a
direct summand in V ® M(A, u) for some V' and dominant p. Thus
any Y € HC} is contained in a direct sum of objects V' @ M(\, i) for
finite-dimensional V' and dominant p. Since principal series modules
M(\, 1) are realizable in a Hilbert space by Proposition [19.5, we are

done by Corollary [6.13] 0

Exercise 25.12. (i) Generalize the proof of Corollary [25.11| to non-
regular dominant weights .

(ii) Generalize Corollary [25.11] to any Harish-Chandra bimodule with
generalized infinitesimal character #, and then to any Harish-Chandra

bimodule.
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Hint. Recall that C5°,(G/B) is the space of smooth functions F' on
GG which satisfy the dlfferentlal equations

(Ry — Mb))F = (R; — (b)) F =0

for b € b and b € b (here R, is the vector field corresponding to the
right translation by b). Now for N > 1 consider the space C%5, v (G/B)
of smooth functions F' on G satisfying the differential equations

(Ry = AO)VF = (Ry — u(B))VF = 0.

(Note that C%°, ((G/B) = C55,(G/B).) Show that C%°, y(G/B) are
admissible representations of G on Fréchet spaces. Then mimic the
proof of Corollary [25.11) using these instead of C{°,(G/B).

26. Representations of SL(C)

26.1. Harish-Chandra bimodules for sl;(C). Let us now work out
the simplest example, g = sl(C). In this case h* = C, P =7Z, x\ =
A2. So by Theorem , irreducible Harish-Chandra bimodules L, are
parametrized by pairs £ = (i, A) of complex numbers such that A — p is
an integer, modulo the map (u, \) — (—pu, —A), and we may (and will)
assume that (u, \) is a proper representation of &, i.e., A ¢ Z_y and if
A = 0 then p € Z<y. Let us describe these bimodules in terms of the
principal series bimodules M(A, u).

Proposition 26.1. (i) The principal series bimodule M(\, ) is ir-
reducible and isomorphic to M(—X\, —u) unless A, u are nonzero inte-
gers of the same sign. Otherwise such bimodules are pairwise non-
1somorphic.

(i) If \, o are both nonzero integers of the same sign then M(\, p) is
indecomposable and has a finite-dimensional constituent LT/\|_1 ® Ljyj-1,
which is a submodule if X > 0 and quotient if A < 0. The other compo-
sition factor is M{(\, —p) = M(=X, ), which is irreducible.

(1i1) If £ = (u, \) is a proper representation with \ ¢ Z>y then L¢ =

M\, p). If € = (1, \) where A € Z>y then Le = LY |, @ L1 if p>1
and Lg M, ) if p <0.
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Proof. (i),(ii) Consider first the case when A and g are both non-
integers. Then the weights £\ are dominant and MY ,4—1 are simple, so
by Theorem M(\, p) is also simple and isomorphic to M(—\, —u).

Now suppose A, p are integers. Recall that M(\, i) decomposes over
the diagonal copy of g as

(18) M(A, 1) = ®jz0Lia—pl+2;-

If A\ =0 and p > 0, then the equivalence Ty = Ty maps M(0, +u)
to MY, ;. Soif p =0, we have a simple bimodule M(0,0). On the
other hand, if u > 0, we have two bimodules M(0, —u), M(0, ) and a
natural map

a : M(0, 1) = Homgn (M_y, M,/ ;) = M(0, —p) = Homg,(M_y, MY, )

induced by the surjection M/ ; — MY, ;. The kernel of this map is
Kera = Homg, (M_1, L,—1) = 0, which implies that @ is an isomorphism
(as the K-type of the bimodules M(0, ), M(0, —) is the same by (L8))).
So we have the simple bimodule M(p,0) = M(—p,0). If u=0,\ #0,
the situation is similar, as A and p play a symmetric role.

[t remains to consider the situation when A,y € Z\ 0. So let n,m be
positive integers. By Theorem , the bimodule M(n, —m) is simple,
as it corresponds to the simple module MY, . Similarly, M(—n,m)
is simple. Now, we have homomorphisms

a:M(n,m) — M(n,—m),b: M(n,—m) — M(—n,—m).
Since M(n, —m) is simple and a # 0, it is surjective, so in view of

we have a short exact sequence

0= L' 1 ®Lyu1— M(n,m)— M(n,—m) — 0.

Similarly, since b # 0, it is injective, so in view of we have a short
exact sequence

0— M(n,—m) - M(—m,—n) - L) | ® Ly,_1 — 0.

Moreover, these sequences are not split by Theorem [25.8] This proves
(1), (i)
(iii) follows immediately from (i),(ii). The proposition is proved. [
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Example 26.2. One may also describe explicitly the projectives Pg.
As an example let us do so for £ = (—1,0). Consider the tensor product
Ly ® Uy, which is a projective object. We have (L ® Upy) ®u, M_1 =
Ly ® M_; = P_,, the big projective object with composition series
[M_5,C, M_,5]. Thus L; ® Uy = P¢. Over the diagonal copy of g we
have

Pe=Li®Uy=L1 QLo P La®...) =2L1 & 2L P ...
Thus we have a short exact sequence
(19) 0—Ls: —»P:— L — 0,

where Ly = M(0, —1) = M(0, 1), which is not split.

This shows that the functor T\ = T} is not exact in this case. Indeed,
To(Le) = My (M € O(0) with presentation P_y — P_y — My — 0
and Ho(My') = M(0,1)), so the image of under Ty is the sequence

0— My = Py— M) —0,

which is not exact in the leftmost nontrivial term (the cohomology is
C). This sequence is, however, exact in the category O(0), which has
just two indecomposable objects My and P_, (so O(0) is not closed
under taking subquotients and the inclusion O(0) < O is not exact).

26.2. Representations of SLy(C). Let us now consider representa-
tions of G = SLy(C). We have g = sl,(C), K = SU(2). We have al-
ready classified the irreducible Harish-Chandra (bi)modules and shown
that the only ones are finite-dimensional modules and principal series
modules. Moreover, we realized the principal series module M(\, i) as
the space of K-finite vectors in the space of smooth functions F': G —

C such that
F(gb) = F(g)t(b)* *[t(b)[**~*, b e B,

where B C G is the subgroup of upper triangular matrices. Thus,
similarly to the real case, setting u — A = m € Z, we may represent
M(\, i1) as the space of polynomial tensor fields on CP! = S? of the
form
w = ¢(u)(du)? |dul ",
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and we have an admissible realization of M(\, p) by the vector space
521 ,-1(G/B) of smooth tensor fields of the same form. The (right)
action of the group G on this space is given by

(¢o <CC‘ g)) (u) = 6 (Zgi;) (cu+ d) | cu + d?2.

We may also upgrade this realization to a Hilbert space realization by
completing it with respect to the inner product

Jol? = [ low)Paa

where dA is the rotation-invariant probability measure on S?. However,
this inner product is not G-invariant, in general; it is only G-invariant if
Rep = 3, ie., p =3 + s, s € iR. This shows that the (g, K)-modules
M(—% + s, + s) are unitary and irreducible for any imaginary s,
with the Hilbert space completion being LQ_%JFS_L%%_I(G/B) — the
unitary principal series.

Also the trivial representation is obviously unitary. Are there any
other unitary irreducible representations? Clearly, they cannot be
finite-dimensional. However, the answer is yes. To find them, let us first
determine which M(\, 1) are Hermitian. It is easy to show that this
happens whenever \2 = i, i.e., A = £1. If A\ = —J1, we get 2Reu = m,
sopu="49+s A= —5+s, s € iR, exactly as above. On the other
hand, if A = @ then we get © — 1 = m, which implies that m = 0,
i.e.,, A = p € R. In this case by Theorem the module M(u, ) is
irreducible if and only if x4 ¢ Z. Thus we see that for 0 < |u| < 1, this
module is unitary, as we have a continuous family of simple Hermitian
modules X (c¢) := M(y/c,/¢) for ¢ € (—o0, 1), and these modules are in
the unitary principal series for ¢ < 0. This family of unitary modules
for ¢ > 0 (0 < |p| < 1) is called the complementary series; it is
analogous to the complementary series in the real case.

It remains to consider the intervals m < |u| < m + 1 for m € Z>o.
If M (s, i) is unitary for at least one point in such interval, then it is
so for the whole interval, and taking the limit © — m + 1, we see that

L} 1 ® Ly, 11, which is a composition factor of M(m+1,m + 1), would
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have to be unitary, which it is not. This shows that we have no unitary
modules in these intervals. Thus we obtain the following result.

Theorem 26.3. (Gelfand-Naimark) The irreducible unitary represen-
tations of SLy(C) are Hilbert space completions of the following unitary
Harish-Chandra modules:

e Unitary principal series M(—5 +5,% +5), m € Z, s € iR;

e Complementary series M(s,s), —1 < s < 1;

e The trivial representation C.

Here M(—% +5,% +5) 2 M(% —s,—% —5), M(s,5) = M(—s, —5)
and there are no other isomorphisms.

Exercise 26.4. Compute the map M +— M"Y from Exercise on the
set of irreducible Harish-Chandra modules for SLy(R) and SLs(C).

Exercise 26.5. The following exercise is the complex analog of Exer-
cise 9.6l
(i) Show that for —1 < s < 0 the formula

()= [ @Gy = = dydgdzaz

defines a positive definite inner product on the space Cy(C) of continu-
ous functions f : C — C with compact support (Hint: pass to Fourier
transforms).

(ii) Deduce that if f is a measurable function on C then

0§(f7f)8§007

so measurable functions f with (f, f)s < oo modulo those for which
(f, f)s = 0 form a Hilbert space Hs with inner product (,)s, which is
the completion of Cy(C) under (, )s.

(iii) Let us view H, as the space of tensor fields f(y)|dy|'~*, where f
is as in (ii). Show that the complementary series unitary representation

—~

M(s, s) of SLy(C) may be realized in Hy with G acting naturally on
such tensor fields.

27. Geometry of complex semisimple Lie groups

27.1. The Borel-Weil theorem. Let G be a simply connected semisim-

ple complex Lie group with Lie algebra g and a Borel subgroup B
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generated by a maximal torus 7" C G and the 1-parameter subgroups
exp(te;), ¢ € II. Given an integral weight A\ € P, we can define the cor-
responding algebraic (in particular, holomorphic) line bundle £, on the
flag variety G/B. Namely, the total space T'(L,) of L, is (G x C)/B,
where B acts by

(g, 2)b = (gb, A(b)'2),

and the line bundle £, is defined by the projection 7 : T'(L)) — G/B
to the first component. So this bundle is G-equivariant, i.e., G acts on
T(L)) by left multiplication preserving the projection map 7. We also
see that smooth sections of £ are smooth functions F' : G — C such
that

(9, F(g))b = (gb, F(gb)), b € B,
which yields
F(gb) = Ab)"'F(g), be B.

It follows that the space of smooth sections I'c (G /B, L) coincides
with the admissible G-module C*, ((G// B), realizing the principal series
module M(—X\+ 1,1) = Homg, (M_», M).

Remark 27.1. Recall that H*(G/B,Z) = P. Tt is easy to check that
the first Chern class ¢1(£,) equals A. This motivates the minus sign in
the definition of L£,.

Example 27.2. Let G = SLy(C), so that B is the subgroup of upper
triangular matrices with determinant 1 and G/B = CP'. Then sections
of L, are functions F' : G — C such that F'(gb) = t(b)""F(g), where
t(b) = byy. Thus L, = O(—m).

Let us now consider holomorphic sections of £,. The space V) of
such sections is a proper subrepresentation of C*, ((G//B), namely the
subspace where the left copy of g (acting by antiholomorphic vector
fields) acts trivially. Thus V{i* = Homg, (M _»,C) C Homg,(M_y, M),
and Vy = Vi since V| is finite-dimensional. It follows that Viin =
unless A € —PFy, and in the latter case V\ = L*, = L, = Ly, the
finite-dimensional representation of G with lowest weight A. Thus we

obtain
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Theorem 27.3. (Borel-Weil) Let A € P. If A\ € P, then we have an

tsomorphism of G-modules
I'(G/B,L_)) = L3.
If \¢ Py then T'(G/B,L_)) =0.
Example 27.4. Let G = SLy(C). Then Theorem says that
[(CP',O(m)) = L,, = C™!
as representations of G.

More generally, suppose A € P and (\, ) =0, 7 € S for a subset
S C II of the set of simple roots. Then we have a parabolic subgroup
Ps C G generated by B and also exp(tf;) for i € S, and A extends to a
1-dimensional representation of Pg. Thus we can define the line bundle
Ly s on the partial flag variety G/Ps in the same way as L, and we
have £y = psLy g, where pg : G/B — G/ Ps is the natural projection.

Note that any holomorphic section of £, is just a function when
restricted to a fiber F' = Pg/B of the fibration pg (a compact complex
manifold), so by the maximum principle it must be constant. It follows
that I'(G/B, L)) =T'(G/Ps, Ly.s). Thus we get

Corollary 27.5. Let A € P with (A, /) =0, i € S. Then
I'(G/Ps,L_y\s) = L.

if X € Py, otherwise I'(G/Ps,L_ys) = 0.

Example 27.6. Let G = SL,(C) = SL(V), V. = C", and Ps C

G be the subgroup of matrices b such that b,y = 0 for r > 1 (this

corresponds to S = {2,...,n — 1}). Then G/Ps = CP"! = PV. The

condition (A, /) = 0, i € S means that A = mw;, and in this case
Lms = O(—m). So Corollary says that

I'PV,0(m)) = Ly, , = S"V*

for m > 0, and zero for m < 0. This is also clear from elementary con-
siderations, as by definition I'(PV, O(m)) is the space of homogeneous

polynomials on V' of degree m.
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In fact, for A € P, we can construct an isomorphism L = I'(G/B, L_))
explicitly as follows. Let vy be a highest weight vector of Ly, ¢ € L3,
and Fy(g) := (¢, gvy). Then

Fy(gb) = A\(b)Fi(g), b e B.

Thus the assignment ¢ — F; defines a linear map L} — I'(G/B, L_))
which is easily seen to be an isomorphism.

This shows that the bundle £_, is globally generated, i.e., for
every © € G/B there exists s € I'(G/B, L_,) such that s(z) # 0. In
other words, we have a regular map iy : G/B — PL, defined as follows.
For x € G/ B, choose a basis vector u of the fiber of £_, at z and define
ix(z) € Ly by the equality

s(x) = ix(z)(s)u
for s € I'(G/B, L_)) = L}. Then iy(z) is well defined (does not depend
on the choice of u) up to scaling and is nonzero, so gives rise to a well
defined element of the projective space PL). Another definition of this
map is

ix(z) = x(Cuy).
This shows that 7, is an embedding when A is regular, i.e., in this case
the line bundle £, is very ample. On the other hand, if A\ is not
necessarily regular and S is the set of j such that ()\,ajv) = 0 then
ir: G/Ps — PL, is an embedding, so the bundle £_, g over the partial
flag variety G/ Ps is very ample.

Example 27.7. Let G = SL,(C) and A = wy. Then S = [1,n—1]\k, so
Ps C G is the subgroup of matrices with ¢;; =0, ¢ > k, j < k and G/Ps
is the Grassmannian Gr(k,n) of k-dimensional subspaces in C". In this
case Ly = AFC", so iy is the Pliicker embedding Gr(k,n) < P(AFC™).

27.2. The Springer resolution. Recall that a resolution of singu-
larities of an irreducible algebraic variety X is a morphism p: Y — X
from a smooth variety Y that is proper (for example, projectiv@ and
birational. Hironaka proved in 1960s that any variety over a field of

20Recall that a morphism f : X — Y is said to be projective if f = 7o f
where f : X — Z x Y is a closed embedding for some projective variety Z and
m:Z xY — Y is the projection to the second component.
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characteristic zero has a resolution of singularities. However, it is not
unique and this theorem does not provide a nice explicit construction
of a resolution.

A basic example of a singular variety arising in Lie theory is the
nilpotent cone N of a semisimple Lie algebra g. This variety turns
out to admit a very explicit equivariant resolution called the Springer
resolution, which plays an important role in representation theory.

To define the Springer resolution, consider the cotangent bundle T*F
of the flag variety F of GG. Recall that F is the variety of Borel subal-
gebras b C g. For b € F, we have an isomorphism g/b = T, F defined
by the action of G. Thus T*F can be viewed as the set of pairs (b, x),
where z € (g/b)*. Note that (g/b)* = b+ under the Killing form, and
bt = [b, b] is the maximal nilpotent subalgebra of b. Thus T*F is the
variety of pairs (b, ) where b € F is a Borel subalgebra of g and = € b
is a nilpotent element.

Now we can define the Springer map p : T*F — N given by
p(b,z) = z. Note that this map is G-equivariant, so its fibers over
conjugate elements of A are isomorphic.

Theorem 27.8. The Springer map p is birational and projective, so it
15 a resolution of singularities.

Proof. To show that p is birational, it suffices to prove that if e € N
is regular, the Borel subalgebra b containing e is unique. To this end,
note that dim 7*F = 2dim F = dim N and the map p is surjective (as
any nilpotent element is contained in a Borel subalgebra). Thus p is
generically finite, i.e., p~!(e) is a finite set, and our job is to show that
it consists of one element.

We may fix a decomposition g = n, & b @& n_ and assume that
e =Y e. Then we have [p",¢] = e, so the group {t*", ¢ # 0} = C*
acts on p~'(e) (as any Borel subalgebra containing e also contains te).
Since p~!(e) is finite, this action must be trivial. Thus p" normalizes
every b € p~1(e), hence is contained in every such b. But p¥ is regular,
so is contained in a unique Cartan subalgebra, namely h. Since every
semisimple element in a Borel subalgebra b C g is contained in a Cartan

subalgebra sitting inside b, it follows that h C b for all b € p~'(e).
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Thus [w),e] = e; € b for all i. It follows that b = b, := h D n,, ie.,
Ip~t(e)| = 1, as claimed.

Now let us show that p is projective. Let p : T*F — F x N be
the map defined by p(b,z) = (b, x). This is clearly a closed embedding
(the image is defined by the equation = € b). But p = 7 o p where
m: F x N — N is the projection to the second component. Thus p is

projective, as claimed. O

Remark 27.9. The preimage p—'(e) for e € N is called the Springer
fiber. If e is not regular, p~!(e) has positive dimension. It is a projec-
tive variety, which is in general singular, reducible and has complicated
structure, but it plays an important role in representation theory.

Example 27.10. Let g = sl,. Then N is the usual quadratic cone
yz + 22 = 0in C?, and T*F = T*CP! is the blow-up of the vertex in
this cone.

27.3. The symplectic structure on coadjoint orbits. Recall that
a smooth real manifold, complex manifold or algebraic variety X is
symplectic if it is equipped with a nondegenerate closed 2-form w. It
is clear that in this case X has even dimension.

Theorem 27.11. (Kirillov-Kostant) Let G be a connected real or com-
plex Lie group or complex algebraic group. Then every G-orbit in g*
has a natural symplectic structure.

Proof. Let O be a G-orbit in g* and f € O. Then 77O = g/g; where gy
is the set of x € g such that f([z,y]) =0 for all y € g. Define a skew-
symmetric bilinear form wy : g x g — C given by w(y, 2) = f([y, 2]).
It is clear that Kerw; = gs, so w; defines a nondegenerate form on
g/9; = T7O. This defines a nondegenerate G-invariant differential 2-
form w on O.

It remains to show that w is closed. Let L, be the vector field on
O defined by the action of x € g; thus Ly, = [L,, L,]. It suffices to
show that for any z,y, z € g we have dw(L,, L,, L,) = 0. By Cartan’s
differentiation formula we have

dw(Ly, Ly, L) = Alt(Lyw(Ly, L.) — w([La, L), L.)),
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where Alt denotes the sum over cyclic permutations of x,y, z. Since w
is G-invariant, this yields

dw(Ly, Ly, L.)(f) = Alt(w(Ly, Liz,2)) (f) = [(AL([y, [z, 2]])),
which vanishes by the Jacobi identity. U

Corollary 27.12. The singular locus of the nilpotent cone N has codi-
mension > 2.

Proof. This follows since A has finitely many orbits (Exercise[17.8]) and
by Theorem [27.11| they all have even dimension. 0

Corollary 27.13. N is normal (i.e., the algebra O(N') is integrally
closed in its quotient field).

Proof. This follows from Corollary [27.12] since N is a complete inter-
section and any complete intersection whose singular locus has codi-
mension > 2 is necessarily normal ([H], Chapter II, Prop. 8.23). O

27.4. The algebra of functions on 7*F. We will first recall some
facts about normal algebraic varieties.

Proposition 27.14. Let Y be an irreducible normal algebraic variety.
Then

(1) ([Eis], Proposition 11.5) The singular locus of Y has codimension
> 2.

(i) ([Eis|, Proposition 11.4) IfU C'Y is an open subset and Y \U has
codimension > 2 then any reqular function f on U extends to a reqular
function on Y. In particular, any regular function on the smooth locus
of Y extends to a reqular function on'Y .

(11i) Zariski main theorem ([H], Corollary I11.11.4). If X is irre-
ducible and p : X —'Y 1is a proper birational morphism then fibers of p
are connected.

Proposition 27.15. Let Y be an irreducible normal affine algebraic
variety and p : X — Y be a resolution of singularities. Then the
homomorphism p* : O(Y') — O(X) is an isomorphism.

Proof. 1t is clear that p* is injective, so we only need to show it is
surjective. Let f € O(X). Since every fiber of p is proper, and also

connected due to normality of Y by Proposition [27.14{(iii), f is constant
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along this fiber. So f = hop for h: Y — C a rational function. It
remains to show that A is regular. We know that A is regular on the
smooth locus of YV (as it is defined at all points of Y'). Thus the result
follows from the normality of ¥ and Proposition 27.14](1),(ii). O

Theorem 27.16. Let p : T*F — N be the Springer resolution. Then
the map p* : ON) — O(T*F) is an isomorphism of graded algebras.

Proof. This follows from Proposition 27.15 and the normality of N
(Corollary [27.13)). OJ

28. D-modules - 1

We would now like to formulate the Beilinson-Bernstein localization
theorems. We first review generalities about differential operators and
D-modules.

28.1. Differential operators. Let k be an algebraically closed field
of characteristic zero. Let X be a smooth affine algebraic variety over
k. Let O(X) be the algebra of regular functions on X. Following
Grothendieck, we define inductively the notion of a differential operator
of order (at most) N on X. Namely, a differential operator of order
—1 is zero, and a k-linear operator L : O(X) — O(X) is a differential
operator of order N > 0 if for all f € O(X), the operator [L, f] is a
differential operator of order N — 1.

Let Dy (X) denote the space of differential operators of order N. We
have

0=D_1(X)COX)=Dy(X)CDi(X)C..CDynX)C..

and D;(X)D;(X) C D;4;(X), which implies that the nested union
D(X) :=U;>0D;(X) is a filtered algebra.

Definition 28.1. D(X) is called the algebra of differential oper-
ators on X.

Exercise 28.2. Prove the following statements.
1. [Di(X),Dj(X)] C Ditj—1(X) for i,j > 0. In particular, [,] makes
D;(X) a Lie algebra naturally isomorphic to Vect(X) x O(X), where

Vect(X) is the Lie algebra of vector fields on X.
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2. Suppose x1, ..., T, € O(X) are regular functions such that dz, ..., dz,
form a basis in each cotangent space to X. Let 0y, ...,0, be the corre-
sponding vector fields. For m = (my, ..., m,) € Z%, let |m| := Y"1 m,
and O™ := 9"...0"". Then Dy(X) is a free finite rank O(X)-module
(under left multiplication) with basis {0™} with |[m| < N, and D(X)
is a free O(X)-module with basis {0™} for all m.

3. One has gr D(X) = ®;5['(X,STX) = O(T*X). In particular,
D(X) is left and right Noetherian.

4. D(X) is generated by O(X) and elements L,, v € Vect(X) (de-
pending linearly on v), with defining relations

(20) [fa g] = 07 [Lw .ﬂ = U(f), Lfv = va7 [Lva Lw} = L[v,w];

where f,g € O(X),v,w € Vect(X).
5. If U C X is an affine open set then the multiplication map
OU) ®ox) D(X) = D(U) is a filtered isomorphism.

28.2. D-modules.

Definition 28.3. A left (respectively, right) D-module on X is a
left (respectively, right) D(X)-module.

Example 28.4. 1. O(X) is an obvious example of a left D-module on
X. Also, Q(X) (the space of top differential forms on X) is naturally a
right D-module on X, via p(L) = L* (the adjoint differential operator
to L with respect to the “integration pairing” between functions and
top forms). More precisely, f* = f for f € O(X), and L} is the action
of the vector field —v on top forms (by Lie derivative). Finally, D(X)
is both a left and a right D-module on X.

2. Suppose k = C, and f is a holomorphic function defined on some
open set in X (in the usual topology). Then M(f) := D(X)f is a
left D-module. We have a natural surjection D(X) — M(f) whose
kernel is the left ideal generated by the linear differential equations
satisfied by f. E.g. M(1) = O(X) = D(X)/D(X)Vect(X), M(z*) =
D(C)/D(C)(z0—s) if s ¢ Z>o, M(e*) = D(C)/D(C)(0—1). Similarly,
if ¢ is a distribution (e.g., a measure) then - D(X) is a right D-module.
For instance, 6 - D(C) = D(C)/xD(C), where ¢ is the delta-measure on

the line.
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Exercise 28.5. Show that O(X) is a simple D(X)-module. Deduce
that for any nonzero regular function f on X, M(f) = O(X).

28.3. D-modules on non-affine varieties. Now assume that X is a
smooth variety which is not necessarily affine. Recall that a quasico-
herent sheaf on X is a sheaf M of Ox-modules (in Zariski topology)
such that for any affine open sets U C V C X the restriction map
induces an isomorphism of O(U)-modules O(U) ®ovy M (V) = M(U).
Exercise [28.2(5) implies that there exists a canonical quasicoherent
sheaf of algebras Dy on X such that I'(U, Dx) = D(U) for any affine
open set U C X. This sheaf is called the sheaf of differential oper-
ators on X.

Definition 28.6. A left (respectively, right) D-module on X is a
quasicoherent sheaf of left (respectively, right) Dx-modules. The cat-

egories of left (respectively, right) D-modules on X (with obviously
defined morphisms) are denoted by M,;(X) and M, (X).

It is clear that these are abelian categories. We will mostly use the
category M, (X) and denote it shortly by M(X).

Note that if X is affine, this definition is equivalent to the previous
one (by taking global sections).

As before, the basic examples are Ox (a left D-module), Qx (a right
D-module), Dx (both a left and a right D-module).

We see that the notion of a D-module on X is local. For this reason,
many questions about D-modules are local and reduce to the case of
affine varieties.

28.4. Connections. The definition of a Dx-module can be reformu-
lated in terms of connections on an Ox-module. Namely, in differential
geometry we have a theory of connections on vector bundles. An al-
gebraic vector bundle on X is the same thing as a coherent, locally
free Ox-module. It turns out that the usual definition of a connec-
tion, when written algebraically, makes sense for any Ox-module (i.e.,
quasicoherent sheaf), not necessarily coherent or locally free.

Namely, let X be a smooth variety and Q% be the Ox-module of

differential i-forms on X.
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Definition 28.7. A connection on an Ox-module M is a k-linear
morphism of sheaves V : M — M ®p, 2 such that

V(fm)= fV(m)+m®df
for local sections f of Ox and m of M.

Thus for each v € Vect(X) we have the operator of covariant deriv-
ative V, : M — M given on local sections by V,(m) := V(m)(v).

Exercise 28.8. Let X be an affine variety. Show that the operator
m = ([Vy, V] = Vipw))m is O(X)-linear in v, w, m.

Given a connection V on M, define the Ox-linear map
VM — M®p, Q%
given on local sections by
VZ(m)(v,w) == ([Vy, Vi) = Vg ).

This map is called the curvature of V. We say that V is flat if its
curvature vanishes: V2 = 0.

Proposition 28.9. A left Dx-module is the same thing as an Ox-
module with a flat connection.

Proof. Given an Ox-module M with a flat connection V, we extend
the Ox-action to a Dx-action by p(L,) = V,. The first three relations
of then hold for any connection, while the last relation holds due
to flatness of V. Conversely, the same formula can be used to define a
flat connection V on any D x-module M. U

Exercise 28.10. Show that if a left D-module M on X is O-coherent
(i.e. a coherent sheaf on X) then it is locally free, i.e., is a vector bundle
with a flat connection, and vice versa.

28.5. Direct and inverse images. Let 7: X — Y be a morphism of
smooth affine varieties. This morphism gives rise to a homomorphism
™ : OY) = O(X), making O(X) an O(Y)-module, and a morphism
of vector bundles 7, : TX — 7*TY. This induces a map on global
sections 7, : Vect(X) = O(X) ®o(y) Vect(Y).
Define
Dx_y = O(X) RPo(y) D(Y)
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This is clearly a right D(Y)-module. Let us show that it also has a
commuting left D(X)-action. The left action of O(X) is obvious, so it
remains to construct a flat connection. Given a vector field v on X, let

(21) Vo (foL) =v(f)® L+ fr.(v)L, f € OX), Le DY),

where we view m,(v) as an element of Dx_,y. This is well defined since
for a € O(Y) one has [m.(v),a] = v(a) ® 1.

Exercise 28.11. Show that this defines a flat connection on Dx_,y.

Now we define the inverse image functor 7* : M;(Y) — M;(X)
by

W!(N) = Dx_y ®py) N
and the direct image functor m, : M, (X) = M,(Y) by

(M) =M ®p(x) Dxy-

Note that at the level of quasicoherent sheaves, 7* is the usual inverse
image.

These functors are right exact are compatible with compositions.
Also by definition, Dy_,y = 7' (D(Y)).

Note that 7'(N) = O(X)®ox) N as an O(X)-module (i.e., the usual
pullback of O-modules), with the connection defined by the formula
similar to (21)):

vv(f®m) :U<f)®m+fv7r*(v)<m)7 fE O(‘X)’ m € M.

This means that the definition of 7' is local both on X and on Y. On
the contrary, the definition of 7, is local only on Y but not on X. For
example, if Y is a point and dim X = d then 7,Qx = H%(X, k), the
algebraic de Rham cohomology of X of degree d.

Thus we can use the same definition locally to define 7' for any
morphism of smooth varieties, and 7, for an affine morphism (i.e. such
that 771(U) is affine for any affine open set U C Y), for example, a
closed embedding. On the other hand, due to the non-local nature of
direct image with respect to X the correct functor =, for a non-affine
morphism is not the derived functor of anything and can be defined

only in the derived category.
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29. The Beilinson-Bernstein Localization Theorem

29.1. The Beilinson-Bernstein localization theorem for the zero
infinitesimal character. Let g be a complex semisimple Lie algebra
and Uy be the maximal quotient of U(g) corresponding to the infini-
tesimal character x, = x—, of the trivial representation of g. Recall
that gr(Us) = O(N). Let G be the corresponding simply connected
complex group and F the flag variety of G; thus F = G/ B for a Borel
subgroup B C G. Let D(F) be the algebra of global differential opera-
tors on F; it is clear that grD(F) C O(T*F). Also, we have a natural
filtration-preserving action map a : U(g) — D(F), induced by the Lie
algebra homomorphism g — Vect(F).

Theorem 29.1. (Beilinson-Bernstein, [BB|) (i) The homomorphism

a:U(g) — D(F) factors through a homomorphism ag : Uy — D(F).
(i1) One has gr(ag) = p* where p is the Springer map T*F — N
(11i) grD(F) = O(T*F) and ay is an isomorphism.

Proof. (i) Let z € Z(g) be an element acting by zero in the trivial
representation of g. Our job is to show that for any rational function
f € C(F) we have a(z)f = 0. Writing F as G/B, we may view f as
a rational function on G such that f(gb) = f(g), b € B. The function
a(z)f on G is the result of action on f of the right-invariant differential
operator L, corresponding to z: a(z)f = L,f. Since z is central,
this operator is also left-invariant: L, = R,. Since z acts by zero
on the trivial representation, using the Harish-Chandra isomorphism,
we may write z as Y. c¢;b;, where b; € b := Lie(B) and ¢; € U(g).
Thus R, = ), R, Ry, But Ry, f = 0 since f is invariant under right
translations by B. Thus R, f = 0 and we are done.

(ii) It suffices to check the statement in degrees 0 and 1, where it is
straightforward.

(iii) The statement follows from (i), (ii) and the fact that p* is an

isomorphism (Theorem [27.16]). U

The isomorphism aq gives rise to two functors: the functor of global
sections I' : M(F) — D(F) — mod = Uy — mod and the functor

of localization Loc : Uy — mod = D(F) — mod — M(F) given by
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Loc(M)(U) := D(U) ®pry M for an affine open set U C F. Note that
by definition the functor Loc is left adjoint to I.

The following theorem is a starting point for the geometric represen-
tation theory of semisimple Lie algebras (in particular, for the original
proof of the Kazhdan-Lusztig conjecture).

Theorem 29.2. (Beilinson-Bernstein localization theorem, [BB|) The
functors I' and Loc are mutually inverse equivalences. Thus the cate-
gory Uy — mod is canonically equivalent to the category of D-modules
on the flag variety F.

We will not give a proof of this theorem here.
Theorem motivates the following definition.

Definition 29.3. A smooth algebraic variety X is said to be
D-affine if the global sections functor I' : M(X) — D(X) — mod

is an equivalence (hence Loc is its inverse).
It is clear that any affine variety is D-affine. Also we have

Corollary 29.4. Partial flag varieties of semisimple algebraic groups
are D-affine.

29.2. Twisted differential operators and D-modules. We would
now like to generalize the localization theorem to nonzero infinitesimal
characters. To do so, we have to replace usual differential operators
and D-modules by twisted ones.

Let T be an algebraic torus with character lattice P := Hom(T',C*)
and X be a principal T-bundle over a smooth algebraic variety X (with
T acting on the right). In this case, given A € P, we can define the
line bundle £, on X whose total space is X X1 C,, where C, is the
1-dimensional representation of T' corresponding to A, and we can con-
sider the sheaf D, x of differential operators acting on local sections of
Ly (rather than functions).

Moreover, unlike the bundle £y, the sheaf D) x makes sense not just
for A € P but more generally for A € P®;C. Namely, assuming for now
that A € P, we may think of rational sections of £, as rational functions
F on X such that F(yt) = \(t) ' F(y) fory € X. A differential operator

D on X may be applied to such a function, and if £ € t := Lie(T)
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then the first order differential operator Re — A(€) acts by zero: (Rg —
AE))F = 0. Thus given an affine open set U C X with preimage

UcC )N(, the space
DA(U) := (D(U)/D(U)(Re = A(€).€ € 1)

is naturally an associative algebra which acts on rational sections of
Ly (check it!). Moreover, it is easy to check that Dy(U) = D, x(U).
Now it remains to note that the definition of Dy(U) does not use the
integrality of A, thus makes sense for all A € P ® C.

Thus for any A € P ®z C we obtain a quasicoherent sheaf of alge-
bras Dy x on X which is called the sheaf of \-twisted differential
operators. If A = 0, this sheaf coincides with the sheaf Dy of usual
differential operators, and in general it has very similar properties, for
example gr(Dy x(U)) = O(T*U) for any affine open set U C X. A qua-
sicoherent sheaf on X with the structure of a (left or right) D, x-module
is called a (left or right) A-twisted D-module on X. For example, if
A € P then L) is a left Dy x-module. The category of such modules is
denoted by M*(X) (of course, it depends on the principal bundle X
but we do not indicate it in the notation). Note that for 5 € P we have
an equivalence M*(X) = M*MP(X) defined by tensoring with L.

Example 29.5. Let £ be a line bundle on X and ¢ € k. Let X be the
subset of nonzero vectors in the total space of L. We have a natural
action of T':= k* on X by dilations, and ¢ defines a character of Lie(T).
Thus we can define the sheaf D, x of twisted differential operators on
X, and if ¢ € Z then D, x = Dx(L®) is the sheaf of differential
operators on L®¢. For example, if Q1x is the canonical bundle of X
then Dy o x = Dx(2) is naturally isomorphic to the sheaf of usual
differential operators with opposite multiplication, D .

Thus tensoring with €2 defines a canonical equivalence
M(X) = M, (X)

(i.e., the sheaf Dy is Morita equivalent, although not in general iso-
morphic, to DY). We may therefore not distinguish between these
categories any more, identifying them by this equivalence, and can use

left or right D-modules depending on what is more convenient.
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29.3. The localization theorem for non-zero infinitesimal char-
acters. We are now ready to generalize the localization theorem to
non-zero infinitesimal characters. Let U, be the minimal quotient of
U(g) corresponding to the infinitesimal character x,_,. Recall that
gr(Uy) = O(N).

Let F := G/[B,B]. We have a right action of T' := B/[B, B] on
this variety by y — yt, defining the structure of a principal T-bundle
F — F. Thus for every A € P ®; C = h* we have a sheaf of \-twisted
differential operators Dy r = D) on F. For example, if A € P then D,
is the sheaf of differential operators acting on sections of the line bundle
L, appearing in the Borel-Weil theorem (Theorem [27.3). Let Dy (F)
be the algebra of global M-twisted differential operators on JF; it is clear
that grD,(F) C O(T*F). Also, we have a natural filtration-preserving
action map a : U(g) — Dx(F).

Theorem 29.6. (Beilinson-Bernstein) (i) The map
a:U(g) = Di(F)

factors through a map ay : Uy — Dy(F).
(ii) One has gr(ay) = p* where p is the Springer map T*F — N .
(iii) grD\(F) = O(T*F) and ay is an isomorphism.

Proof. The proof is completely parallel to the proof of Theorem [29.1|
O

As in the untwisted case, the isomorphism ay gives rise to two func-
tors: the functor of global sections

I': MMF) — Dy(F) — mod = Uy — mod
and the functor of localization
Loc : Uy — mod = D, (F) — mod — M, (F)

given by Loc(M)(U) := Dy(U) ®p, ) M for an affine open set U C F.
Moreover, as before, Loc is left adjoint to I'.

Let us say that A € h* is antidominant if —\ is dominant (cf.
Subsection [16.1]).
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Theorem 29.7. (Beilinson-Bernstein localization theorem) If X is an-
tidominant then the functors I' and Loc are mutually inverse equiva-
lences. Thus the category Uy — mod is canonically equivalent to the
category of Dy-modules on the flag variety F.

Remark 29.8. 1. As explained above, for € P we have an equiva-
lence M*MF) 2 MAMB(F) defined by tensoring with L. On the other
side of the Beilinson-Bernstein equivalence this corresponds to transla-
tion functors defined in Subsection 24.1]

2. The first statement of Theorem 29.7 fails if A is not assumed
antidominant. Indeed, if A is integral but not antidominant then by
the Borel-Weil theorem (Theorem I'(F, L)) = 0, so the functor
' is not faithful. The second statement of Theorem 29.7 also fails if
A € P and A — p is not regular.

For example, for g = sl; and A € Z, the localization theorem holds
for A < 0. For A > 2 the first statement fails but we still have an
equivalence M*(F) = Uy — mod (as Uy = U_,,»), albeit not given by
I'. But for A = 1 there is no such equivalence at all; in fact, one can show
that the category Uy — mod, unlike M*(F), has infinite cohomological
dimension.

30. D-modules - II

We would now like to explain how the Beilinson-Bernstein localiza-
tion theorem can be used to classify various kinds of irreducible repre-
sentations of g. For this we will need to build up a bit more background
on D-modules.

30.1. Support of a quasicoherent sheaf. Let M be a quasicoherent
sheaf on a variety X, and Z C X a closed subvariety. We will say that
M is supported on 7 if for any affine open set U C X, regular function
f € O(U) vanishing on Z, and v € M(U), there exists N € Zx
such that fN¥v = 0. The support Supp(M) is then defined as the
intersection of all closed subvarietes Z C X such that M is supported
on Z. So M is supported on Z iff the support of M is contained in Z.

In particular, we can talk about support of a (left or right, possibly
twisted) D-module on a smooth variety X. The category of D-modules

on X supported on Z will be denoted by M z(X).
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Example 30.1. It is easy to see that Clxz,z7'] is a left D-module on
A') and Clx] is its submodule. These modules have full support A'.
On the other hand, consider the quotient &y := C[z,z~']/C|z] @ It is
clear that & has a basis v; = 7%, ¢ > 1, with zv;, = v;_1, zv; = 0,
Ov; = —1v;41. Thus the support of §y is {O}

30.2. Restriction to an open subset. Recall that if A is an abelian
category and B C A a Serre subcategory (i.e., a full subcategory closed
under taking subquotients and extensions) then one can form the quo-
tient category A/B with the same objects as A, but with Hom 4,5(X,Y")
being the direct limit of Hom4(X',Y/Y’) over X' C X and Y’ C Y
such that X', Y’ € B. One can show that A/B is an abelian category.
The natural functor F' : A — A/B is then called the Serre quotient
functor. This functor is essentially surjective, its kernel is B, and it
maps simple objects to simple objects or zero. Thus F' defines a bijec-
tion between simple objects of A not contained in B and simple objects
of A/B.

For example, if X is a variety, Z C X a closed subvariety, Qcoh(X)
the category of quasicoherent sheaves on X and Qcoh,(X) the full
subcategory of sheaves supported on Z then Qcoh(X)/Qcoh,(X) =
Qcoh(X \ Z). The corresponding Serre quotient functor is the restric-
tion M — MlX\Z-

Now assume that X is smooth. Let j : X \ Z < X be the open
embedding. Then we have a restriction functor on D-modules

§hM(X) = M(X\ 2)

which is the usual restriction functor at the level of sheaves; it is also
called the inverse image or pull-back functor, since it is a special
case of the inverse image functor defined above. Thus j'(M) = 0 if
and only if M is supported on Z and the functor j' is a Serre quotient
functor which induces an equivalence M(X)/ Mz(X) = M(X \ Z).

The functor j' has a right adjoint direct image (or push-forward)
functor

jo: M(X\ Z) = M(X),

21 analysis dy arises as the D-module generated by the -function at zero, which
motivates the notation.
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which is just the sheaf-theoretic direct image (=push-forward). Namely,
for an affine open U C X, j.M(U) := M(U \ Z) regarded as a mod-
ule over D(U) € D(U \ Z). While the functor j' is exact, the functor
J« is only left exact, in general (as so is the push-forward functor for
sheaves). In particular, j, is not the (right exact) direct image defined
above since the morphism 5 is not affine, in general; rather it is the ze-
roth cohomology of the full direct image functor defined on the derived
category of D-modules, which we will not discuss here. They do agree,
however, when j is affine (e.g., when Z is a hypersurface).

In particular, j' defines a bijection between isomorphism classes of
simple Dx-modules which are not supported on Z and simple Dx\ z-
modules, given by M — j'M.

The inverse map is defined as follows. Given L € M(X\ Z), consider
the D-module j,L. Since j, is right adjoint to j', the module j, L does
not contain nonzero submodules supported on Z. Now define j, L to
be the intersection of all submodules N of j.L such that j,L/N is
supported on Z. This gives rise to a functor ji, : M(X \ Z) = M(X)
(not left or right exact in general). Then if L is irreducible, so is ji. L,
and j'ji.L = L, while for M € M(X) irreducible and not supported
on Z we have ji,j'M = M. The functor ji, is called the Goresky-
MacPherson extension or minimal (or intermediate) extension
functor.

Proposition 30.2. The support of an irreducible D-module s irre-
ducible.

Proof. Let M be a Dx-module with support Z. Assume that Z is
reducible: Z = Z; U Z, where Z; is an irreducible component of Z
and Z, the union of all the other components. Let Y = Z; N Z,,
a proper subset in Z; and Z,. Let Z° = Z\Y, Z? = Z;\'Y and
X°=X\Y. Then Z° = Z} U Z3 is disconnected: Z7,Z3 are closed
nonempty subsets of Z° and Zy N Z3 = 0. Let My, M, be the sums of
all subsheaves of M|x. which are killed by localization away from Z7,
respectively Z5. It is easy to show that M, are nonzero submodules of
M|xo and M|xo = My & M. Thus M|x. is reducible and hence so is

M. U
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30.3. Kashiwara’s theorem. Let X be a smooth variety and Z C X
a smooth closed subvariety with closed embedding i : Z7 — X. For
M € M(X) define Mz to be the sheaf on X whose sections on an
affine open set U C X are the vectors in M (U) annihilated by regular
functions on U vanishing on Z. Thus the O(U)-action on Mz (U) factors
through O(Z NU). Also it is easy to see that Mz(U) depends only on
ZNU, i.e., it gives rise to a quasicoherent sheaf "M on Z with sections

iTM(V) = My (U)

for affine open U C X such that V = Z N U. Moreover, if v is a
vector field on U tangent to V then v preserves the ideal of V', hence
acts naturally on i'M (V). Furthermore, the action of v on this space
depends only on the vector field on V induced by v. Thus iTM (V)
carries an action of the Lie algebra Vect(V'). Together with the action
of O(V), this defines an action of D(V) on i'M(V). We conclude
that i M is naturally a Dz-module. Thus we have defined a left exact
functor
it M(X) = M(Z2).

It is called the shifted inverse image functor. This terminology is
motivated by the following exercise.

Exercise 30.3. Show that i = L%' and i' = R%, where L¢, R? are the
d-th left, respectively right derived functors and d = dim X — dim Z.

Theorem 30.4. (Kashiwara) The functor il is an equivalence of cate-

gories Mz(X) - M(Z).

The proof is not difficult, but we will skip it (see [HT'T]).

The inverse of the functor ' is called the direct image functor and
denoted i, : M(Z) — Mz(X), as it is a special case of the direct image
functor defined above for affine morphisms. If we view 7, as a functor
M(Z) — M(X) then it has both left and right adjoint, where are '
and if, respectively.

Let us give a prototypical example.

Example 30.5. Let X = A', Z = {0}. Then M(Z) = Vect and
i.(V) =V ® dg. So in this case Kashiwara’s theorem reduces to the

claim that Ext'(8o, ) = 0.
155



Remark 30.6. We note that the above formalism and results extend
in a straightforward manner to the case of twisted D-modules.

30.4. Equivariant D-modules. Let X be an algebraic variety with
an action of an affine algebraic group GG. Let us review the notion of a
G-equivariant quasicoherent sheaf on X. Roughly speaking, this is
a quasicoherent sheaf £ on X equipped with a system of isomorphisms
bg = g(€) = E,g9 € G such that ¢z, = ¢, 0 g(¢n) and ¢, depends on g
algebraically. To give a formal definition, note that the group structure
gives us a multiplication map m : G X G — G, and the action of G
gives us amap p: G x X — X. We have a commutative diagram

GxGxX

\/

Definition 30.7. A G-equivariant quasicoherent sheaf on X is a
quasicoherent sheaf £ on X equipped with an isomorphism

P:pE2O0sKE

making the following diagram commutative:

(id xp)*pr& — P Gd % p)* (06 R E) Og R p €

\ o
(mxid)*¢

(m xid)*p*€ —————— (m x1d)*(Og R E) —————— O KO K E

Thus ¢ comprises all the isomorphisms ¢4, which therefore satisfy
the equality ¢,, = ¢, 0 g(¢p,) and depend on g algebraically.

We now wish to define the notion of a G-equivariant D x-module.
To this end, recall that for any Dx-module &, the quasicoherent sheaf
p*E carries a natural structure of a Dgy y-module (the D-module in-

verse image). We now make the following definition.
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Definition 30.8. A weakly G-equivariant D-module on X isa Dx-
module £ with a G-equivariant quasicoherent sheaf structure, where ¢
is Dx-linear.

Note that if £ is a weakly equivariant Dx-module then we have two
(in general, different) actions of g = Lie(G) on &. First of all, the G-
action on X gives us maps g — Vect(X) — D(X), and so the D-module
structure on & gives us a g-action z — by(z) on €. Note that this action
does not depend on the choice of the weakly equivariant structure ¢.

On the other hand, we have a g-action on Og X £ coming from the
G-action on G x X given by ¢ - (h,x) = (gh, z). Translating this along
¢, we get a g-action on p*E. Restricting to 1 x X, this gives us another
g-action x — by(x) on &.

Definition 30.9. A (strongly) G-equivariant D y-module is a weakly
G-equivariant D x-module where these two g-actions agree: b, = by (or,
equivalently, where ¢ is D¢y x-linear.)

In general, since [bo(z), L] = [by(z),L] for L € Dy, the operator
po() = by(x) — bp(z) is a D-module endomorphism of €. Moreover, it
is easy to see that p, is a Lie algebra homomorphism g — End(€). In
particular, if £ is irreducible then by Dixmier’s lemma (Lemma ,
End(€) = C, so py is just a character of g. Thus if g = [g, g] is perfect
(for example, semisimple) then every weakly G-equivariant irreducible
D x-module is actually (strongly) G-equivariant.

Remark 30.10. A given Dx-module may have many weakly G-equivariant
structures, but if GG is connected, then it can only have one G-equivariant
structure. This is because the g-action on & is determined by the map

g — D(X) and this action can be integrated to a G-equivariant struc-
ture in an unique way (recall that we always work over a field of char-
acteristic 0.)

Furthermore, any D x-linear map of G-equivariant D x-modules is au-
tomatically compatible with the G-action. This is because such a map is
necessarily g-linear, which implies that it is in fact G-linear. These two
facts combined show that the category of G-equivariant D x-modules is
a full subcategory of the category of Dx-modules. Stated another way,

G-equivariance of a Dx-module is a property, not a structure.
157



Example 30.11. Consider the case where X is a point. Then Dy = C
and so a Dyx-module is a just a vector space. A weakly G-equivariant
D x-module is then simply a locally algebraic representation of GG. This
representation gives a G-equivariant structure if and only if g acts by
0, i.e., the connected component of the identity Gy C G acts trivially.
Thus a G-equivariant Dx-module is just a representation of the com-
ponent group G/Gy. Conversely, any locally algebraic representation
V of G gives rise to a weakly G-equivariant D-module on X which is
equivariant iff G acts trivially on V', so that V is a representation of

G/Go.

Example 30.12. Let X = G/H, where GG is an algebraic group and
H a closed subgroup of G. Then we claim that a G-equivariant D y-
module is the same thing as an H-equivariant D-module on a point,
i.e., a representation of the component group H/Hy. Indeed, given an
H/Hjy-module V', we can define a G-equivariant vector bundle
(GxV)/H— X =G/H,

where H acts on G x V via (g,v)h = (gh,h~'v). Note that this can
be written as (ng% (as Hp acts on V trivially). This shows that
this vector bundle has a natural flat connection, i.e. is a Dyx-module
L(X,V), which is clearly G-equivariant. The assignment V' +— L(X, V)
is the desired equivalence. In the case H = (G, this reduces to Example

0. 11}

Exercise 30.13. (i) Define the algebraic group L := G X¢q/q, H/H
of pairs (g,h), g € G, h € H/H, which map to the same element of
G/Gy; thus we have a short exact sequence

1—-Gy— L— H/Hy— 1.

Show that the category of weakly G-equivariant D-modules on G/H is
naturally equivalent to the category of representations of L, such that
the subcategory of strongly G-equivariant D-modules is identified with
the subcategory of representations of L pulled back from the second
factor H/H, (i.e., those with trivial action of Gy), and the subcategory
of modules of the form O(G/H)®V where V' is a G-module is identified
with the category of representations of L pulled back from the first

factor G.
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(ii) Let A : H — L be the map defined by A(h) = (h,h). Show
that the forgetful functor from weakly G-equivariant D-modules on
G/H to G-equivariant quasicoherent sheaves on G/H corresponds to
the pullback functor A*.

Exercise 30.14. Let X be a smooth variety with an action of an affine
algebraic group G and H C G be a closed subgroup. Show that the
category of H-equivariant D-modules on X is naturally equivalent to
the category of G-equivariant D-modules on X x G/H with diagonal
action of G (note that when X is a point, this reduces to Example
30.12)).

Exercise 30.15. Let X be a principal G-bundle over a smooth vari-
ety Y. Show that the category of G-equivariant D yx-modules is nat-
urally equivalent to the category of Dy-modules. Namely, given a G-
equivariant Dx-module M, for an affine open set U C Y let U be the
preimage of U in X and let M(U) := M(U)“. Then M is a Dy-module,
and the assignment M — M is a desired equivalence.

The notion of a weakly equivariant D-module often arises in the

following setting. Let T" be an algebraic torus and let X be a principal
T-bundle over X.

Definition 30.16. A monodromic Dx-module (with respect to the
bundle X — X) is a weakly T-equivariant D g-module.

Example 30.17. A monodromic Dx-module with p, = A € Lie(T')* is
the same thing as a A-twisted D-module on X, i.e., a D) x-module.

Proposition 30.18. Assume that X is a D-affine variety and that
K is an affine algebraic group acting on X. Let D(X) be the ring of
global sections of Dx. Then the category of K-equivariant Dx-modules
is equivalent to the category of D(X)-modules M endowed with a locally
finite K-action whose differential coincides with the action of Lie(K)
on M coming from the map Lie(K) — D(X).

Exercise 30.19. Prove Proposition |30.18|

In particular, by the Beilinson-Bernstein localization theorem, Propo-

sition [30.18| applies to X = F = GG/B and K a closed subgroup of G,
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and moreover it extends to the case of A-twisted differential operators
on F for antidominant A € h*. Thus we get

Corollary 30.20. If A\ € b* is antidominant then the functors I', Loc
restrict to mutually inverse equivalences between the category of (g, K)-
modules with infinitesimal character xx—, and the category of K -equivariant
Dy -modules on F.

31. Applications of D-modules to representation theory

31.1. Classification of irreducible equivariant D-modules for
actions with finitely many orbits.

Theorem 31.1. Let X be a smooth variety and K a connected algebraic
group acting on X with finitely many orbits. Then there are finitely
many irreducible K-equivariant D-modules on X. Namely, they are
parametrized by pairs (O,V) where O is an orbit of K on X and V
is an irreducible representation of the component group H/Hy of the

stabilizer H :== K, for x € O, (O,V) — M(O,V).

Proof. Let M be an irreducible K-equivariant D-module on X. Then
by Proposition , the support Z of M is irreducible. Thus Z = O
for a single orbit O of K. Let Zy = O\ O, and U = X\ Zy. Then U is a
K-stable open subset of X and O is closed in U. Also M|y is a simple
Dy-module supported on O. Let i : O < X be the closed embedding.
By Kashiwara’s theorem (Theorem [30.4)) iT M is a simple K-equivariant
D-module on O. Thus by Example itM = L(O,V) for some
irreducible representation V' of the component group of the stabilizer
K., z € O. Also it is clear that L(O,V) gives rise to a simple K-
equivariant D-module on X, namely, M (O, V) := j,i.M (O, V), where
j : U — X is the open embedding. This proves the theorem. 0

Remark 31.2. Theorem [31.1]can be extended in a straightforward way
to weakly equivariant D-modules. In this case, recall that the weakly
equivariant structure on an irreducible D-module M defines a character
p: t — C, where £ = LieK. Theorem then holds with the only
change: rather than being a representation of H/H,, V now needs to
be a representation of H in which Lie(H) acts by the character p. The

proof is analogous to the case p = 0.
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In particular, this applies to the case of twisted D-modules. In this
case we have a principal T-bundle p : X — X and a character \ € t*,
t = Lie(T'). Suppose K acts on X preserving this bundle; i.e., it acts
on X and commutes with 7. So we have a K x T-action on X and
a K-equivariant A-twisted D-module on X is just a weakly K x T-
equivariant D-module on X with p(k,t) := A(t). Now, for every K-
orbit O on X, we have the stabilizer K, x € O, and a homomorphism
& K, — T defined by the condition that (g,&.(g)) acts trivially on
p~Y(z) for g € K,. This defines a character A\, = Aod¢§, of Lie(K,), and
the simple K-equivariant Dy-modules on X are M (O, V) where V is an
irreducible representation of K, with Lie(K,) acting by the character
Az-

31.2. Classification of irreducible Harish-Chandra modules. Let
GRr be a connected real semisimple algebraic group, Kg C Gr a max-
imal compact subgroup, G, K C G their complexifications. By Corol-
lary [30.20} if X is antidominant then the Beilinson-Bernstein equiva-
lence restricts to an equivalence between the category of (g, K)-modules

with infinitesimal character x,_, and the category of K-equivariant D,-
modules on F = G/B.

Proposition 31.3. The group K acts on F with finitely many orbits.

We will not give a proof of this proposition. For the proof and de-
scription of the set of orbits, see [RS].

Proposition along with Theorem allows us to classify ir-
reducible (g, K)-modules (i.e., Harish-Chandra modules) for a regular
infinitesimal character (the general case can be handled similarly).

Namely, let H C B C G be a maximal torus and Borel subgroup of
G; so H = B/[B, B]. Note that K x H acts on F = G/[B, B]. So
for a K-orbit O on F = G/B and z € O, we have a homomorphism
&+ K, — H such that (g,&.(g)) acts trivially on the fiber over x in F
for g € K,.

Let x be a regular infinitesimal character for g and A be an antidom-
inant weight with x = x,_, (note that it always exists).

Theorem 31.4. Irreducible (g, K)-modules with (pure) infinitesimal

character x are w(O, V') where O is a K-orbit on F and V' an irreducible
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representation of K., x € O such that Lie(K,) acts via the character
Az Namely, ©(O,V) corresponds to M(O,V') under the Beilinson-
Bernstein equivalence.

Example 31.5. Let Gg = SLy(R). Let A € C, A ¢ Z- and set
X = Xa_1 (80 X # Xo). In this case F = CP! is the Riemann sphere,
and K = C* acts by ko z := k?2. Thus we have three orbits: 0, co, and
C*. For the orbit C* we have K, = Z/2, so we have two irreducible
representations V' = C., which generically correspond to principal se-
ries representations m(C*, Vi) = Pr(1 — )) (see Section [J). The other
two orbits have a connected stabilizer, and A\, = +A. Thus for such
orbits representations exist only for A\ € Z<,. It is easy to see that
these are exactly the discrete series representations M, ,, M~ 4o- Also
for such points one of the principal series representations is reducible
(Py(1—=\) for even A and P_(1— X) for odd ) and 7(C*, V), respec-
tively m(C*,V_) is actually the finite-dimensional representation L_.
Thus we have four irreducible representations in this case.

Note that this agrees with our classification of irreducible representa-
tions of SLs(R) for regular infinitesimal characters discussed in Section
9l

Example 31.6. Let G be a simply connected complex semisimple
group regarded as a real group. Then its maximal compact subgroup is
G, so its complexification is G, and G¢ = G X G, so that the inclusion
(G.)c = G — G¢ = G x G is the diagonal embedding. The flag variety
is F x F = G/B x G/B. Thus Harish-Chandra bimodules with infini-
tesimal character (x,—,, xa—,) for antidominant A, 1 are 7(O, V') where
O runs over orbits of G on G/B x G/B and V over appropriate rep-
resentations of isotropy groups. Note that orbits of G on G/B x G/B
are in a natural bijection with orbits of B on G/ B, which are the Schu-
bert cells C, labeled by w € W. One can check that the condition for
existence of V' on the orbit C, is that A\ — wy is integral, and then V'
is unique (as the isotropy groups are connected in this case). Thus we
find that the irreducible Harish-Chandra bimodules with such infinites-
imal character are labeled by elements w such that A —wp € P, which

agrees with the classification we obtained in Subsection [25.2]
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Exercise 31.7. Classify irreducible Harish-Chandra modules for S L3(R)
with a regular infinitesimal character.

Hint. Classify orbits of SO3(C) on SL3(C)/B. This is equivalent to
classification of flags in a 3-dimensional complex inner product space
E under the action of SO(F). Then classify possible representations V'
of the isotropy group for each orbit.

Remark 31.8. The K-orbits on GG/ B can be classified in explicit com-
binatorial terms. Together with Theorem [31.4] this leads to an alterna-
tive proof, using the localization theorem, of the Langlands classifi-
cation of irreducible Harish-Chandra modules (obtained by Langlands
in 1973 by a different method, 8 years before the localization theo-
rem was proved, [La]). This classification requires a serious separate
discussion which is beyond the scope of these notes.

31.3. Applications to category O. Let us now see how this approach
allows us to study category O for a semisimple Lie algebra g.

Consider the category C of weakly B x B-equivariant finitely gener-
ated D-modules on G' which are equivariant under [B, B] x [B, B] (it
is easy to see that such modules have finite length). Thus for M € C,
we have a homomorphism p : h @ h — End(M), so M = &, M (i, A)
where M (i, A) is the generalized eigenspace for h & b with eigenvalue
(i, A) € b* x b*. Thus we have a decomposition C = @, \C;, ».

Let Cpa: Curps Cppy be the full subcategories of C, 5 consisting of
objects on which the eigenvalues in square brackets are pure (without
Jordan blocks). Thus we have

Cur D Crgns Cupy D Cppa

and all simple objects of C, \ are contained in Cj,y. These objects
are labeled by Bruhat cells BwB C G, w € W and representations V
of the isotropy group satisfying an appropriate condition. As before,
the condition for V' to exist is that A —wp € P, thus C, » = 0 unless
A —wp € P for some w e W.

We also see that Cy , = Cxip,u+y for 8,7 € P, and the same applies
to its subcategories.

Let us now try to describe these categories representation-theoretically.
To this end, note that we may interpret Cj, [y as the category of weakly
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B-equivariant Dy-modules on G/B with (pure) equivariance character
p. So if X is antidominant, we get that Cj,j(y is equivalent to the full
subcategory O,y of the category Oy,  of objects with pure infini-
tesimal character x,_, and weights in p+ P. Similarly, C,, x, Cpuya, Cp )
are equivalent to Oy x, Opx, Oy, Where the corresponding (infinites-
imal) character is pure if square brackets are present and generalized if
not.

Now note that flipping left and right, we get equivalences C, , = C,, »,
Cive = Cupy Cop = Clgn Cpypg = Cppy- If A, i are both antidomi-
nant, this yields equivalences of representation categories O, , = O, »,
O = Oy Oag = Opgx O = Opg,n- While the first equiva-
lence is easy to see representation theoretically using translation func-
tors, the others are not. They are clear from geometry but somewhat
mysterious from the viewpoint of representation theory (although they
can be understood using the Bernstein-Gelfand equivalence between
category O and the category of Harish-Chandra bimodules, Theorem
25.8)).

Example 31.9. If A\, u € P, these categories are independent of A, y.
Namely, let Op be the category O for the trivial generalized infinites-
imal character, and Oy be its Serre closure (the category of modules
admitting a finite filtration whose successive quotients are in Oy; i.e.
the action of b is not necessarily diagonalizable but is only assumed
locally finite). We may also define the category Of of modules in Oq
which have pure infinitesimal character, and Oy C O, of modules with
both pure infinitesimal character and diagonalizable action of . Then
the above four categories are exactly Og, Op, Of, Op. In particular, we
obtain an equivalence Oy = Of which is not obvious representation-
theoretically.

Finally, we note that Exercise|30.14{applied to X = G/B and H = B
gives a transparent geometric proof of Theorem [25.8]
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