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Preface
This collection is about ideas, and it is not about theory. An idea might
feel more comfortable in a suitable theory, but it has its own life and
history, and it can speak for itself.

I am collecting these problems for fun, but they might be used to
improve the problem-solving skills in geometry. Every problem has a
short elegant solution � this gives a hint which was not available when
the problem was discovered.

How to read it. Open a random chapter; make sure you like the prac-
tice problem � if yes try to solve a random problem in the chapter. A
semisolution is given at the end of the chapter, but think before reading,
otherwise, it will not help.

Some problems are marked by �, ⇤, + or ].
� � easy problem;
⇤ � the solution requires at least two ideas;
+ � the solution requires knowledge of a theorem;
] � there are interesting solutions based on different ideas.
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an incomplete list: Stephanie Alexander, Ilya Alexeev, Miroslav Bačák,
Christopher Croke, Bogdan Georgiev, Sergei Gelfand, Mohammad Ghomi,
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veyev, Dmitri Panov, Peter Petersen, Idzhad Sabitov, Thomas Sharpe,
Serge Tabachnikov, and Sergio Zamora Barrera.

This collection is partly inspired by connoisseur’s collection of puzzles
of Peter Winkler [1]. Many problems were suggested on MathOverflow [2].

This work was partially supported by the following grants: NSF grants
DMS 0103957, 0406482, 0905138, 1309340, 2005279, Simons Foundation
grants 245094 and 584781, and Minobrnauki grant 075-15-2022-289.



Chapter 1

Curves

Recall that a curve is a continuous map from a real interval into a space
(for example, Euclidean plane) and a closed curve is a continuous map
defined on a circle. If the map is injective then the curve is called simple.

We assume that the reader is familiar with related definitions including
length of curve and its curvature. The necessary material is covered in the
first couple of lectures of a standard introduction to differential geometry,
[see Part I in 3, Chapter 1 in 4, or §26–27 in 5].

We give a practice problem with a solution � after that, you are on
your own.

Spiral
The following problem states that if you drive on the plane and turn the
steering wheel to the right all the time, then you will not be able to come
back to the same place.� Let � be a smooth regular plane curve with strictly monotonic curva-

ture. Show that � has no self-intersections.

Semisolution. The trick is to show that the os-
culating circles of � are nested.

Without loss of generality, we may assume
that the curve is parametrized by its length and
its curvature decreases.

Let z(t) be the center of the osculating circle
at �(t) and r(t) its radius. Note that

z(t) = �(t) + �
00(t)

|�00(t)|2 , r(t) = 1
|�00(t)| .

5



6 CHAPTER 1. CURVES

Straightforward calculations show that

|z0(t)| = r0(t).

Note that the curve z(t) has no straight arcs; therefore

(⇤) |z(t1)� z(t0)| < r(t1)� r(t0).

if t1 > t0.
Denote by Dt the osculating disk of � at �(t); it has a center at z(t)

and radius r(t). By (⇤), Dt1 lies in the interior of Dt0 for any t1 > t0.
Hence the result follows.

This problem was considered by Peter Tait [6] and later rediscovered
by Adolf Kneser [7]. The osculating circles of the curve give a peculiar
decomposition of an annulus into circles; it has the following property: if a
smooth function is constant on each osculating circle it must be constant
in the annulus [see Lecture 10 in 8]. The same idea leads to a solution of
the following problem:� Let � be a smooth regular plane curve with strictly monotonic curva-

ture. Show that no line can be tangent to � at two distinct points.

It is instructive to check that the 3-dimensional analog does not hold;
that is, there are self-intersecting smooth regular space curves with strictly
monotonic curvature.

Note that if the curve �(t) is defined for t 2 [0,1) and its curvature
tends to 1 as t ! 1, then the problem implies the existence of the limit
of �(t) as t ! 1. The latter result could be considered as a continuous
analog of the Leibniz test for alternating series.

F

Moon in a puddle

� A smooth closed simple plane curve with cur-

vature less than 1 at every point bounds figure F .

Prove that F contains a unit disk.

Wire in a tin

� Let ↵ be a closed smooth curve immersed in a unit disk. Prove that

the average absolute curvature of ↵ is at least 1, with equality if and only

if ↵ is the unit circle possibly traversed more than once.

Curve on a sphere

� Show that if a closed curve on the unit sphere intersects every equator

then its length is at least 2·⇡.
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Oval in an oval

� Consider two closed smooth strictly convex planar

curves, one inside the other. Show that there is a chord

of the outer curve that is tangent to the inner curve at

the midpoint of the chord.

Capture a sphere in a knot⇤

The following formulation uses the notion of smooth isotopy of knots, that
is, a one-parameter family of embeddings

ft : S
1
! R

3, t 2 [0, 1]

such that the map [0, 1]⇥ S
1
! R

3 is smooth.� Show that one cannot capture a sphere in a knot.

More precisely, let B be the closed unit ball in R
3

and f : S1 ! R
3
\B

a knot. Show that there is a smooth isotopy

ft : S
1
! R

3
\B, t 2 [0, 1]

such that f0 = f , the length of ft is non-increasing with respect to t and

f1(S1) can be separated from B by a plane.

Linked circles

� Suppose that two linked simple closed curves in R
3

lie

at a distance at least 1 from each other. Show that the

length of each curve is at least 2·⇡.

Surrounded area

� Consider two simple closed plane curves �1, �2 : S1 ! R
2
. Assume

|�1(v)� �1(w)| 6 |�2(v)� �2(w)|

for any v, w 2 S
1
. Show that the area surrounded by �1 does not exceed

the area surrounded by �2.

Crooked circle

� Construct a bounded set in R
2

homeomorphic to an open disk such

that its boundary contains no simple curves.
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Rectifiable curve
For the following problem we need the notion of Hausdorff measure.
Choose a compact set X ⇢ R

2 and ↵ > 0. Given � > 0, set

h(�) = inf

(
X

i

(diamXi)
↵

)
,

where the greatest lower bound is taken over all finite coverings {Xi} of
X such that diamXi < � for each i.

Note that the function � 7! h(�) is not decreasing in �. In particular,
h(�) ! H↵(X) as � ! 0 for some (possibly infinite) value H↵(X). This
value H↵(X) is called the ↵-dimensional Hausdorff measure of X.� Let X ⇢ R

2
be a compact connected set with finite 1-dimensional

Hausdorff measure. Show that there is a rectifiable curve passing thru all

the points in X.

Shortcut⇤

� Let X ⇢ R
2

be a compact connected set. Show that any two points

x, y 2 X can be connected by a path ↵ such that the complement ↵ \ X
has arbitrarily small length.

Note that it might be impossible to connect x and y by a path in X. In
fact, there are connected sets in the plane (for example, the pseudo-arc)
that contain no curves.

Straight set
A set X in the plane is called �-straight if, for any disc D(x, r) with radius
r > 0 and center at a point x 2 X, the intersection X\D(x, r) is � ·r-close
in the sense of Hausdorff to a diameter of D(x, r).� Show that for any " > 0 there is � > 0 such that any �-straight
closed plane set X is a curve that admits a locally (1 ± ")-bi-Hölder

parametrization. That is, X is connected and for any x 2 X there is

a curve ↵ : [0, 1] ! R
2

that covers a neighborhood of x in X, and the

inequality

c·|t1 � t0|
1+" 6 |↵(t0)� ↵(t1)| 6 C ·|t1 � t0|

1�"

holds for any t0 and t1 and positive constants c and C,

Before trying to solve the problem, it might be useful to look at the
following example. Consider the set Xk formed by the origin and the two
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logarithmic spirals ⇢ = ±ek' in the polar coordinates (⇢,'). Observe that
if k is large, then Xk is �-straight.

Another example of a �-straight set is shown; it is constructed in a
way similar to the Koch snowflake curve, where we used a very obtuse
isosceles triangle instead of equilateral. The Hausdorff dimension of this
example is larger than 1; in particular, it shows that one can not expect
to have a Lipschitz parametrization of X.

Typical convex curves
Formally we do not need it in the problem, but it is worth noting that the
curvature of a convex curve is defined almost everywhere; it follows from
the fact that monotonic functions are differentiable almost everywhere.� Show that most of the convex closed curves in the plane have vanishing

curvature at every point where it is defined.

We need to explain the meaning of the word “most” in the formulation;
it uses Hausdorff distance and G-delta sets.

The Hausdorff distance |A�B|H between two closed bounded sets A
and B in the plane is defined by

|A�B|H = sup

x2R2

{| distA(x)� distB(x)|},

where distA(x) denotes the smallest distance from A to x. Equivalently,
|A � B|H can be defined as the greatest lower bound of the positive
numbers r such that the r-neighborhood of A contains B and the r-
neighborhood of B contains A.

It is straightforward to show that the Hausdorff distance defines a
metric on the space of all closed plane curves. The obtained metric space
is locally compact. The latter follows from the selection theorem [see §18
in 9], which states that closed subsets of a fixed closed bounded set in the
plane form a compact set with respect to the Hausdorff metric.

A G-delta set in a metric space X is defined as a countable intersection
of open sets. According to the Baire category theorem, in locally compact
metric spaces X, the intersection of a countable collection of open dense
sets has to be dense. (The same holds if X is complete, but we will not
need it.)

In particular, in X, the intersection of a finite or countable collection
of G-delta dense sets is also a G-delta dense set. It means that each G-
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delta dense set contains most of X. This is the meaning of the word most

used in the problem.

Semisolutions

Moon in a puddle. In the proof we will use the cut locus of F with
respect to its boundary (also known as medial axis.); it will be further
denoted by T . The cut locus can be defined as the closure of the set of
points x 2 F for which there exist two or more points in @F minimizing
the distance to x.

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

T

@F
For each point x 2 T , consider the subset

X ⇢ @F where the minimal distance to x is
attained. If X is not connected then we say
that x is a cut point ; equivalently it means that
for any sufficiently small neighborhood U 3 x,
the complement U \ T is disconnected. If X is
connected then we say that x is a focal point ;
equivalently it means that the osculating circle
to @F at any point of X is centered at x.

The trick is to show that T contains a focal
point, say z. Since @F has curvature of at most
1, the radius of any osculating circle is at least 1. Hence the distance from
@F to z is at least 1, and the statement will follow.

After a small perturbation of @F , we may assume that T is a graph
embedded in F with a finite number of edges.

Note that T is a deformation retract of F . The retraction F ! T can
be obtained the following way: (1) given a point x 2 F \ T , consider the
(necessarily unique) point x̂ 2 @F that minimizes the distance |x� x̂| and
(2) move x along the extension of the line segment [x̂x] behind x until it
hits T .

In particular, T is a tree. Therefore T has an end vertex, say z. The
point z is focal since there are arbitrarily small neighborhoods U of z such
that the complements U \ T are connected.

We proved a slightly stronger statement; namely, there are at least two

points on @F at which osculating circles lie in F . Note that these points
are vertices of @F ; that is, they are critical points of its curvature.

Note further that inversion respects osculating circles. That is, if � is
an osculating circle of curve ↵ at t0, �0 is the inversion of �, and ↵0 is the
inversion of ↵, then �0 is an osculating circle of curve ↵0 at t0. Therefore
applying an inversion about a circle with the center in F , we also get a
pair of osculating circles of @F which surround F . This way we obtain
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4 osculating circles that lie on one side of @F . The latter statement is a
generalization of the four-vertex theorem [10].

The case of convex curves of this problem appears in the book of Wil-
helm Blaschke [see §24 in 9]. In full generality, the problem was discussed
by Vladimir Ionin and German Pestov [11]. A solution via curve shorten-
ing flow of a weaker statement was given by Konstantin Pankrashkin [12].
The statement still holds if the curve fails to be smooth at one point [10].
A spherical version of the later statement was used by Dmitri Panov and
me [13].

The statement admits a generalization to curves that bound a disc F
in a surface with nonpositive curvature. The latter can be used to prove
the following problem which was suggested by Dmitri Burago.� Let � be a closed space curve with curvature at most 1. Show that �
cannot be filled by a disc with area less than ⇡.

As you can see from the following problem, the 3-dimensional analog
of this statement does not hold.� Construct a smooth embedding S

2 ,! R
3

with all the principal curva-

tures between �1 and 1 such that it does not surround a ball of radius 1.

Such an example can be obtained by fattening a nontrivial contractible
2-complex in R

3 [Bing’s house constructed in 14 will do the job]. This
problem is discussed by Abram Fet and Vladimir Lagunov [15–17] and
it was generalized to Riemannian manifolds with boundary by Stephanie
Alexander and Richard Bishop [18].

A similar argument shows that for any Riemannian metric g on the
2-sphere S

2 and any point p 2 (S
2, g) there is a minimizing geodesic [pq]

with conjugate ends. On the other hand, for (S
3, g) this is not true.

Moreover, there is a metric g on S
3 with sectional curvature bounded

above by arbitrarily small " > 0 and diam(S
3, g) 6 1. In particular,

(S
3, g) has no minimizing geodesic with conjugate ends. An example was

originally constructed by Mikhael Gromov [19]; a simplification was given
by Peter Buser and Detlef Gromoll [20].

Wire in a tin. To solve this problem, you should imagine that you travel
on a train along the curve ↵(t) and watch the position of the center of
the disk in the frame of your train car.

Denote by ` the length of ↵. Equip the plane with complex coordinates
so that 0 is the center of the unit disk. We can assume that ↵ is equipped
with an `-periodic parametrization by arc length.

Consider the curve �(t) = t� ↵(t)
↵0(t) . Observe that

�(t+ `) = �(t) + `
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for any t. In particular

(⇤) length(�|[0,`]) > |�(`)� �(0)| = `.

Also

|�0
(t)| = |

↵(t)·↵00(t)
↵0(t)2 | 6

6 |↵00
(t)|.

Note that |↵00
(t)| is the absolute curvature of ↵ at t. Therefore, the result

follows from (⇤).
The statement was originally proved by István Fáry in [21]; several

different proofs are discussed by Serge Tabachnikov [see 22 and also 19.5
in 8].

If instead of the disk we have a region bounded by a closed convex
curve �, then it is still true that the average curvature of ↵ is at least as
big as the average curvature of �. The proof was given by Jeffrey Lagarias
and Thomas Richardson [see 23 and also 24].

Our solution can be adapted to the unit ball of arbitrary dimension.
Further, the same argument together with Liouville’s theorem (geodesic
flow preserves the phase volume) implies that a closed smooth submanifold
in a unit ball has average normal curvatures at least 1. Let us formulate
two more related problems.� Let M be a closed smooth n-dimensional submanifold in the unit ball

in R
q
. Denote by Hp the mean curvature vector of M at p. Show that the

average value of |Hp| is at least n.

� Suppose T is a smoothly embedded 2-torus in the unit ball in R
q
. Show

that the average value of squared normal curvatures of T is at least
3
2 .

See also the problem “Small-twist embedding” on page 43.
Curve on a sphere. Let us present two solutions. We assume that ↵ is
a closed curve in S

2 of length 2·` that intersects each equator.
A solution with Crofton’s formula. Given a unit vector u, denote by eu
the equator with the pole at u. Let k(u) be the number of intersections
of ↵ and eu.

Note that for almost all u 2 S
2, the value k(u) is even or infinite.

Since each equator intersects ↵, we get k(u) > 2 for almost all u.
Then we get

2·` = 1
4 ·

w

u2S2

k(u) >

> 1
2 · area S

2
=

= 2·⇡.
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The first identity above is called Crofton’s formula. To prove this
formula, start with the case when the curve is formed by one geodesic
segment, summing up we get it for broken lines, and by approximation it
holds for all curves.

A solution by symmetry. Let ↵̌ be a sub-arc of ↵ of length `, with end-
points p and q. Let z be the midpoint of a minimizing geodesic [pq] in S

2.
Let r be a point of intersection of ↵ with the equator with pole at z.

Without loss of generality, we may assume that r 2 ↵̌.
The arc ↵̌ together with its reflection with respect to the point z forms

a closed curve of length 2·` passing thru both r and its antipodal point
r⇤. Therefore

` = length ↵̌ > |r � r⇤|S2 = ⇡.

Here |r � r⇤|S2 denotes the angle metric in the sphere S
2.

Different solutions of this problem are discussed in a short note by
Robert Foote [25]; the second proof is due to Stephanie Alexander. The
problem was suggested by Nikolai Nadirashvili. It is nearly equivalent to
Fenchel’s theorem:� Show that total curvature of any closed smooth regular space curve is

at least 2·⇡.

Let us also mention the problem of Karol Borsuk that was solved by
John Milnor and István Fáry; it states that any embedded circle of total
curvature less than 4·⇡ is unknotted. Six proofs of this statement are
surveyed by Stephan Stadler and the author [26].

Oval in an oval. Choose a chord that divides the area of the bigger oval
in the minimal (or maximal) ratio.

If the chord is not divided into equal parts, then you can rotate it
slightly to decrease the ratio. Hence the problem follows.

r
l

u

xu

Alternative solution. Given a unit vector u, denote by
xu the point on the inner curve with the outer normal
vector u. Draw a chord of the outer curve that is tan-
gent to the inner curve at xu; denote by r = r(u) and
l = l(u) the lengths of the segments of this chord to
the right and to the left of xu, respectively.

Arguing by contradiction, assume that r(u) 6= l(u)
for all u 2 S

1. Since the functions r and l are continuous, we can assume
that

(⇤) r(u) < l(u) for all u 2 S
1.
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Prove that each of the following two integrals

1
2 ·

w

u2S1

r2(u) and 1
2 ·

w

u2S1

l2(u)

give the area between the curves. In particular, the integrals are equal.
The latter contradicts (⇤).

This is a problem of Serge Tabachnikov [27]. A closely related equal

tangents problem is discussed by the same author in [28].

Capture a sphere in a knot. We can assume that the knot lies on the
sphere @B.

Choose a Möbius transformation m : S
2
! S

2 close to the identity and
not a rotation.

Note that m is a conformal map; that is, there is a function u defined
on S

2 as
u(x) = lim

y,z!x

|m(y)�m(z)|

|y � z|
.

(The function u is called the conformal factor of m.)
Applying the area formula for m, we get

1

area S2
·

w

u2S2

u2
= 1.

By Bunyakovsky inequality,

1

area S2
·

w

u2S2

u < 1.

It follows that after a suitable rotation of S2, the map m decreases the
length of the knot.

Iterating this construction we get a sequence of knots fn : S1 ! S
2 with

length decreasing and tending to zero. Passing to the limit as m ! id, we
get a continuous one-parameter family of Möbius transformations which
shorten the length of the knot. Therefore it drifts the knot to a single
hemisphere and allows the ball to escape.

This is a problem by Zarathustra Brady, the given solution is based
on the idea of David Eppstein [29]. A solution to the following problem
is based on the same idea.� Show that a sphere cannot be captured in a link with 3 components,

but can be captured in a link with 4 components.

It seems unknown which convex bodies can be captured by a knot.
The following problem is quite tricky already.
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� Show that one can capture some convex bodies in a knot.

The following problem of Abram Besicovitch is closely related [30]; it
can be solved using spherical Crofton’s formula.� Show the total length of strings in a net that can hold a unit sphere

has to be larger than 3·⇡.

Linked circles. Denote the linked circles by ↵ and �.
Choose a point x 2 ↵. Note that there is a point y 2 ↵ such that the

line segment [xy] intersects �, say at z. Indeed, if this is not the case,
then a homothety with center x to ↵ would shrink it to x without crossing
�. The latter contradicts that ↵ and � are linked.

x yz
�

↵
Let ↵⇤ be the image of ↵ under the central projec-

tion onto the unit sphere around z. Since |↵(t)�z| > 1

for any t, we have that

length↵ > length↵⇤.

Observe that ↵⇤ is a closed spherical curve that contains two antipodal
points, one corresponds to x and the other to y. It follows that

length↵⇤ > 2·⇡.

Hence the result follows.

This problem was proposed by Frederick Gehring [see 7.22 in 31];
solutions and generalizations are surveyed in [32]. The presented solution
is attributed to Marvin Ortel in [33] and it is close to the solution of
Michael Edelstein and Binyamin Schwarz [34].

Surrounded area. The trick is to use the Kirszbraun theorem: Any

L-Lipschitz map f : Q ! R
n

defined on a subset Q ⇢ R
m

can be extended

to an L-Lipschitz map f̄ : Rm
! R

n
.

This theorem appears in the thesis of Mojżesz Kirszbraun [35]; it was
rediscovered later by Frederick Valentine [36]. An interesting survey is
given by Ludwig Danzer, Branko Grünbaum and Victor Klee [37].

Let C1 and C2 be the compact regions bounded by �1 and �2 respec-
tively.

By the Kirszbraun theorem, there is a 1-Lipschitz map f : R2
! R

2

such that f(�2(v)) = f(�1(v)) for any v 2 S
1.

Note that f(C2) � C1. Hence the statement follows.

Crooked circle. A continuous function f : [0, 1] ! [0, 1] will be called
"-crooked if f(0) = 0, f(1) = 1 and for any segment [a, b] ⇢ [0, 1] one can
choose a 6 x 6 y 6 b such that

|f(y)� f(a)| 6 " and |f(x)� f(b)| 6 ".
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A sequence of 1
n
-crooked maps can be constructed recursively. Figure

out the construction by looking at the following diagram.

" = 1
2 " = 1

3 " = 1
4 " = 1

5

Now, start with the unit circle, �0(t) = (cos 2⇡t, sin 2⇡t). Choose a
sequence of positive numbers "n converging to zero very fast. Construct
recursively a sequence of simple closed curves �n : [0, 1] ! R

2 such that
�n+1 runs outside of the disk bounded by �n and

|�n+1(t)� �n � fn(t)| < "n,

for an "n-crooked function fn. (It is hard to draw �n+1; it runs like crazy
back-and-forth almost along �n.)

Denote by D the union of all disks bounded by the curves �n. Clearly
D is homeomorphic to an open disk. For the right choice of the sequence
"n, the set D is bounded. By construction, the boundary of D contains
no simple curves.

In fact, the only curves in the boundary of the constructed set are
constant. Compare to the problem Simple path on page 113.

The proof uses the so-called pseudo-arc constructed by Bronis law
Knaster [38]. The proof resembles the construction of Cantor’s set. Here
are a few similar problems:� Construct three distinct open sets in R with the same boundary.

� Construct three open disks in R
2

having the same boundary.

These disks are called lakes of Wada; it is described by Kunizô Yone-
yama [39].� Construct a Cantor set in R

3
with a non-simply-connected complement.

This example is called Antoine’s necklace [40].� Construct an open set in R
3

with a fundamental group isomorphic to

the additive group of rational numbers.

More advanced examples include the Whitehead manifold, Dogbone

space, and Casson handle; see also the problem “Conic neighborhood” on
page 112.

Rectifiable curve. The 1-dimensional Hausdorff measure will be de-
noted by H1.
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Set L = H1(K). Without loss of generality, we may assume that K
has diameter 1.

Since K is connected, we get

(⇤) H1(B(x, ") \K) > "

for any x 2 K and 0 < " < 1
2 .

Let x1, . . . , xn be a maximal set of points in K with

|xi � xj | > "

for all i 6= j. From (⇤) we have n 6 2·L/".
Note that there is a tree T" with vertices x1, . . . , xn and straight edges

with lengths at most 2·" each. Therefore the total length of T" is below
2·n·" 6 4·L. By construction, T" is "-close to K in the Hausdorff metric.

Clearly, there is a closed curve �" whose image is T" and its length is
twice the total length of T"; that is,

length �" 6 8·L.

Passing to a subsequential limit of �" as " ! 0, we get the needed
curve.

In terms of measure, the optimal bound is 2·L; if in addition the
diameter D is known then it is 2·L �D. The problem is due to Samuel
Eilenberg and Orville Harrold [41]; it also appears in the book of Kenneth
Falconer [see Exercise 3.5 in 42].

Shortcut. Choose " > 0. Let us construct a set X 0
⇢ X and a collection

of paths ↵0, . . . ,↵n such that
(i) the total length of ↵i \X is at most ",
(ii) the set X 0 is a union of a finite collection of closed connected sets

X0, . . . , Xn,
(iii) diameter of each Xi is at most ",
(iv) x 2 ↵0, y 2 ↵n, and
(v) the union X 0

[ ↵0 [ · · · [ ↵n is connected
Imagine that the construction is given. Let us show that the statement

can be proved by applying this construction recursively for a sequence of
"n that converges to zero very fast.

Indeed we can apply the construction to each of the subsets Xn and
take as X 00 the union of all closed subsets provided by the construction.
This way we obtain a nested sequence of closed sets X � X 0

� X 00
� . . .

which break into a finite union of closed connected subsets of arbitrary
small diameter and a countable collection of arcs with total length at most
"1 + "2 + . . . outside of X. Consider the Cantor set

Y = X \X 0
\X 00

\ . . .
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Note that there is a simple curve from x to y that runs in the constructed
arcs and Y . The total length of the constructed curves outside of X can
not exceed the sum "1 + "2 + . . . ; whence the result.

It remains to do the construction.
Let us cover X by a grid of "

2 -squares Q1, . . . , Qk. Denote by � the
union of all the sides of the squares.

By the regularity of length, we may cover �\X by a finite collection
of arcs with total length arbitrarily close to the length of � \X. Denote
these arcs by ↵0, . . . ,↵n. Without loss of generality, we may assume that
x 2 ↵0 and y 2 ↵n.

Consider a finite graph with vertices labeled by ↵0, . . . ,↵n; two ver-
tices ↵i and ↵j are adjacent if there is a connected set ⇥ ⇢ X\Qk for some
k such that ⇥ intersects ↵i and ↵j . Note that the graph is connected.
Therefore we may choose a path from ↵0 to ↵n in the graph.

The path corresponds to a sequence of arcs ↵i and a sequence of ⇥-
sets. The ⇥-sets that correspond to the edges in the path can be taken
as Xi in the construction.

This solution was found by Taras Banakh [43]; it was used by Stephan
Stadler and the author [44]. The proof works only in dimension two and
we are not aware of a generalization to higher dimensions. Namely, the
following question is open:� Let x, y be two points in a compact connected subset X ⇢ R

3
. Is it

always possible to connect x and y by a path ↵ such that the complement

↵ \X has arbitrarily small length?

Straight set. A set L in the plane will be called r-reachable if it is
formed by a collection of disjoint proper smooth curves with r-tubular
neighborhood; that is, the closest-point projection to L is uniquely defined
in the r-neighborhood of L. Note that in this case, L has curvature at
most 1

r
at any point.

Further, �i will denote a positive value that depends on � such that
�i ! 0 as � ! 0. In fact, every statement below holds for �i = 239·� for
any i. We assume that � and, therefore, each �i are small.

Fix an �-straight set X. Note that for any r > 0, there is a r-reachable
set L that is �1 ·r-close to X in the sense of Hausdorff. Indeed, using �-
straightness one may approximate X by a polygonal line that has sides
about r, very obtuse angles, and that does not come close to a fixed point
twice. Smoothing its corners produces L.

Let Ln be a sequence of such approximations for rn =
1
2n . Note

that Ln�1 lies in a �2 ·rn-neighborhood of Ln. In particular, the closest
point projection fn : Ln�1 ! Ln is uniquely defined. Moreover, it is
straightforward to check that fn is (1⌥ �3)-bi-Lipschitz.
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Ln�1

Ln

Given x1 2 L1, consider the sequence xn 2 Ln defined by xn+1 =

= fn(xn). From above, we have that

|xn+1 � xn| < �4 ·rn, |xn+1 � yn+1| ? (1⌥ �4)·|xn � yn|. (⇤)

In particular, for any x1 2 L1, the sequence (xn) converges in itself.
Denote its limit by F (x1); evidently, F : L1 ! X is onto. It follows in
particular, that any pair of points in X on distance at most 1 lie in one
connected component. Since the �-straightness does not depend on the
scale, it implies that X is connected.

Note that (⇤) implies the following two pairs of inequalities

|xn+1 � yn+1| 6 (1 + �5)·|xn � yn|,

|xn+1 � yn+1| 6 |xn � yn|+ �5 ·rn,

and

|xn+1 � yn+1| > (1� �5)·|xn � yn|,

|xn+1 � yn+1| > |xn � yn|� �5 ·rn.

To prove that F is bi-Hölder, apply recursively the first inequality in each
pair until |xn � yn| > rn and after the second one.

This puzzle is a baby case of the so-called Reifenberg’s lemma. It was
introduced by Ernst Reifenberg [45] and became a useful tool in metric
geometry; in particular, it is used to study the limit spaces with lower
Ricci curvature bound [46, 47].

Typical convex curves. Denote by C the space of all closed convex
curves in the plane equipped with the Hausdorff metric. Recall that
C is locally compact. In particular, by the Baire theorem, a countable
intersection of everywhere dense open sets is everywhere dense.

Note that if a curve � 2 C has non-zero second derivative at a point p,
then � lies between two nested circles tangent to each other at p.

Fix these two circles. It is straightforward to check that there is " >
0 such that the Hausdorff distance from any convex curve � squeezed
between the circles to any convex n-gon is at least "

n100 .
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�

Choose a countable dense set of convex
polygons p1, p2, . . . in C. Denote by ni the
number of sides in pi. For any positive inte-
ger k, consider the set ⌦k ⇢ C defined by

⌦k =

n
⇠ 2 C

��� min
i

{|⇠ � pi|H} < 1
k·n100

i

o
,

where |⇤ � ⇤|H denotes the Hausdorff dis-
tance

From the above, we get that � /2 ⌦k for
some k.

Note that ⌦k is open and everywhere dense in C. Therefore

⌦ =

\

k

⌦k

is a G-delta dense set. Hence the statement follows.

This problem states that typical convex curves have an unexpected
property. This is common � it is hard to see the typical objects and
these objects often have surprising properties.

For example, it was proved by Bernd Kirchheim, Emanuele Spadaro,
and László Székelyhidi, that typical 1-Lipschitz maps from the plane to

itself preserve the length of all curves [48]. The same way, one could
show that the boundaries of typical open sets in the plane contain no

nontrivial curves, but the construction of a concrete example is not trivial
[see “Crooked circle”, page 7]. More problems of that type are surveyed
by Tudor Zamfirescu [49].



Chapter 2

Surfaces

We assume that the reader is familiar with smooth surfaces and the re-
lated definitions including intrinsic metric, geodesics, convex and saddle
surfaces as well as different types of curvature. An introductory course in
differential geometry should cover all necessary background material [see
4, 3, or §28–29 in 5].

�

⌃

⇧

Convex hat

� Suppose that a plane ⇧ cuts from a smooth closed

convex surface ⌃ a disk �. Assume that the reflection

of � with respect to ⇧ lies inside of ⌃. Show that � is

convex with respect to the intrinsic metric of ⌃; that

is, if both ends of a minimizing geodesic in ⌃ lie in

�, then the entire geodesic lies in �.

Semisolution. Assume the contrary, then there is a minimizing geodesic
� 6⇢ � with ends p and q in �.

Without loss of generality, we may assume that only one arc of � lies
outside of �. Reflection of this arc with respect to ⇧ together with the
remaining part of � forms another curve �̂ from p to q; it runs partly
along ⌃ and partly outside ⌃, but does not get inside ⌃. Note that

length �̂ = length �.

Denote by �̄ the closest point projection of �̂ on ⌃. Since ⌃ is convex,
the closest point projection decreases the length. Therefore the curve �̄
lies in ⌃, it has the same ends as �, and

length �̄ < length �.

This means that � is not length-minimizing � a contradiction.

21
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⌃

p
q�(t)

ptInvolute of geodesic

� Let ⌃ be a smooth closed strictly convex

surface in R
3

and � : [0, `] ! ⌃ a unit-speed

minimizing geodesic. Set p = �(0), q = �(`),
and

pt = �(t)� t·�0(t),

where �0(t) denotes the velocity vector of �
at t.

Show that for any t 2 (0, `), one cannot see q from pt; that is, the line

segment [ptq] intersects ⌃ at a point distinct from q.

Simple geodesic

� Let ⌃ be a complete unbounded convex surface in R
3
. Show that there

is a two-sided infinite geodesic in ⌃ with no self-intersections.

Let us review a couple of statements about Gauss curvature which
might help to solve the problem [see §28 in 5, for more details].

If ⌃ is a convex surface in R
3 then its Gauss curvature is nonnegative.

Assume that a simply-connected region ⌦ in the surface ⌃ is bounded
by a closed broken geodesic �. Denote by (⌦) the integral of the Gauss
curvature over ⌦.

For any point p 2 ⌃ consider the outer unit normal vector n(p) 2 S
2.

Then

(⌦) = area[n(⌦)]

and by the Gauss–Bonnet formula

(⌦) = 2·⇡ � �(�),

where �(�) denotes the sum of the signed exterior angles of �. In partic-
ular, |�(�)| 6 2·⇡.

Geodesics for birds
The total curvature of a space curve � is defined as the integral of its cur-
vature. That is, if a curve � : [a, b] ! R

3 has unit speed parametrization,
then its total curvature equals

bw

a

|�00(t)|·dt,
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the vector �00(t) is called the curvature vector and its length |�00(t)| is
the curvature of � at time t. The above definition makes sense for C1,1

smooth curves, that is, in the case when �0(t) is locally Lipschitz; in this
case the curvature |�00(t)| is defined almost everywhere.

The geodesics in the following problem are defined as the curves locally
minimizing the length; that is, any sufficiently short arc of the curve
containing a given value of the parameter is length-minimizing.� Let f : R2

! R be a smooth `-Lipschitz function. Let W ⇢ R
3

be the

epigraph of f ; that is,

W =
�
(x, y, z) 2 R

3
�� z > f(x, y)

 
.

Equip W with the induced intrinsic metric.

Show that any geodesic in W has total curvature at most 2·`.

Actually, geodesics in W are C1,1-smooth; in particular, the formula
for the total curvature mentioned above makes sense. This is an easy
exercise in real analysis which can be also taken for granted.

Immersed surface

� Let ⌃ be a smooth connected immersed surface in R
3

with strictly

positive Gauss curvature and nonempty boundary @⌃. Assume that the

boundary @⌃ lies in a plane ⇧ and ⌃ lies entirely on one side of ⇧. Prove

that ⌃ is an embedded disk.

Periodic asymptote

� Let ⌃ be a closed smooth surface with non-positive curvature at every

point and � a geodesic in ⌃. Assume that � is not periodic and the

curvature of ⌃ vanishes at every point of �. Show that � does not have a

periodic asymptote; that is, there is no periodic geodesic � such that the

distance from �(t) to � converges to 0 as t ! 1.

Saddle surface
Recall that a smooth surface ⌃ in R

3 is saddle at a point p if its principal
curvatures at p have opposite signs. We say that ⌃ is saddle if it is saddle
at all points.� Let ⌃ be a saddle surface in R

3
homeomorphic to a disk. Assume

that the orthogonal projection to the (x, y)-plane maps the boundary of ⌃

injectively to a convex closed curve. Show that this projection is injective

on ⌃.
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In particular, ⌃ is the graph z = f(x, y) of a function f defined on a

convex domain in the (x, y)-plane.

Asymptotic line
The saddle surfaces are defined in the previous problem.

Recall that a smooth curve � on a smooth surface ⌃ ⇢ R
3 is called

asymptotic if �00(t) is tangent to the surface at �(t) for any t.� Let ⌃ ⇢ R
3

be the graph z = f(x, y) of a smooth function f and

� a closed smooth asymptotic line in ⌃. Assume that ⌃ is saddle in

a neighborhood of �. Show that the projection of � to the (x, y)-plane

cannot be star-shaped; that is, there is no point p in the plane such that

each half-line from p intersects the projection at exactly one point.

Minimal surface
Recall that a smooth surface in R

3 is called minimal if its mean curvature
vanishes at all points. The mean curvature at each point is defined as the
sum of the principal curvatures at that point.� Let ⌃ be a minimal surface in R

3
having its boundary on a unit sphere.

Assume that ⌃ passes thru the center of the sphere. Show that the area

of ⌃ is at least ⇡.

Round gutter⇤

A round gutter is the surface shown on the
picture.

More precisely, consider the torus T ; a surface generated by revolving
a circle in R

3 around an axis coplanar with the circle. Let � ⇢ T be one
of the circles in T that locally separates positive and negative curvature
on T ; a plane containing � is tangent to T at all points of �. Then a
neighborhood of � in T is called a round gutter and the circle � is called
its main latitude.� Let ⌦ ⇢ R

3
be a round gutter with the main latitude �. Assume that

◆ : ⌦ ! R
3

is a smooth length-preserving embedding that is sufficiently

close to the identity. Show that � and ◆(�) are congruent; that is, there

is an isometric motion of R
3

sending � to ◆(�)

Non-contractible geodesics

� Give an example of a non-flat metric on the 2-torus such that no closed

geodesic is contractible.
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Two disks

� Let ⌃1 and ⌃2 be two smoothly embedded open disks in R
3

that have

a common closed smooth curve �. Show that there is a pair of points

p1 2 ⌃1 and p2 2 ⌃2 with parallel tangent planes.

Second derivative bounds first�

� Let f be a smooth function on the Lobachevsky plane with bounded

Hessian. Show that f is Lipschitz.

Semisolutions

Involute of geodesic. Let W be the closed unbounded set formed by ⌃
and its exterior points. Choose t 2 (0, `); denote by �t the concatenation
of the line segment [pt�(t)] and the arc �|[t,`]. The key step is to show the
following:

(⇤) The curve �t is a minimizing geodesic in the intrinsic metric induced

on W .

Try to prove it before reading further.

Let ⇧t be the tangent plane to ⌃ at �(t). Consider the curve ↵(t) = pt.
Note that ↵(t) 2 ⇧t, ↵0

(t) ? ⇧t, and ↵0
(t) points to the side of ⇧t opposite

to ⌃.
It follows that for any x 2 ⌃ the function

t 7! |x� pt| and, therefore, t 7! |x� pt|W

are non-decreasing; here |x � pt|W stands for the intrinsic distance from
x to pt in W .

⌃W

⇧

p
q

�(t)
pt

↵0
(t)On the other hand, by construction

|q � pt|W 6 |q � p|⌃;

therefore, from the above

|q � pt|W = |q � p|⌃

for any t. Hence (⇤) follows.
Now assume that q is visible from pt for some t; that is, the line

segment [qpt] intersects ⌃ only at q. From the above, �t coincides with
the line segment [qpt]. On the other hand, �t contains �(t) 2 ⌃ � a
contradiction.
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This problem is based on an observation used by Anatoliy Milka in
the proof of the following generalization of the comparison theorem for
convex surfaces [50, Theorem 2].

� Let W be the closed unbounded set formed by a (not necessarily smooth)

closed convex surface ⌃ and its exterior points. Suppose �1 : [0, `1] ! ⌃

and �2 : [0, `2] ! ⌃ are unit-speed minimizing geodesics that start at the

same point p. Set xi = �i(`i) and yi = p+ `i ·�0i(0). Show that

|x1 � x2|W 6 |y1 � y2|W ,

where | � |W stands for the intrinsic distance in W .

Simple geodesic. Look at two combina-
torial types of a self-intersection shown in
the diagram. One of them can and the
other cannot appear as self-intersections of
a geodesic on an unbounded convex sur-
face. Try to determine which is which be-
fore reading further.

Let � be a two-sided infinite geodesic in ⌃. The following is the key
statement in the proof.

(⇤) The geodesic � contains at most one simple loop.

To prove (⇤), we use the following observation.

(⇤⇤) The integral curvature ! of ⌃ cannot exceed 2·⇡.

Indeed, since ⌃ is unbounded and convex, it surrounds a half-line.
Consider a coordinate system with this half-line as the positive half of
its z-axis. In these coordinates, the surface ⌃ is described as a graph
z = f(x, y) of a convex function f . In particular, all outer normal vectors
to ⌃ have a negative z-coordinate; in other words, they point to the
southern hemisphere. Therefore the area of the spherical image of ⌃ is at
most 2·⇡. The area of this image is the integral of the Gauss curvature
over ⌃. Hence (⇤⇤) follows.

From the Gauss–Bonnet formula, we get the following conclusion. If
' is the angle at the base of a simple geodesic loop then the integral
curvature surrounded by the loop equals ⇡+'. In particular, (⇤⇤) implies
that ' 6 ⇡; in other words, there are no concave loops.

Now assume that (⇤) does not hold, so that a geodesic has two simple
loops. Note that the disks bounded by the loops have to overlap, otherwise
the curvature of ⌃ would exceed 2·⇡. But if they overlap, then it is easy
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to show that the curve also contains a concave loop, which contradicts
the above observation.1

If a geodesic � has a self-intersection, then it contains a simple loop.
From (⇤), there is only one such loop; it cuts a disk from ⌃ and goes
around it either clockwise or counterclockwise. This way we divide all the
self-intersecting geodesics into two sets which we will call clockwise and
counterclockwise.

Note that the geodesic t 7! �(t) is clockwise if and only if t 7! �(�t)
is counterclockwise. The sets of clockwise and counterclockwise are open
and the space of all geodesics is connected. It follows that there are
geodesics that aren’t clockwise nor counterclockwise. Those geodesics
have no self-intersections.

Note that the proof implies that a two-sided infinite geodesic can be
found among geodesics containing a given point in ⌃.

The problem is due to Stephan Cohn-Vossen [Satz 9 in 51]; general-
izations were obtained by Vladimir Streltsov and Alexandr Alexandrov
[52] and by Victor Bangert [53].

The following problem is of the same style [54].

� Let � be a closed geodesic on a closed surface of positive curvature ⌃.

Show that � cannot look like one of the curves on the diagram. In other

words, � cannot subdivide ⌃ into (1) one hexagon, one triangle, and three

monogons, and (2) one pentagon, one quadrangle, and three monogons.

Geodesics for birds. Choose a unit-speed geodesic in W , say

� : t 7! (x(t), y(t), z(t)).

We can assume that � is defined on a closed interval [a, b]. The key step
is to show the following:

(⇤) The function t 7! z is concave.

Parametrize the plane curve t 7! (x(t), y(t)) by the arc length s and
reparametrize � by s.

1This observation implies that the right picture on the above diagram cannot be
realized by a geodesic.
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s0
s

z Note that the function s 7! z is concave. In-
deed, suppose s 7! z is not concave around s0.
Then one could shorten � by increasing its z
component in a small interval around s0 while
keeping its endpoints fixed. After the deforma-
tion, the curve still lies in W . The latter contra-
dicts that � is locally length-minimizing.

Finally, note that the concavity of s 7! z is
equivalent to the concavity of t 7! z. Hence (⇤) follows.

Since f is smooth, the curve �(t) is C1,1; that is, its first derivative �0(t)
is a well-defined Lipschitz function. It follows that its second derivative
�00(t) is defined almost everywhere.

Since z(t) is concave, we have z00(t) 6 0. Since f is `-Lipschitz, z(t) is
`p

1+`2
-Lipschitz. It follows that

bw

a

|z00(t)|·dt 6 2·
`p

1+`2
.

The curvature vector �00(t) is perpendicular to the surface. Since the
surface has slope at most `, we get

|�00(t)| 6 |z00(t)|·
p
1 + `2.

Hence
bw

a

|�00(t)|·dt 6 2·`. ⇤

The statement holds for general `-Lischitz functions, not necessarily
smooth. The given bound is optimal, the equality is attained by a two-side
infinite geodesic on the graph of

f(x, y) = �`·
p
x2 + y2.

The problem is due to David Berg [55], the same bound for convex
`-Lipschitz surfaces was proved earlier by Vladimir Usov [56]. The obser-
vation (⇤) is called Liberman’s lemma; it was used earlier to bound the
total curvature of a geodesic on a convex surface [57].2 This lemma is
often useful when working with geodesics on general convex surfaces.

Immersed surface. Let ` be a linear function that vanishes on ⇧ and
is positive on ⌃. We will apply a Morse-type argument for the restriction
of ` to ⌃.

2It is a part of the thesis of Joseph Liberman, defended a couple of months before
he died in WWII.
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Let z0 be a maximum of ` on ⌃; set s0 = `(z0). Given s < s0, denote
by ⌃s the connected component of z0 in ⌃ \ `�1

([s, s0]). Note that
⇧ ⌃s is an embedded disk, and
⇧ @⌃s is a convex plane curve

for all s sufficiently close to s0.
Consider the set A ⇢ [0, s0) such that for any a 2 A these two condi-

tions hold for any s 2 [a, s0). Observe that A is open and closed in [0, s0).
Whence A = [0, s0); in particular, these conditions hold for s = 0.

Since ⌃ is connected, ⌃0 = ⌃. Hence the result follows.

This problem is discussed in the lectures of Mikhael Gromov [see § 1
2 in

58].

Periodic asymptote. Arguing by contradiction, assume that there is a
geodesic � on the surface ⌃ with a periodic asymptote �.

Passing to a finite cover of ⌃, we can ensure that the asymptote
has no self-intersections. In this case, the restriction �|[a,1) has no self-
intersections if a is sufficiently large.

Cut ⌃ along �([a,1)) and then cut from the obtained surface an
infinite triangle 4. The triangle has two sides formed by both sides of
cuts along �; let us denote these sides of 4 by �� and �+. Note that

(⇤) area4 < area⌃ < 1,

and both sides �± are infinite minimizing geodesics in 4.
Consider the Busemann function f for �+ [defined on page 38]; denote

by `(t) the length of the level curve f�1
(t). Let �(t) be the total cur-

vature of the sup-level set f�1
([t,1)). From the Gauss–Bonnet formula,

(⇤⇤) `0(t) = (t).

The level curve f�1
(t) can be parametrized by a unit-speed curve, say

✓t : [0, `(t)] ! 4. By the coarea formula we have

0(t) = �

`(t)w

0

K✓t(⌧) ·d⌧,

where Kx denotes the Gauss curvature of ⌃ at the point x. Since K✓t(0) =

= K✓t(`t) = 0 and the surface is smooth, there is a constant C such that
|K✓t(⌧)| 6 C ·`(t)2 for all t, ⌧ . Therefore

( ***) 0(t) 6 C ·`(t)3

Together, (⇤⇤) and ( ***) imply that there is " > 0 such that

`(t) > "

t� a
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for sufficiently large t. By the coarea formula we get

area4 =

1w

a

`(t)·dt = 1;

the latter contradicts (⇤).

I learned the problem from Dmitri Burago and Sergei Ivanov, it origi-
nated from a discussion with Keith Burns, Michael Brin, and Yakov Pesin.

Here is a motivation. Let ⌃ be a closed surface with non-positive
curvature that is not flat. The space � of all unit-speed geodesics � : R !

! ⌃ can be identified with the unit tangent bundle U⌃. In particular
� comes with a natural choice of measure. Denote by �0 ⇢ � the set of
geodesics that run in the set of zero curvature all the time. It is expected
that �0 has a vanishing measure. In all known examples �0 contains only
periodic geodesics in only finitely many homotopy classes [see also 59].

Saddle surface. Denote by ⌃� the interior of ⌃. Choose a plane ⇧.
Note that the intersection ⇧ \ ⌃

� locally looks either like a curve or like
two curves intersecting transversally; in the latter case, ⇧ is tangent to
⌃

� at the intersection point.
Further, note that ⇧\⌃

� has no cycle. Otherwise, ⌃ would fail to be
saddle at the point of the disk surrounded by that cycle maximizing the
distance to ⇧.

If ⌃ is not a graph then there is a point p 2 ⌃ with a vertical tangent
plane; denote this plane by ⇧. The intersection ⇧ \ ⌃ has a cross-point
at p.

Since the boundary of ⌃ projects injectively to a closed convex curve
in (x, y)-plane, the intersection of ⇧ \ @⌃ has at most 2 points � these
are the only endpoints of ⇧ \ ⌃.

It follows that the connected component of p in ⇧\⌃ is a tree with a
vertex of degree 4 at p and at most two end-points � a contradiction.

The described idea can be used to prove the result of Richard Schoen
and Shing-Tung Yau [60] which gives a sufficient condition for a harmonic
map between surfaces to be a diffeomorphism. Unlike the original proof,
it requires no calculations.

The proof above is based on the observation that for any saddle surface
⌃ and plane ⇧, each connected component of ⌃ \ ⇧ is either unbounded
or intersects the boundary curve. This observation plays a central role in
the proof of Sergei Bernstein [61] of the following problem:� Show that a smooth bounded function f : R2

! R cannot have a strictly

saddle graph.

One could go further and define a generalized saddle surface as an ar-
bitrary (non-necessarily smooth) surface satisfying the observation above.
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The geometry of these surfaces is far from being understood, Samuil Shefel
has a number of beautiful results about them, [see 62, 63, and the refer-
ences therein]. The statement of the problem holds for these generalized
saddle surfaces, but the proof is tricky [64].

Asymptotic line. Denote by ⇧t the tangent plane to ⌃ at �(t) and by
`t the tangent line of � at time t.

Since � is asymptotic, the plane ⇧t rotates around `t as t changes.
Since ⌃ is saddle, the speed of rotation cannot vanish.3

Note that ⇧t is a graph of a linear function, say ht, defined on the
(x, y)-plane. Denote by ¯̀

t the projection of `t to the (x, y)-plane. The
described rotation of ⇧t can be expressed algebraically: the derivative
d

dt
ht(w) vanishes at the point w if and only if w 2 ¯̀

t and the derivative
changes sign if w changes the side of ¯̀t.

Denote by �̄ the projection of � to the (x, y)-plane. If �̄ is star-shaped
with respect to a point w, then w cannot cross ¯̀

t. Therefore the function
t 7! ht(w) is monotone on S

1. Observing that this function cannot be
constant, we arrive at a contradiction.

This is a stripped version of the result of Galina Kovaleva [65], which
was rediscovered by Dmitri Panov [66, 67].

Minimal surface. Without loss of generality, we may assume that the
sphere is centered at the origin of R3.

Let h be the restriction of the function x 7!
1
2 ·|x|

2 to the surface ⌃.
Direct calculations show that �⌃h = 2; here �⌃ denoted Laplacian on ⌃.
Applying the divergence theorem for the gradient r⌃h in ⌃r = ⌃\B(0, r),
we get

2· area⌃r 6 r· length[@⌃r].

Set a(r) = area⌃r. By the coarea formula, a0(r) > length[@⌃r] for
almost all r. Therefore the function

f : r 7!
area⌃r

r2

is non-decreasing in the interval (0, 1).
Since f(r) ! ⇡ as r ! 0, the result follows.

We described a partial case of the so-called monotonicity formula for
minimal surfaces.

The same argument shows that if 0 is a double point of ⌃ then area⌃ >
> 2·⇡. This observation was used to prove that the minimal disk bounded
by a simple closed curve with total curvature 6 4·⇡ is necessarily embed-
ded. It was proved by Tobias Ekholm, Brian White, and Daniel Wienholtz

3By the Beltrami–Enneper theorem, if � has unit speed, then the speed of rotation
is ±

p
�K, where K is the Gauss curvature which cannot vanish on a saddle surface.
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[68]; an amusing variation of this proof was obtained by Stephan Stadler
[69]. This result also implies that any embedded circle of total curvature
at most 4·⇡ is unknot. The latter was proved independently by István
Fáry [70] and John Milnor [71].

Note that if we assume in addition that the surface is a disk, then the
statement holds for any saddle surface. Indeed, denote by Sr the sphere of
radius r concentrical with the unit sphere. Then according to the problem
“A curve on a sphere” [page 6],

length[@⌃r] > 2·⇡ ·r.

Then by the coarea formula, we get area⌃ > ⇡.
On the other hand, there are saddle surfaces homeomorphic to the

cylinder having an arbitrarily small area in the ball.
If ⌃ does not pass thru the center and we only know the distance,

say r, from the center to ⌃, then the optimal bound is ⇡ ·(1 � r2). This
question was open for about 40 years and proved by Simon Brendle and
Pei-Ken Hung [72]; their proof is based on a similar idea and is quite
elementary. Earlier Herbert Alexander, David Hoffman, and Robert Os-
serman proved it for two cases: (1) for disks and (2) for arbitrary area
minimizing surfaces, any dimension and codimension [73, 74].

Round gutter. Without loss of generality, we can assume that the length
of � is 2·⇡ and its intrinsic curvature is 1 at all points.

Let K be the convex hull of ⌦̂ = ◆(⌦). Part of ⌦̂ touches the boundary
of K and the rest lies in the interior of K. Denote by �̂ the curve in ⌦̂
dividing these two parts.

First note that the Gauss curvature of ⌦̂ should vanish at the points
of �̂; in other words, �̂ = ◆(�). Indeed, since �̂ lies on the convex part, the
Gauss curvature at the points of �̂ should be non-negative. On the other
hand, �̂ bounds a flat disk in @K; therefore its integral intrinsic curvature
should be 2·⇡. If the Gauss curvature is positive at a point of �̂, then by
the Gauss–Bonnet formula, the total intrinsic curvature of �̂ should be
smaller than 2·⇡ � a contradiction.

On the other hand, �̂ is an asymptotic line. Indeed, if the direction
of �̂ is not asymptotic at t0, then �̂(t0 ± ") lies the interior of K for some
small " > 0 � a contradiction.

Therefore, as the space curve, �̂ has to be a closed curve with constant
curvature 1. Any such curve is congruent to a unit circle.

It is not known whether ⌦̂ is congruent to ⌦ or not.
The solution presented above is based on my answer to the question

of Joseph O’Rourke [75]. Here are some related statements.
⇧ A gutter is second-order rigid; this was proved by Eduard Rembs

[see 76 and also page 135 in 77].
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⇧ Any second-order rigid surface does not admit analytic deformation
[proved by Nikolay Efimov; page 121 in 77] and for the surfaces of
revolution, the assumption of analyticity can be removed [proved by
Idzhad Sabitov, see 78].

Non-contractible geodesics. A torus of revolution is an example.
Indeed, it has a family of meridians � a family of circles that form

closed geodesics. Note that a geodesic on the torus is either a meridian or
it intersects meridians transversally. In the latter case, all the meridians
are crossed by the geodesic in the same direction.

Note that a contractible curve has to cross each meridian an equal
number of times in both directions. Therefore no geodesic of the torus is
contractible.

I learned this problem from the book of Mikhael Gromov [79], where
it is attributed to Y. Colin de Verdière. The same argument can be used
to show that a torus with a geodesic foliation has no contractible closed
geodesics. I do not know other examples of that type [80]; namely, the
following question is open:� Are there examples of Riemannian metrics on the 2-torus without

closed null-homotopic geodesics and without a geodesic foliation?

Two disks. Choose a continuous map h : ⌃1 ! ⌃2 that is the identity
on �. Let us prove that for some p1 2 ⌃1 and p2 = h(p1) 2 ⌃2, the
tangent planes Tp1⌃1 and Tp2⌃2 are parallel; this fact is stronger than
the one required.

Arguing by contradiction, assume that such a point does not exist.
Then for each p 2 ⌃1 there is a unique line `p 3 p parallel to both Tp⌃1

and Th(p)⌃2.
Note that the lines `p form a tangent line distribution over ⌃1 and `p

is tangent to � at all p 2 �.
Let � be the disk in ⌃1 bounded by �. Consider the doubling of

� along �; it is diffeomorphic to S
2. The line distribution ` lifts to a

line distribution on the doubling. The latter contradicts the hairy ball
theorem.

This proof was suggested nearly simultaneously by Steven Sivek and
Damiano Testa [81].

Note that the same proof works when ⌃i are oriented open surfaces
and � cuts a compact domain in each ⌃i.

There are examples of three disks ⌃1, ⌃2, and ⌃3 with a common
closed curve � such that there is no triple of points pi 2 ⌃i with parallel
tangent planes. Such examples can be found among ruled surfaces [82].
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Second derivative bounds first. Observe that the gradient v = rf
is almost parallel; that is, there is a constant C such that |ruv| 6 C
for any unit tangent vector u. In particular, the parallel translation of
v(p) around a circle has to be close to v(p). If |v(p)| is large, the latter
contradicts the Gauss–Bonnet formula.

I learned this problem from Christopher Criscitiello [83].



Chapter 3

Comparison geometry

In this chapter, we consider Riemannian manifolds with curvature bounds.
This chapter is very demanding; we assume that the reader is familiar

with the shape operator and second fundamental form, equations of Ric-
cati and Jacobi, comparison theorems, and Morse theory. The classical
book [84] covers all the necessary material.

Geodesic immersion⇤

An isometric immersion ◆ : N # M from one Riemannian manifold to
another is called totally geodesic if it maps any geodesic in N to a geodesic
in M .� Let M and N be simply-connected positively-curved Riemannian man-

ifolds and ◆ : N # M a totally geodesic immersion. Assume that

dimN > 1
2 · dimM.

Prove that ◆ is an embedding.

Semisolution. Set n = dimN , m = dimM .
Choose a smooth increasing strictly concave function '. Consider the

function f = ' � distN , where distN (x) denotes the distance from x 2 M
to N .

Note that if f is smooth at a point x 2 M , then the Hessian of f at x
(briefly hessx f) has at least n+ 1 negative eigenvalues.

Moreover, at any point x /2 ◆(N) the same holds in the barrier sense.
That is, there is a smooth function h defined on M such that h(x) = f(x),
h(y) > f(y) for any y and hessx h has at least n+1 negative eigenvalues.

Use that m < 2·n and the described property to prove the following
analog of Morse lemma for f .

35
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(⇤) Given x /2 ◆(N), there is a neighborhood U 3 x such that the set

U� = { z 2 U | f(z) < f(x) }

is simply-connected.

Since M is simply-connected, any closed curve in ◆(N) can be con-
tracted by a disc, say s0 : D ! M .

Applying the claim (⇤), one can construct an f -decreasing homotopy
st that starts at s0 and ends in ◆(N); that is, there is a homotopy st : D !

! M , t 2 [0, 1] such that st(@D) ⇢ ◆(N) for any t and s1(D) ⇢ ◆(N). It
follows that ◆(N) is simply-connected.

Finally, assume that a and b are distinct points in N such that ◆(a) =
= ◆(b). If � is a path from a to b in N then the loop ◆�� is not contractible
in ◆(N). Therefore if ◆ : N ! M has a self-intersection, then the image
◆(N) is not simply-connected. Hence the result follows.

The statement was proved by Fuquan Fang, Sérgio Mendonça, and
Xiaochun Rong [85]. The main idea was discovered by Burkhard Wilking
[86].

Geodesic hypersurface
The totally geodesic embedding is defined before the previous problem.� Assume a compact connected positively-curved manifold M has a to-

tally geodesic embedded hypersurface. Show that either M or its double

covering is homeomorphic to the sphere.

If convex, then embedded

� Let M be a complete simply-connected Riemannian manifold with non-

positive curvature and dimension at least 3. Prove that any immersed

locally convex compact hypersurface ⌃ in M is embedded.

Let us summarize some statements about complete simply-connected
Riemannian manifolds with non-positive curvature.

By the Cartan–Hadamard theorem, for any point p 2 M the expo-
nential map exp

p
: Tp ! M is a diffeomorphism. In particular, M is

diffeomorphic to the Euclidean space of the same dimension. Moreover,
any geodesic in M is minimizing, and any two points in M are connected
by a unique minimizing geodesic,

Further, M is a CAT(0) space; that is, it satisfies a global angle com-
parison which we are about to describe. Let [xyz] be a triangle in M ;
that is, [xyz] is formed by three distinct points x, y, z pairwise connected
by geodesics. Consider its model triangle [x̃ỹz̃] in the Euclidean plane;
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that is, [x̃ỹz̃] has the same side lengths as [xyz]. Then each angle in [xyz]
cannot exceed the corresponding angle in [x̃ỹz̃]. This inequality can be
written as

]̃(y x

z
) > ][y x

z
],

where ][y x

z
] denotes the angle of the hinge [y x

z
] formed by two geodesics

[yx] and [yz] and ]̃(y x

z
) denotes the corresponding angle in the model

triangle [x̃ỹz̃].
From this comparison, it follows that any connected closed locally

convex sets in M is globally convex. In particular, if ⌃ is embedded then
it bounds a convex set.

Immersed ball⇤

� Prove that any immersed locally convex hypersurface ◆ : ⌃ # M in a

compact positively-curved manifold M of dimension m > 3 is the boundary

of an immersed ball. That is, there is an immersion of a closed ball

f : B̄m # M and a diffeomorphism h : ⌃! @B̄m
such that ◆ = f � h.

Minimal surface in the sphere

A smooth n-dimensional surface ⌃ in an m-dimensional Riemannian man-
ifold M is called minimal if it locally minimizes the n-dimensional area;
that is, sufficiently small regions of ⌃ do not admit area-decreasing defor-
mations with a fixed boundary.

The minimal surfaces can be also defined via the mean curvature vector
as follows. Let T = T⌃ and N = N⌃ denote the tangent and the normal
bundle respectively. Let s denote the second fundamental form of ⌃; it
is a quadratic from on T with values in N, see the remark after problem
“Hypercurve” below. Given an orthonormal basis (ei) in Tx, set

Hx =

X

i

s(ei, ei).

The vector Hx lies in the normal space Nx and does not depend on the
choice of orthonormal basis (ei). This vector Hx is called the mean cur-
vature vector at x 2 ⌃.

We say that ⌃ is minimal if H ⌘ 0.

� Let ⌃ be a closed n-dimensional minimal surface in the unit m-

dimensional sphere S
m

. Prove that voln ⌃ > voln S
n
.
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Hypercurve
The Riemann curvature tensor R can be viewed as an operator R on the
space of tangent bi-vectors

V2
T; it is uniquely defined by the identity

hR(X ^ Y ), V ^W i = hR(X,Y )V,W i.

The operator R :
V2

T !
V2

T is called the curvature operator and it
is said to be positive definite if hR('),'i > 0 for all non-zero bi-vector
' 2

V2
T.� Let Mm ,! R

m+2
be a closed smooth m-dimensional submanifold and

let g be the induced Riemannian metric on Mm
. Assume that sectional

curvature of g is positive. Prove that the curvature operator of g is positive

definite.

The second fundamental form for manifolds of arbitrary codimension
which we are about to describe might help to solve this problem.

Let M be a smooth submanifold in R
m. Given a point p 2 M , denote

by Tp and Np = T
?
p

the tangent and normal space of M at p. The second

fundamental form of M at p is defined by

s(X,Y ) = (rXY )
?,

where (rXY )
? a denotes the orthogonal projection of covariant derivative

rXY onto the normal bundle.
The curvature tensor of M can be found from the second fundamental

form using the following formula

hR(X,Y )V,W i = hs(X,W ), s(Y, V )i � hs(X,V ), s(Y,W )i,

which is a direct generalization of the formula for Gauss curvature of a
surface.

Horo-sphere
We say that a Riemannian manifold has negatively pinched sectional cur-
vature if its sectional curvatures at all points in all sectional directions lie
in an interval [�a2,�b2], for fixed constants a > b > 0.

Let M be a complete Riemannian manifold and � a ray in M ; that is,
� : [0,1) ! M is a minimizing unit-speed geodesic.

The Busemann function bus� : M ! R is defined by

bus�(p) = lim
t!1

(|p� �(t)|M � t) .

By the triangle inequality, the expression under the limit is non-increasing
in t; therefore the limit above is defined for any p.
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A horo-sphere in M is defined as a level set of a Busemann function
on M .

We say that a complete Riemannian manifold M has polynomial vol-

ume growth if, for some (and therefore any) p 2 M , we have

volB(p, r)M 6 C ·(rk + 1),

where B(p, r)M denotes the ball in M and C, k are constants.� Let M be a complete simply-connected manifold with negatively pinched

sectional curvature and ⌃ ⇢ M an horo-sphere in M . Show that ⌃ with

the induced intrinsic metric has polynomial volume growth.

Number of conjugate points
Recall that points p and q on a geodesic � are called conjugate if there
exists a non-zero Jacobi field along � that vanishes at p and q.� Let s : N ! M be a Riemannian submersion. Suppose N has non-

positive sectional curvature. Show that any point p in M has at most

k = dimN � dimM conjugate points on any geodesic � 3 p.

Minimal spheres
Recall that two subsets A and B in a metric space X are called equidistant

if the distance function distA : X ! R is constant on B and distB is
constant on A.

The minimal surfaces are defined on page 37.� Show that a 4-dimensional compact positively-curved Riemannian man-

ifold cannot contain an infinite number of mutually equidistant minimal

2-spheres.

Positive curvature and symmetry+

� Assume that S
1

acts isometrically on a closed 4-dimensional Riemann-

ian manifold with positive sectional curvature. Show that the action has

at most 3 isolated fixed points.

The following statement might be useful. If (M, g) is a Riemannian
manifold with sectional curvature >  that admits a continuous isometric
action of a compact group G, then the quotient space A = (M, g)/G is
an Alexandrov space with curvature > ; that is, the conclusion of the
Toponogov comparison theorem holds in A.

For more on Alexandrov geometry see [87].
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Energy minimizer
Let F be a smooth map from a closed Riemannian manifold M to a
Riemannian manifold N . The energy functional of F is defined by

E(F ) =

w

x2M

|dxF |
2.

We assume that
|dxF |

2
=

X

i,j

a2
i,j
,

where (ai,j) denote the components of the differential dxF written in the
orthonormal bases of the tangent spaces TxM and TF (x)N .� Show that the identity map on RP

m
is energy-minimizing in its ho-

motopy class. Here we assume that RP
m

is equipped with the canonical

metric.

Curvature against injectivity radius+

� Let (M, g) be a closed Riemannian m-dimensional manifold. Assume

average of sectional curvatures over all sectional directions of (M, g) is 1.

Show that the injectivity radius of (M, g) is at most ⇡.

Solutions to this and the previous problem use the fact that geodesic
flow on the tangent bundle to a Riemannian manifold preserves the volume
form; this is a corollary of Liouville’s theorem about phase volume.

Approximation of a quotient

� Let (M, g) be a compact Riemannian manifold and G a compact Lie

group acting by isometries on (M, g). Construct a sequence of metrics gn
on a fixed manifold N such that (N, gn) converges to the quotient space

(M, g)/G in the sense of Gromov–Hausdorff.

Polar points]

� Let M be a compact Riemannian manifold with sectional curvature at

least 1 and dimension at least 2. Prove that for any point p 2 M there is

a point p⇤ 2 M such that

|p� x|M + |x� p⇤|M 6 ⇡

for any x 2 M .
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Isometric section⇤

� Let M and W be compact Riemannian manifolds, dimW > dimM ,

and s : W ! M a Riemannian submersion. Assume that W has positive

sectional curvature. Show that s does not admit an isometric section; that

is, there is no isometric embedding ◆ : M ,! W such that s � ◆(p) = p for

any p 2 M .

Warped product
Let (M, g) and (N, h) be Riemannian manifolds and f a smooth positive
function defined on M . Consider the product manifold W = M ⇥ N .
Given a tangent vector X 2 T(p,q)W = TpM⇥TpN , denote by XM 2 TM
and XN 2 TN its projections. Let us equip W with the Riemannian
metric defined by

s(X,Y ) = g(XM , YM ) + f2
·h(XN , YN ).

The obtained Riemannian manifold (W, s) is called a warped product of
M and N with respect to f : M ! R; it can be written as

(W, g) = (N, h)⇥f (M, g).

� Let M be an oriented 3-dimensional Riemannian manifold with positive

scalar curvature and ⌃ ⇢ M an oriented smooth hypersurface that is area

minimizing in its homology class.

Show that there is a positive smooth function f : ⌃! R such that the

warped product S
1
⇥f ⌃ has positive scalar curvature; here ⌃ is equipped

with the Riemannian metric induced from M .

No approximation]

� Prove that if p 6= 2, then R
m

equipped with the metric induced by the `p-
norm cannot be a Gromov–Hausdorff limit of m-dimensional Riemannian

manifolds (Mn, gn) with Ricgn > C for a constant C.

Area of spheres

� Let M be a complete non-compact Riemannian manifold with non-

negative Ricci curvature and p 2 M . Show that there is " > 0 such that

area [@B(p, r)] > "

for all sufficiently large r.
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Flat coordinate planes

� Let g be a complete Riemannian metric on R
3

such that the coordinate

planes x = 0, y = 0, and z = 0 are flat and totally geodesic. Assume the

sectional curvature of g is either non-negative or non-positive. Show that

in both cases g is flat.

Two-convexity]

An open subset V with smooth boundary in the Euclidean space is called
two-convex if at most one principal curvature in the outward direction to
V is negative.

The two-convexity of V is equivalent to the following property. For
any plane ⇧ and any closed curve � in the intersection V \ ⇧, if � is
contactable in V then it is contactable in ⇧ \ V .� Let K be a closed set bounded by a smooth surface in R

4
. Assume that

K contains two coordinate planes

{(x, y, 0, 0) 2 R
4
} and {(0, 0, z, t) 2 R

4
}

in its interior and also belongs to the closed 1-neighborhood of these two

planes.

Show that the complement to K is not two-convex.

Convex lens+

� Let D and D0
be two smooth discs with a common boundary that bound

a convex set (a lens) L in a positively-curved 3-dimensional Riemannian

manifold M . Assume that the discs meet at a small angle.

L

D

D0

Show that the integral

w

D

k1 ·k2

is small; here k1 and k2 denote the principal curvatures

of D.

The expected solution uses the following relative version of the Bochner
formula. Let M be a Riemannian manifold with boundary @M . If
f : M ! R is a smooth function that vanishes on @M , then

w

M

�
|�f |2 � | hess f |2 � hRic(rf),rfi

�
=

w

@M

H ·|rf |2.

Here we denote by Ric the Ricci curvature of M and by H the mean
curvature of @M , we assume that H > 0 is the boundary is convex.
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Small-twist

� Show that any smooth closed manifold admits an immersion into the

unit ball in a Euclidean space of sufficiently large dimension with all its

normal curvatures less than
p
3.

Semisolutions

Geodesic hypersurface. Let ⌃ be the totally geodesic embedded hyper-
surface in the positively-curved manifold M . Without loss of generality,
we can assume that ⌃ is connected.1

The complement M \ ⌃ has one or two connected components. First
let us show that if the number of connected components is two, then M
is homeomorphic to a sphere.

By cutting M along ⌃ we get two manifolds with geodesic boundaries.
It is sufficient to show that each of them is homeomorphic to a Euclidean
ball.

Choose one of these manifolds; denote it by N . Denote by f : N !

! R the distance functions to the boundary @N . By the Riccati equation
hess f 6 0 at any smooth point, and for any point the same holds in the
barrier sense [defined on page 35]. It follows that f is concave.

Choose an increasing strictly concave function ' : R ! R. Note that
' � f is strictly concave in the interior of N .

Choose a compact subset K in the interior of N and smooth '�f in a
neighborhood of K keeping it concave. This can be done by applying the
smoothing theorem of Robert Greene and Hung-Hsi Wu [88, Theorem 2].

After the smoothing, the obtained strictly concave function, say h,
has a single critical point which is its maximum. In particular, by Morse
lemma, we get that if the set

N 0
s
= { x 2 N | h(x) > s }

is not empty and lies in K then it is diffeomorphic to a Euclidean ball.
For appropriately chosen set K and the smoothing h, the set N 0

s
can

be made arbitrarily close to N ; moreover, its boundary @N 0
s

can be made
C1-close to @N . It follows that N is diffeomorphic to a Euclidean ball.
This finishes the proof of the first case.

Now assume M \⌃ is connected. In this case, there is a double covering
M̃ of M that induces a double covering ⌃̃ of ⌃, so M̃ contains a geodesic
hypersurface ⌃̃ that divides M̃ into two connected components. From the

1In fact, by Frankel’s theorem [see page 50] ⌃ is connected.
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case which has already been considered, M̃ is homeomorphic to a sphere;
hence the second case follows.

The problem was suggested by Peter Petersen.

If convex, then embedded. Set

m = dim⌃ = dimM � 1.

Given a point p on ⌃, denote by pr the point at distance r from p
that lies on the geodesic starting at p in the outer normal direction to ⌃.
Note that for fixed r > 0, the points pr sweep an immersed locally convex
hypersurface which we denote by ⌃r.

p

pr

z
⌃

⌃r

Choose z 2 M . Denote by
d the maximal distance from z
to the points in ⌃. Note that
any point on ⌃r lies at a dis-
tance at least r � d from z.

By comparison,

][pr z

p
] 6 arcsin

d

r
.

In particular, for large r, each
infinite geodesic starting at z
intersects ⌃r transversally.

The space of geodesics
starting at z can be identified
with the sphere S

m. There-
fore the map that sends a point

x 2 ⌃r to a geodesic from z thru x induces a local diffeomorphism
'r : ⌃! S

m.
Since m > 2, the sphere Sm is simply-connected. Since ⌃ is connected,

the map 'r is a diffeomorphism. Therefore ⌃r is star-shaped with a center
at z. In particular, ⌃r is embedded. Since ⌃r is locally convex, it bounds
a convex region and is embedded.

Consider the set W of reals r > 0 such that ⌃r is embedded and bounds
a convex region. Note that W is open and closed in [0,1). Therefore
W = [0,1), and, in particular, ⌃0 = ⌃ is embedded.

The problem is due to Stephanie Alexander [89].

Immersed ball. Equip ⌃ with the induced intrinsic metric. Denote by
 the lower bound for principal curvatures of ⌃. Note that we can assume
that  > 0.

Choose a sufficiently small " = "(M,) > 0. Given p 2 ⌃, denote by
�(p) the "-ball in ⌃ centered at p. Consider the lift h̃p : �(p) ! Th(p)

along the exponential map exp
h(p) : Th(p) ! M . More precisely:
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1. Connect each point q 2 �(p) ⇢ ⌃ to p by a minimizing geodesic
path �q : [0, 1] ! ⌃

2. Consider the lifting �̃q in Th(p); that is, �̃q is the curve such that
�̃q(0) = 0 and exp

h(p) � �̃q(t) = �q(t) for each t 2 [0, 1].
3. Set h̃(q) = �̃q(1).
Show that all the hypersurfaces h̃p(�(p)) ⇢ Th(p) have principal cur-

vatures at least 

2 .
Use the same idea as in the solution of “Immersed surface” [page 23]

to show that one can fix " = "(M,) > 0 such that the restriction of
h̃p|�(p) is injective. Conclude that the restriction h|�(p) is injective for
any p 2 ⌃. (Here we use that m > 3.)

Now consider locally equidistant surfaces ⌃t in the inward direction
for small t. The principal curvatures of ⌃t remain at least  in the barrier
sense; that is, at any point p, the surface ⌃t can be supported by a smooth
surface with principal curvatures at least  at p. By the same argument
as above, any "-ball in ⌃t is embedded.

We get a one-parameter family of locally convex locally equidistant
surfaces ⌃t for t in the maximal interval [0, a], where the surface ⌃a

degenerates to a point, say p.
To construct the immersion @B̄m # M , take the point p as the image

of the center B̄m and take the surfaces ⌃t as the restrictions of the em-
bedding to the spheres; the existence of the immersion follows from the
Morse lemma.

As you see from the picture, the analogous state-
ment does not hold in the two-dimensional case.

The proof presented above was indicated in the
lectures of Mikhael Gromov [58] and written rigor-
ously by Jost Eschenburg [90].

A variation of Gromov’s proof was obtained
independently by Ben Andrews [91]. Instead of
equidistant deformation, he uses the so-called in-

verse mean curvature flow ; this way one has to per-
form some calculations to show that convexity survives in the flow, but
one does not have to worry about non-smoothness of the hypersurfaces ⌃t.

Minimal surface in the sphere. Choose a geodesic n-dimensional
sphere ⌃̃ = S

n
⇢ S

m.
Denote by Ur and Ũr the closed tubular r-neighborhood of ⌃ and ⌃̃

in S
m respectively.
Note that

(⇤) U⇡
2
= Ũ⇡

2
= S

m.
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Indeed, clearly Ũ⇡
2
= S

m. If U⇡
2
6= S

m, fix x 2 S
m
\ Ur. Choose a closest

point y 2 ⌃ to x. Since r = |x � y|Sm > ⇡

2 the r-sphere Sr ⇢ S
m with

center x is concave. Note that Sr supports ⌃ at y; in particular, the mean
curvature vector of ⌃ at y cannot vanish � a contradiction.

By the Riccati equation,

Hr(x) > H̃r

for any x 2 @Ur, where Hr(x) denotes the mean curvature of @Ur at a
point x and H̃r is the mean curvature of @Ũr, the latter is the same at all
points.

Set

a(r) = volm�1 @Ur, ã(r) = volm�1 @Ũr,

v(r) = volm Ur, ṽ(r) = volm Ũr.

By the coarea formula,

d

dr
v(r)

a.e.
== a(r), d

dr
ṽ(r) = ã(r).

Note that

d

dr
a(r) 6

w

x2@Ur

Hr(x) 6

6 a(r)·H̃r,

and

d

dr
ã(r) = ã(r)·H̃r.

It follows that

v00(r)

v(r)
6 ṽ00(r)

ṽ(r)

for almost all r. Therefore

v(r) 6 area⌃

area ⌃̃
·ṽ(r)

for any r > 0.
According to (⇤),

v(⇡2 ) = ṽ(⇡2 ) = vol S
m.

Hence the result follows.
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This problem is the geometric lemma in the proof given by Frederick
Almgren of his isoperimetric inequality [92]. The argument is similar
to the proof of isoperimetric inequality for manifolds with positive Ricci
curvature given by Mikhael Gromov [93].

Hypercurve. Choose p 2 M . Denote by s the second fundamental form
of M at p. Recall that s is a symmetric bilinear form on the tangent space
TpM of M with values in the normal space NpM to M , see page 38.

By the Gauss formula

hR(X,Y )Y,Xi = hs(X,X), s(Y, Y )i � hs(X,Y ), s(X,Y )i.

Since the sectional curvature of M is positive, we get

(⇤) hs(X,X), s(Y, Y )i > 0

for any pair of non-zero vectors X,Y 2 TpM .
The normal space NpM is two-dimensional. By (⇤) there is an or-

thonormal basis e1, e2 in NpM such that the real-valued quadratic forms

s1(X,X) = hs(X,X), e1i, s2(X,X) = hs(X,X), e2i

are positive definite.
Note that the curvature operators R1 and R2 are defined by the for-

mula

Ri(X ^ Y ), V ^W i = si(X,W )·si(Y, V )� si(X,V )·si(Y,W )

are positive. Finally, note that R = R1 +R2 is the curvature operator of
M at p.

The problem is due to Alan Weinstein [94]. Note that from [95]/[96] it
follows that the universal covering of M is homeomorphic/diffeomorphic
to a standard sphere.

Horo-sphere. Set m = dim⌃ = dimM � 1.
Let bus: M ! R be the Busemann function such that

⌃ = bus
�1

{0}.

Set ⌃r = bus
�1

{r}, so ⌃0 = ⌃.
Let us equip each ⌃r with the induced Riemannian metric. Note that

all ⌃r have bounded curvature. In particular, the unit balls in ⌃r have
volume bounded above by a universal constant, say v0.

Given x 2 ⌃, denote by �x the unit-speed geodesic such that �x(0) = x
and bus(�x(t)) = t for any t. Consider the map 'r : ⌃ ! ⌃r defined by
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'r : x 7! �x(r). In other words, 'r is the closest point projection from ⌃

to ⌃r.
Notice that 'r is a bi-Lipschitz map with the Lipschitz constants ea·r

and eb·r. In particular, the ball of radius R in ⌃ is mapped by 'r to a
ball of radius ea·r ·R in ⌃r. Therefore

volm B(x,R)⌃ 6 em·b·r
· volm B('r(x), e

a·r
·R)⌃r

for all R, r > 0. Taking R = e�a·r, we get

volm B(x,R)⌃ 6 v0 ·R
m· b

a

for any R > 1. Hence the statement follows.

The problem was suggested by Vitali Kapovitch.
There are examples of horo-spheres as above with a degree of polyno-

mial growth higher than m. For example, consider the horo-sphere ⌃ in
the complex hyperbolic space of real dimension 4. Clearly, m = dim⌃ =

3, but the degree of its volume growth is 4.
In this case, ⌃ is isometric to the Heisenberg group.2 It is instructive

to show that any such metric has volume growth of degree 4.

Number of conjugate points. Choose a geodesic � in M and a point
p 2 �. Note that � can be lifted to a horizontal geodesic �̄ in N . That is,
� = s � �̄ and �̄ is perpendicular to the fibers of s (in particular, � and �̄
have equal speeds).

Observe that each conjugate point of p on � corresponds to a focal point

on �̄ to the fiber F over p in N ; that is, �̄ lies in a family of geodesics
�̄t that are perpendicular to N such that the corresponding Jacobi field
along �̄ vanish at q.

Note that F has dimension k = dimN � dimM . It remains to prove
that any smooth k-dimensional submanifold F in a complete nonpositively-
curved manifold N has at most k focal points on any geodesic �̄ that is
perpendicular to F .

The problem is inspired by the paper of Alexander Lytchak [97]. Ap-
plying it together with the Poincaré recurrence theorem leads to a solution
of the following problem.� Let s : N ! M be a Riemannian submersion. Suppose N has nonposi-

tive sectional curvature and M is compact. Show that M has no conjugate

points.

2
Heisenberg group is the group of 3⇥ 3 upper triangular matrices of the form

0

@
1 a c
0 1 b
0 0 1

1

A

under the operation of matrix multiplication.
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In fact, no compact negatively curved manifold N admits a nontrivial
Riemannian submersion s : N ! M [see Theorem F in 98].

Minimal spheres. Assuming the contrary, we can choose a pair of
sufficiently close minimal spheres ⌃ and ⌃0 in the 4-dimensional manifold
M ; we can assume that the distance a between ⌃ and ⌃0 is strictly smaller
than the injectivity radius of the manifold. Note that in this case, there
is a unique bijection ⌃ ! ⌃

0, denoted by p 7! p0 such that the distance
|p� p0|M = a for any p 2 ⌃.

Let ◆p : Tp ! Tp0 be the parallel translation along the (necessarily
unique) minimizing geodesic [pp0]. Note that there is a pair (p, p0) such
that ◆p(Tp⌃) = Tp0⌃

0. Indeed, if this is not the case, then ◆p(Tp⌃)\Tp0⌃
0

forms a continuous line distribution over ⌃0. Since ⌃0 is a two-sphere, the
latter contradicts the hairy ball theorem.

Consider pairs of unit-speed geodesics ↵ and ↵0 in ⌃ and ⌃0 that start
at p and p0 respectively and go in parallel directions, say ⌫ and ⌫0. Set
`⌫(t) = |↵(t)� ↵0

(t)|.
Use the second variation formula together with the lower bound on

Ricci curvature to show that `00
⌫
(0) has a negative average for all tangent

directions ⌫ to ⌃ at p. In particular, `00
⌫
(0) < 0 for a vector ⌫ as above.

For the corresponding pair ↵ and ↵0, it follows that there are points
v = ↵(") 2 ⌃ near p and v0 = ↵0

(") 2 ⌃0 near p0 such that

|v � v0| < |p� p0|

� a contradiction.

Likely, any compact positively-curved 4-dimensional manifold cannot
contain a pair of equidistant spheres. The argument above implies that
the distance between such a pair has to exceed the injectivity radius of
the manifold.

The problem was suggested by Dmitri Burago. Here is a short list
of classical problems which use the second variation formula in a similar
fashion:� Any compact even-dimensional orientable manifold with positive sec-

tional curvature is simply-connected.

This is called Synge’s lemma [99].� Any two compact minimal hypersurfaces in a Riemannian manifold

with positive Ricci curvature must intersect.

� Let ⌃1 and ⌃2 be two compact geodesic submanifolds in a manifold

with positive sectional curvature M and

dim⌃1 + dim⌃2 > dimM.
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Then ⌃1 \ ⌃2 6= ?.

These two statements have been proved by Theodore Frankel [100].� Let (M, g) be a closed Riemannian manifold with negative Ricci cur-

vature. Prove that (M, g) does not admit an isometric S
1
-action.

This is a theorem of Salomon Bochner [101].
The problem “Geodesic immersion” [page 35] can be considered as

further development of the idea.

Positive curvature and symmetry. Let M be a 4-dimensional Rie-
mannian manifold with isometric S

1-action. Consider the quotient space
X = M/S1. Note that X is a positively-curved 3-dimensional Alexandrov
space. In particular, the angle ][x y

z
] between any two geodesics [xy] and

[xz] is defined. Further, for any non-degenerate triangle [xyz] formed by
the minimizing geodesics [xy], [yz], and [zx] in X we have

(⇤) ][x y

z
] + ][y z

x
] + ][z x

y
] > ⇡.

Assume that p 2 X corresponds to a fixed point p̄ 2 M of the S
1-

action. Each direction of a geodesic starting at p in X corresponds to an
S
1-orbit of the induced isometric action S

1
y S

3 on the sphere of unit
vectors at p̄. Any such action is conjugate to the action S

1
p,q

y S
3
⇢ C

2

induced by complex matrices
�
z
p 0
0 z

q

�
with |z| = 1 and relatively prime

positive integers p, q. The possible quotient spaces ⌃p,q = S
3/S1

p,q
have

diameter ⇡

2 and perimeter of any triangle in ⌃p,q is at most ⇡; this is
straightforward to check but requires some work.

Therefore for any three geodesics [px], [py], and [pz] in X we have

(⇤⇤) ][p x

y
] + ][p y

z
] + ][p z

x
] 6 ⇡.

and

( ***) ][p x

y
], ][p y

z
], ][p z

x
] 6 ⇡

2 .

Arguing by contradiction, assume that there are 4 fixed points q1, q2,
q3, and q4. Connect each pair by a minimizing geodesic [qiqj ].

Denote by ! the sum of all 12 angles of the type ][qi qjqk ]. By ( ***),
each triangle [qiqjqk] is non-degenerate. Therefore by (⇤), we have

! > 4·⇡.

On the other hand, applying (⇤⇤) at each vertex qi, we have

! 6 4·⇡

� a contradiction.
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The problem is due to Wu-Yi Hsiang and Bruce Kleiner [102]. The
connection of this proof to Alexandrov geometry was noticed by Karsten
Grove [103]. An interesting new twist of the idea is given by Karsten
Grove and Burkhard Wilking [104].

Energy minimizer. Denote by U the unit tangent bundle over RP
m

and by L the space of projective lines in ` : RP1
! RP

m. The spaces U

and L have dimension 2·m� 1 and 2·(m� 1) respectively.
According to Liouville’s theorem about phase volume, the identity

w

v2U

f(v) =
w

`2L

w

t2RP1

f(`0(t))

holds for any integrable function f : U ! R.
Let F : RP

m
! RP

m be a smooth map. Note that up to a multiplica-
tive constant, the energy of F can be expressed the following way

w

v2U

|dF (v)|2 =

w

`2L

w

t2RP1

|[d(F � `)](t)|2.

Notice that any noncontractible curve in RP
m has length at least ⇡.

Therefore, by Bunyakovsky inequality, we get

w

t2RP1

|[d(F � `)](t)|2 > 1
⇡
·

0

@
w

t2RP1

|[d(F � `)](t)|

1

A
2

=

=
1
⇡
·(lengthF � `)2 >

> ⇡.

for any line ` : RP1
! RP

m. Hence the result follows.

The problem is due to Christopher Croke [105]. He uses the same
idea to show that the identity map on CP

m is energy-minimizing in its
homotopy class. For S

m, an analogous statement does not hold if m > 3.
In fact, if a closed Riemannian manifold M has dimension at least 3 and
⇡1M = ⇡2M = 0, then the identity map on M is homotopic to a map
with arbitrarily small energy; the latter was shown by Brian White [106].

The same idea is used to prove the so-called Loewner’s inequality [107].

� Let g be a Riemannian metric on RP
m

that is conformally equivalent

to the canonical metric g0. Assume that any noncontractible curve in

(RP
m, g) has length at least ⇡. Then

vol(RP
m, g) > vol(RP

m, g0).
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A more advanced application is the sharp isoperimetric inequality for
4-dimensional Hadamard manifolds proved by Christopher Croke [see 108
and also 109].

Curvature against injectivity radius. We will show that if the in-
jectivity radius of the manifold (M, g) is at least ⇡, then the average of
sectional curvatures on (M, g) is at most 1. This is equivalent to the
problem.

Choose a point p 2 M and two orthonormal vectors U, V 2 TpM .
Consider the geodesic � in M such that �0(0) = U .

Set Ut = �0(t) 2 T�(t), and let Vt 2 T�(t) be the parallel translation
of V = V0 along �.

Consider the field Wt = sin t·Vt on �. Set

�⌧ (t) = exp
�(t)(⌧ ·Wt),

`(⌧) = length(�⌧ |[0,⇡]),

q(U, V ) = `00(0).

Note that

(⇤) q(U, V ) =

⇡w

0

[(cos t)2 �K(Ut, Vt)·(sin t)
2
]·dt,

where K(U, V ) is the sectional curvature in the direction spanned by U
and V .

Since any geodesics of length ⇡ is minimizing, we get q(U, V ) > 0 for
any pair of orthonormal vectors U and V . It follows that the average
value of the right-hand side in (⇤) is non-negative.

By Liouville’s theorem about phase volume, while taking the average
of (⇤), we can switch the order of integrals; therefore

0 6 ⇡

2 ·(1� K̄),

where K̄ denotes the average of sectional curvatures on (M, g). Hence the
result follows.

The problem illustrates the idea of Eberhard Hopf [110] which was
developed further by Leon Green [111]. Hopf used it to show that a
metric on 2-dimensional torus without conjugate points must be flat and
Green showed that the average of sectional curvature on a closed manifold
without conjugate points cannot be positive. For more on the subject see
the paper of Mikhael Gromov [112].

Approximation of a quotient. The proof will use that for any Rie-
mannian submersion s : M ! N the lower bound on sectional curvature
of M can non exceed the lower bound on sectional curvature of N .
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This statement follows from O’Nail’s formula [84, Theorem 3.20] which
gives the following relation between sectional curvatures of M ad N

KM (X,Y ) = KN (X̄, Ȳ ) +
3
4 |[X̄, Ȳ ]

V
|
2,

where X,Y are orthonormal vector fields on N , X̄, Ȳ their horizontal
lifts to M , [⇤, ⇤] is the Lie bracket and ⇤

V is the projection to the vertical
distribution of the submersion. Indeed, since 3

4 |[X̄, Ȳ ]
V
|
2 > 0, we have

KM (X,Y ) > KN (X̄, Ȳ ).

Note that G admits an embedding into a compact connected Lie group
H; in fact, we can assume that H = SO(n), for sufficiently large n.

Suppose that the curvature of (M, g) is bounded below by .
The bi-invariant metric h on H is non-negatively curved. Therefore

for any positive integer n the product (H, 1
n
·h)⇥ (M, g) is a Riemannian

manifold with curvature bounded below by .
The diagonal action of G on (H, 1

n
·h) ⇥ (M, g) is isometric and free.

Therefore the quotient (H, 1
n
·h) ⇥ (M, g)/G is a Riemannian manifold,

say (N, gn). Note that the quotient map (H, 1
n
·h) ⇥ (M, g) ! (N, gn)

is a Riemannian submersion. Therefore (N, gn) has sectional curvature
bounded below by .

It remains to observe that the spaces (N, gn) converge to (M, g)/G as
n ! 1.

The used construction is called Cheeger’s trick. The earliest use of
this trick I found in [113]; it was used there to show that Berger’s spheres
have positive curvature. This trick is used in the construction of most
of the known examples of positively and non-negatively curved manifolds
[114–118].

The quotient space (M, g)/G has a finite dimension and its curvature
is bounded below in the sense of Alexandrov. It is expected that not all
finite-dimensional Alexandrov spaces admit approximation by Riemann-
ian manifolds with curvature bounded below [some partial results are
discussed in 119, 120].

Polar points. Choose a unit-speed geodesic � that starts at p; that is,
�(0) = p. Apply the Toponogov comparison to show that p⇤ = �(⇡) is a
solution.

Alternative proof. Assume the contrary; that is, for any x 2 M there is a
point x0 such that

|x� x0
|M + |p� x0

|M > ⇡.

Given x 2 M , denote by f(x) a point that maximizes the following
sum:

|x� f(x)|M + |p� f(x)|M .
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Show that f is uniquely defined and continuous.
Choose sufficiently small " > 0. Prove that the set W" = M \ B(p, ")

is homeomorphic to a ball and the map f sends W" into itself.
By Brouwer’s fixed-point theorem, x = f(x) for some x. In this case,

|x� f(x)|M + |p� f(x)|M = |p� x|M 6
6 ⇡

� a contradiction.

The problem is due to Anatoliy Milka [121].

Isometric section. Arguing by contradiction, assume there is an isomet-
ric section ◆ : M ! W . It makes it possible to treat M as a submanifold
in W .

Given p 2 M , denote by N
1
p

the unit normal space to M at p. Given
v 2 N

1
p

and a real number k, set

pk·v = s � exp
p
(k·v).

Note that

(⇤) p0·v = p for any p 2 M and v 2 N
1
p
.

Choose sufficiently small � > 0. By Rauch comparison [84, Corollary
1.36], if w 2 N

1
q

is the parallel translation of v 2 N
1
q

along a minimizing
geodesic from p to q in M , then

(⇤⇤) |pk·v � qk·w|M < |p� q|M

assuming that |k| 6 �. The same comparison implies that

( ***) |pk·v � qk
0 ·w

|
2
M

< |p� q|2
M

+ (k � k0)2

assuming that |k|, |k0| 6 �.
Choose p and v 2 N

1
p

so that r = |p�p� ·v| takes the maximal possible
value. From (⇤⇤) it follows that r > 0.

Let � be the extension of the unit-speed minimizing geodesic from p� ·v

to p; denote by vt the parallel translation of v to �(t) along �.
We can choose the parameter of � so that p = �(0), p� ·v = �(�r). Set

pn = �(n·r), so p = p0 and p� ·v = p�1. Choose a large integer N and set
wn = � ·(1� n

N
)·vn·r, qn = pwn

n
, xn = exp

pn
(wn), and qn = pwn

n
= s(xn).

By ( ***), there is a constant C independent of N such that

|qk � qk+1| < r + C

N2 ·�
2.
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p0 p1 p2 p3 p4q0 q1 q2 q3 q4 . . .
M

x0 x1 x2 x3 x4

Therefore
|qk+1 � pk+1| > |qk � pk|�

C

N2 ·�
2.

By induction, we get

|qN � pN | > r � C

N
·�2.

Since N is large we get
|qN � pN | > 0.

Note that wN = 0; therefore by (⇤), we get qN = p0
N

= pN � a contra-
diction.

This is the core of Perelman’s solution of the Soul conjecture [122].

Warped product. Given x 2 ⌃, denote by ⌫x the normal vector to ⌃
at x that agrees with the orientations of ⌃ and M . Denote by x the
non-negative principal curvature of ⌃ at x; since ⌃ is minimal the other
principal curvature has to be �x.

Consider the warped product W = S
1
⇥f ⌃ for a positive smooth

function f : ⌃ ! R. Assume that a point y 2 W projects to a point
x 2 ⌃. Straightforward computations show that

ScW (y) = Sc⌃(x)� 2·
�f(x)

f(x)
=

= ScM (x)� 2·Ric(⌫x)� 2·2
x
� 2·

�f(x)

f(x)
,

where Sc and Ric denote the scalar and Ricci curvature respectively.
Consider linear operator L on the space of smooth functions on ⌃

defined by

(Lf)(x) = �[Ric(⌫x) + 2
x
]·f(x)� (�f)(x).

It is sufficient to find a smooth function f on ⌃ such that

(⇤) f(x) > 0 and (Lf)(x) > 0
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for any x 2 ⌃.
Given a smooth function f : ⌃! R, extend the field f(x)·⌫x on ⌃ to

a smooth field, say v, on whole M . Denote by ◆t the flow along v for time
t and set ⌃t = ◆t(⌃).

Denote by Ht(x) the mean curvature of ⌃t at ◆t(x). Note that the
value (Lf)(x) is the derivative of the function t 7! Ht(x) at t = 0.

Therefore the condition (⇤) means that we can push ⌃ into one of
its sides so that its mean curvature does not increase in the first order.
Since ⌃ is area-minimizing, such push can be obtained by increasing the
pressure on one side of ⌃. (Read further if you are not convinced.)

Formal end of proof. Denote by �(f) the second variation of area of ⌃t;
that is, consider the area function a(t) = area⌃t and set �(f) = a00(0).
Direct calculations show that

�(f) =
w

x2⌃

�
�[Ric(⌫x) + 2

x
]·f2

(x) + |rf(x)|2
�
=

=

w

x2⌃

(Lf)(x)·f(x).

Since ⌃ is area-minimizing we get

(⇤⇤) �(f) > 0

for any f .
Choose a function f that minimize �(f) for all functions such thatr

x2⌃ f2
(x) = 1. Note that f is an eigenfunction for the linear operator

L; in particular, f is smooth. Denote by � the eigenvalue of f ; by (⇤⇤),
� > 0.

Show that f(x) > 0 at any x. Since Lf = �·f , the inequalities (⇤)

follow.

The problem is due to Mikhael Gromov and Blaine Lawson [123].
Earlier, in [124], Shing-Tung Yau and Richard Schoen showed that the
same assumptions imply the existence of a conformal factor on ⌃ that
makes it positively-curved. Both statements are used the same way to
prove that T

3 does not admit a metric with positive scalar curvature.
Both statements admit straightforward generalization to higher di-

mensions and they can be used to show the non-existence of a metric with
positive scalar curvature on T

m with m 6 7. For m = 8, the proof stops
working since in this dimension area-minimizing hypersurfaces might have
singularities. For example, any domain in the cone in R

8 defined by the
identity

x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8
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is area-minimizing among the hypersurfaces with the same boundary.

No approximation. Choose an increasing function ' : (0, r) ! R such
that

'00
+ (n� 1)·('0

)
2
+ C = 0.

If Ricgn > C, then the function x 7! '(|q � x|gn) is subharmonic.
Therefore for an arbitrary array of points qi and positive reals �i the
function fn : Mn ! R defined by the formula

f(x) =
X

i

�i ·'(|qi � x|M )

is subharmonic. In particular, fn does not have a local minimum in Mn.
Passing to the limit as n ! 1, we get that any function f : Rm

! R

of the form
f(x) =

X

i

�i ·'(|qi � x|`p)

does not have a local minimum in R
m.

Let ei be the standard basis in R
m. If p < 2, consider the sum

f(x) =
X

'(|q � x|`p),

where q = ±"·ei for all signs and i’s. Straightforward calculations show
that if " > 0 is small, then f has a strict local minimum at 0.

If p > 2, one has to take the same sum for p =
P

i
±"·ei for all choices

of signs. In both cases, we arrive at a contradiction.

The argument given here is close to the proof of Abresch–Gromoll
inequality [125]. The solution admits a straightforward generalization
which implies that if an m-dimensional Finsler manifold F is a Gromov–
Hausdorff limit of m-dimensional Riemannian manifolds with uniform
lower bound on Ricci curvature, then F has to be Riemannian.

An alternative solution to this problem can be built on the almost
splitting theorem proved by Jeff Cheeger and Tobias Colding [126].

Area of spheres. Fix r0 > 0. Given r > r0, choose a point q on the
distance 2·r from p.

ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp q

SNote that any minimizing geodesic from q
to a point in B = B(p, r0) has to cross S =

= @B(p, r). The statement follows since

volB 6 Cm ·r0 · areaS,

where Cm is a constant depending only on the
dimension m = dimM . This volume comparison inequality can be proved
along the same lines as the Bishop–Gromov inequality.
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Applying the coarea formula, we see that the volume growth of M
is at least linear; in particular, M has infinite volume. The latter was
proved independently by Eugenio Calabi and Shing-Tung Yau [127, 128].

Flat coordinate planes. Choose " > 0 such that there is a unique
geodesic between any two points at distance < " from the origin of R3.

Consider three points a, b, and c on the coordinate lines that are
"-close to the origin. The following observation is the key to the proof.

(⇤) There is a solid flat geodesic triangle in (R
3, g) with vertices at a, b,

and c.

Since the coordinate planes are totally geodesic, the parallel transla-
tion along a coordinate line preserves the directions tangent to a coor-
dinate plane. Since the parallel translation preserves the angles between
vectors, the angles between coordinate planes in (R

3, g) are constant.
It follows that the angles of the triangle [abc] coincide with its model

angles, that is, the angles in the plane triangle with the same sides.
Both curvature conditions imply that the triangle [abc] bounds a solid

flat geodesic triangle in (R
3, g).

Use the family of constructed flat triangles to show that at any x point
in the "

10 -neighborhood of the origin the sectional curvature vanishes in
an open set of sectional directions. The latter implies that the curvature
is identically zero in this neighborhood.

Move the origin and apply the same argument locally. This way we
get that the curvature is identically zero everywhere.

This problem is based on a lemma discovered by Sergei Buyalo [Lemma
5.8 in 129; see also 130 and 131].

Two-convexity. Morse-style solution. Choose (x, y, z, t)-coordinates
in R

4.
Consider a generic linear function ` : R4

! R that is close to the sum
of coordinates x+y+z+ t. Note that ` has non-degenerate critical points
on @K and all its critical values are different.

For each s consider the set

Ws =
�
w 2 R

4
\K

�� `(w) < s
 
.

Note that W�1000 contains a closed curve, say ↵, that is contactable in
R

4
\K, but not constructible in W�1000.
Set s0 to be the infimum of the values s such that the ↵ is contactable

in Ws.
Note that s0 is a critical value of ` on @K; denote by p0 the corre-

sponding critical point. By 2-convexity of R
4
\ K, the index of p0 has

to be at most 1. On the other hand, a disc that contracts ↵ cannot
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be moved lower s0. Therefore the index of p0 has to be at least 2 � a
contradiction.

Alexandrov-style proof. Assume that the complement to K is two-convex.
Note that two-convexity is preserved under linear transformation. Ap-

ply a linear transformation of R4 that makes the coordinate planes ⇧1 and
⇧2 not orthogonal.

According to the main result in [132], W = R
4
\ (IntK) has non-

positive curvature in the sense of Alexandrov. In particular, the universal
metric covering W̃ of W is a CAT(0) space.

By rescaling W̃ and passing to the limit we obtain that the universal
Riemannian covering Z of R4 that branches in the planes ⇧1 and ⇧2 is a
CAT(0) space.

Note that Z is isometric to the Euclidean cone over universal covering
⌃ of S3 branching in two great circles �i = S

3
\⇧i that are not orthogonal.

The shortest path in S
3 between �1 and �2 traveled 4 times back and forth

is shorter than 2·⇡ and it lifts to a closed geodesic in ⌃. It follows that
⌃ is not CAT(1) and therefore Z is not CAT(0) � a contradiction.

The Morse-style proof is based on an idea of Mikhael Gromov [see §½
in 58], where two-convexity was introduced.

Note that the 1-neighborhood of these two planes has two-convex com-
plement W in the sense of the second definition; that is, if a closed curve
� lies in the plane ⇧ and is contactable in W , then it is contactable in
⇧ \ W . Clearly, the boundary of this neighborhood is not smooth and
as it follows from the problem, it cannot be smoothed in the class of
two-convex sets.

Two-convexity also shows up in comparison geometry � the maximal
open flat sets in the manifolds of nonnegative or nonpositive curvature
are two-convex [131].

Convex lens. Before going into the proof, let us describe a straightfor-
ward idea that does not work.

By the Gauss formula, we get that
w

D

k1 ·k2 6
w

D

K,

where K denotes the intrinsic curvature of D. Therefore it would be
sufficient to show that the right-hand side is small; however, the integralr
D
K might be large for an arbitrarily small angle between the discs; for

example, if M = S
3 it might be arbitrarily close to 2·⇡.

Denote by " the maximal angle between the discs, we can assume that
" < ⇡

2 .
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Note that the function h = distD0 is convex in L. Moreover, the
gradient rxh points outside of L for any x 2 D.

Consider the restriction f = h|D. Note that f is a concave function
that vanishes on @D.

Assume that f is smooth. Since the discs are meeting at angle at most
" < ⇡

2 , we have that |rf | 6 sin " and

(hess f)(v, v) + cos "·s(v, v) 6 0,

where s denotes the second fundamental form of D in M . It follows that

k1 ·k2 = det s 6
6 1

cos2 "
· det(hess f) =

=
1

2· cos2 "
·
�
|�f |2 � | hess f |2

�
.

Applying the Bochner formula for f , we get that
w

D

�
|�f |2 � | hess f |2 �K ·|rf |2

�
=

w

@D

·|rf |2,

where K and  denotes the curvature of D and geodesic curvature of @D
in D respectively. By the Gauss–Bonnet formula, we get that

w

D

K +

w

@D

 = 2·⇡.

Therefore w

D

k1 ·k2 6 sin "

cos2 "
·⇡.

If f is not smooth, then one can smooth it using Greene–Wu con-
struction [88, Theorem 2] and repeat the above argument for the obtained
function.

This estimate was used by Nina Lebedeva and the author [133]. For
classical applications of Bochner’s formula including the vanishing theo-
rems and estimates for eigenvalues of Laplacian see [134, II §8].

Small-twist. Given a positive integer s, consider the Clifford torus

T
s

Cl =
1p
s
· S

1
⇥ · · ·⇥ S

1
| {z }

s times

⇢ S
2·s�1

⇢ R
2·s.

Note that the normal curvatures of Ts

Cl lie in the range from 1 to
p
s, and

T
s

Cl comes with a flat metric.
Show that given a positive integer n, one can choose large s = s(n) so

that T
s

Cl contains a geodesic n-dimensional subtorus T
n with all normal
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curvatures identically equal to
q
3·

n

n+2 ; here we consider T
n as a sub-

manifold in R
2·s. (For example, s(2) = 3; in this case, T2 is a subtorus

perpendicular to the main diagonal in T
3
Cl.)

Now, choose a closed smooth manifold M . By the Whitney embed-
ding theorem, there is a smooth embedding M ,! R

n for n > 2· dimM .
Applying rescaling we can assume that normal curvatures of this embed-
ding are arbitrarily small; we need it to be smaller than

p
3 �

q
3·

n

n+2 .
Composing this embedding with the natural length-preserving covering
map R

n
! T

n, we get the needed immersion of ◆ : M ! R
2·s.

This construction was discovered by Mikhael Gromov [135, 2.A]. In
fact, the bound

q
3·

n

n+2 is optimal [136]. The immersion ◆ can be easily
upgraded to embedding. Applying the Nash embedding theorem instead
of the Whitney embedding theorem, one gets that the induced metric on
M ,! R

n is proportional to any given Riemannian metric g on M .
Here is a closely related problem.� Show that any n-dimensional submanifold in S

q
with normal curvatures

less than
1p
3

is diffeomorphic to S
n
.

Note that Veronese embedding RP
2 ,! S

5 has normal curvatures ex-
actly 1p

3
in all directions. Therefore the 1p

3
bound is optimal; see also

[137].



Chapter 4

Curvature-free differential
geometry

The reader should be familiar with the notions of smooth manifolds, Rie-
mannian metrics, and symplectic forms.

Distant involution

� Construct a Riemannian metric g on S
3

and an involution ◆ : S3 ! S
3

such that vol(S
3, g) is arbitrarily small and

|x� ◆(x)|g > 1

for any x 2 S
3
.

Semisolution. Given " > 0, construct a disk � in the plane with

length @� < 10 and area� < "

that admits a continuous involution ◆ such that

|◆(x)� x| > 1

for any x 2 @�.
An example of � can be guessed from the picture;

the involution ◆ makes a length preserving half turn of
its boundary @�.

Take the product �⇥� ⇢ R
4; it is homeomorphic to

the 4-ball. Note that

vol3[@(�⇥�)] = 2· area�· length @� < 20·".

62
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The boundary @(�⇥�) is homeomorphic to S
3 and the restriction of the

involution (x, y) 7! (◆(x), ◆(y)) has the needed property.
All we have to do now is to smooth @(�⇥�) a little bit.

This example is given by Christopher Croke [138]. Note that according
to Gromov’s systolic inequality [107], the involution ◆ above cannot be
made isometric.

The following problem states that a similar construction is not possible
for S

2.

Another distant involution

� Given x 2 S
2
, denote by x0

its antipodal point. Suppose that g is a

Riemannian metric on S
2

such that

|x� x0
|g > 1

for any x 2 S
2
. Show that the area of (S

2, g) is bounded below by a fixed

positive constant.

The expected solution uses Besicovitch inequality described in the next
problem.

Besicovitch inequality

� Let g be a Riemannian metric on an m-dimensional cube Q such that

any curve connecting opposite faces has length at least 1. Prove that

vol(Q, g) > 1,

and the equality holds if and only if (Q, g) is isometric to the unit cube.

Minimal foliation+

Minimal surfaces in Riemannian manifolds are defined on page 37.� Consider the product of spheres S
2
⇥ S

2
equipped with a Riemannian

metric g that is C1
-close to the product metric. Prove that there is a

conformally equivalent metric �·g and a re-parametrization of S
2
⇥ S

2

such that for any x, y 2 S
2
, the spheres {x}⇥S

2
and S

2
⇥{y} are minimal

surfaces in (S
2
⇥ S

2,�·g).

The expected solution requires pseudo-holomorphic curves introduced
by Mikhael Gromov [139].
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Volume and convexity+

A function f defined on a Riemannian manifold is called convex if, for
any geodesic �, the composition f � � is a convex real-to-real function.� Let M be a complete Riemannian manifold that admits a non-constant

convex function. Prove that M has infinite volume.

The expected solution uses Liouville’s theorem about phase volume.
It implies in particular, that the geodesic flow on the unit tangent bundle
of a Riemannian manifold preserves the volume.

Sasaki metric
Let (M, g) be a Riemannian manifold. The Sasaki metric is a natural
choice of Riemannian metric ĝ on the total space of the tangent bundle
⌧ : TM ! M . It is uniquely defined by the following properties:

⇧ The map ⌧ : (TM, ĝ) ! (M, g) is a Riemannian submersion.
⇧ The metric on each tangent space Tp ⇢ TM is the Euclidean metric

induced by g.
⇧ Assume that �(t) is a curve in M and v(t) 2 T�(t) is a parallel

vector field along �. Note that v(t) forms a curve in TM . For the
Sasaki metric, we have v0(t) ? T�(t) for any t; that is, the curve v(t)
normally crosses the tangent spaces T�(t) ⇢ TM .

In other words, we identify the tangent space Tu[TM ] for any u 2

2 TpM with the direct sum of vertical and horizontal subspaces TpM �

� TpM . The projection of this splitting is defined by the differential
d⌧ : TTM ! TM and we assume that the velocity of a curve in TM
formed by a parallel field along a curve in M is horizontal. Then Tu[TM ]

is equipped with the metric ĝ defined by

ĝ(X,Y ) = g(XV , Y V
) + g(XH , Y H

),

where XV and XH
2 TpM denote the vertical and horizontal components

of X 2 Tu[TM ].� Let g be a Riemannian metric on the sphere S
2
. Consider the tangent

bundle TS
2

equipped with the induced Sasaki metric ĝ. Show that the

space (TS
2, ĝ) lies at a bounded distance to the ray R>0 = [0,1) in the

sense of Gromov–Hausdorff.

Two-systole

� Given a large real number L, construct a Riemannian metric g on the

3-dimensional torus T
3

such that vol(T
3, g) = 1 and

areaS > L
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for any closed surface S that does not bound in T
3
.

According to Gromov’s systolic inequality [107], the volume of (T3, g)
can be bounded below in terms of its 1-systole defined to be the shortest
length of a noncontractible closed curve in (T

3, g). The lower bound on
the area of S in the problem is called the 2-systole of (T3, g).

The problem implies that Gromov’s systolic inequality does not have
a direct 2-dimensional analog.

Normal exponential map�

Let (M, g) be a Riemannian manifold; denote by TM the tangent bundle
over M and by Tp = TpM the tangent space at the point p.

Given a vector v 2 TpM , denote by �v the geodesic in (M, g) such that
�(0) = p and �0(0) = v. The map exp: TM ! M defined by v 7! �v(1)
is called the exponential map.

The restriction of exp |Tp is called the exponential map at p and is
denoted by exp

p
.

Given a smooth immersion L ! M , denote by NL the normal bundle
over L. The restriction exp |NL is called the normal exponential map of L
and is denoted by exp

L
.

� Let M be a complete connected Riemannian manifold with an immersed

complete connected Riemannian manifold L. Show that the image of the

normal exponential map of L is dense in M .

Symplectic squeezing in the torus

� Let ! = dx1 ^ dy1 + dx2 ^ dy2 be the standard symplectic form on R
4
,

and Z
2

the integral lattice in the (x1, y1) coordinate plane of R
4
.

Show that an arbitrary bounded domain ⌦ ⇢ (R
4,!) admits a sym-

plectic embedding into the quotient space (R
4,!)/Z2

.

Diffeomorphism test�

� Let M and N be complete m-dimensional simply-connected Riemann-

ian manifolds, and f : M ! N a smooth map such that

|df(v)| > |v|

for any tangent vector v of M . Show that f is a diffeomorphism.
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Volume of tubular neighborhoods+

� Let M and M 0
be isometric closed smooth submanifolds in a Euclidean

space. Show that for all small r > 0 we have

volB(M, r) = volB(M 0, r),

where B(M, r) denotes the r-neighborhood of M .

Disk⇤

� Given a large real number L, construct a Riemannian metric g on the

disk D with

diam(D, g) 6 1 and length
g
@D 6 1

such that the boundary curve in D is not contractible in the class of closed

curves with g-length less than L.

Shortening homotopy

� Let M be a compact Riemannian manifold with diameter D and p 2 M .

Assume that for some L > D, there are no geodesic loops based at p in M
with length in the interval (L�D,L+D]. Show that for any path �0 in

(M, g) starting at p, there is a homotopy �t relative to its endpoints such

that

a) length �1 < L;

b) length �t 6 length �0 + 2·D for any t 2 [0, 1].

Examples of manifolds satisfying the above condition for some L have
been found among the Zoll spheres by Florent Balachev, Christopher
Croke, and Mikhail Katz [140].

Convex hypersurface
Recall that a subset K of a Riemannian manifold is called convex if every
minimizing geodesic connecting two points in K lies completely in K.� Let M be a totally geodesic hypersurface in a closed Riemannian m-

dimensional manifold W . Assume that the injectivity radius of M is at

least 1 and M forms a convex set in W .

Show that the maximal distance from M to the points of W can be

bounded below by a positive constant "m that depends only on the dimen-

sion m (in fact, "m =
2

m+3 will do).

Note that we did not make any assumption on the injectivity radius
of W .
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Almost constant function
The unit tangent bundle UM over a closed Riemannian manifold M ad-
mits a natural choice of volume. Let us equip UM with the probability
measure that is proportional to this volume.

We say that a unit-speed geodesic � : R ! M is random if �0(0) takes
a random value in UM .� Given " > 0, show that there is a positive integer m such that for

any closed m-dimensional Riemannian manifold M and any smooth 1-

Lipschitz function f : M ! R the following holds.

For a random unit-speed geodesic � in M the event

|f � �(0)� f � �(1)| > "

has probability at most ".

Semisolutions

Another distant involution. Let x 2 S
2 be a point that minimizes the

distance |x � x0
|g. Consider a minimizing geodesic � from x to x0. We

can assume that
|x� x0

|g = length � = 1.

Let �0 be the antipodal arc to �. Note that �0 intersects � only at the
common endpoints x and x0. Indeed, if p0 = q for p, q 2 �, then |p�q| > 1.
Since length � = 1, the points p and q must be the ends of �.

It follows that � together with �0 forms a closed simple curve in S
2

that divides the sphere into two disks D and D0.
Let us divide � into two equal arcs �1 and �2; each of length 1

2 . Suppose
that p, q 2 �1, then

|p� q0|g > |q � q0|g � |p� q|g >
> 1�

1
2 =

1
2 .

That is, the minimal distance from �1 to �01 is at least 1
2 . The same way we

get that the minimal distance from �2 to �02 is at least 1
2 . By Besicovitch

inequality, we get that

area(D, g) > 1
4 and area(D0, g) > 1

4 .

Therefore
area(S

2, g) > 1
2 .
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This inequality was proved by Marcel Berger [141]. Christopher Croke
conjectured that the optimal bound is 4

⇡
and the round sphere is the only

space that achieves this [see Conjecture 0.3 in 138].
Let us indicate how to improve the obtained bound to

area(S
2, g) > 1.

Suppose x, x0, �, and �0 are as above. Consider the function

f(z) = min
t

{ |�0(t)� z|g + t }.

Observe that f is 1-Lipschitz.
Show that two points �0(c) and �(1�c) lie on one connected component

of the level set Lc =
�
z 2 S

2
�� f(z) = c

 
; in particular

lengthLc > 2·|�0(c)� �(1� c)|g.

By the triangle inequality, we have that

|�0(c)� �(1� c)|g > 1� |�(c)� �(1� c)|g =

= 1� |1� 2·c|.

It remains to apply the coarea formula

area(S
2, g) >

1w

0

lengthLc ·dc.

Besicovitch inequality. Without loss of generality, we may assume that
Q = [0, 1]m. Set

Ai = { (x1, . . . , xm) 2 Q | xi = 0 } .

Consider the functions fi : Q ! R defined by

fi(x) = min{1, distAi(x)}.

Note that each fi is 1-Lipschitz; in particular, |rfi| 6 1 almost every-
where.

Consider the map

f : x 7! (f1(x), . . . , fm(x)).

Note that it maps Q to itself and, moreover, it maps each face of Q to
itself. It follows that the restriction f |@Q : @Q ! @Q has degree one and
therefore f : Q ! Q is onto.



69

Let h be the canonical metric on the cube Q. Denote by J the Jacobian
of the map f : (Q, g) ! (Q, h). Note that

|J(x)| = |rxf1 ^ · · · ^rxfm| 6 1.

By the area formula, we get

vol(Q, g) >
w

x2Q

|J(x)| >

> vol(Q, h) =

= 1.

In the case of equality, we have that hrxfi,rxfji = 0 for i 6= j and
|rxfi| = 1 for almost all x. It follows then that the map

f : (Q, g) ! (Q, h)

is an isometry.

This inequality was proved by Abram Besicovitch [142]. It has a num-
ber of applications in Riemannian geometry. For example, using this
inequality it is easy to solve the following problem.� Assume a metric g on R

m
coincides with the Euclidean metric outside

of a bounded set K; assume further that any geodesic that enters K exits

K the same way the Euclidean geodesic would have done. Show that g is

flat.

There is a weaker version of the Besicovitch inequality that works for
the Hausdorff measure for any metric on the cube; nearly the same proof
works. Here is one of its applications suggested by Stephan Stadler:� Let X be a contractible metric space with zero (n + 1)-dimensional

Hausdorff measure. Assume that �1,�2 ⇢ X are two embedded n-disks

having the same boundary. Show that �1 = �2.

Minimal foliation. The proof is based on the observation that a self-
dual harmonic 2-form on (S

2
⇥ S

2, g) without zeros defines a symplectic
structure.

Note that there is a self-dual harmonic 2-form on (S
2
⇥ S

2, g); that
is, a 2-form ! such that d! = 0 and ?! = !, where ? is the Hodge star
operator. Indeed, take a generic harmonic form '. Note that the form
?' is also harmonic. Since ?(?') = ', the form ! = '+?' does the job.

Choose p 2 S
2
⇥ S

2. We can use gp to identify the tangent space Tp

and the cotangent space T
⇤
p
. There is a gp-orthonormal basis e1, e2, e3, e4

on Tp such that
!p = �p ·e1 ^ e2 + �0

p
·e3 ^ e4.
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Note that
?!p = �0

p
·e1 ^ e2 + �p ·e3 ^ e4.

Since ?!p = !p, we have �p = �0
p
.

Consider the rotation Jp : Tp ! Tp defined by

e1 7! �e2, e2 7! e1, e3 7! �e4, e4 7! e3.

Note that

Jp � Jp = � id and !(X,Y ) = �p ·g(X, JpY )

for any two tangent vectors X,Y 2 Tp.
Consider the canonical symplectic form !0 on S

2
⇥ S

2 which is the
sum of the pullbacks of the volume form on S

2 by the two coordinate
projections S

2
⇥ S

2
! S

2. Note that for the canonical metric on S
2
⇥ S

2,
the form !0 is harmonic and self-dual. Since g is close to the standard
metric, we can assume that ! is close to !0. In particular, �p 6= 0 for any
p 2 S

2
⇥ S

2.
It follows that J is a pseudo-complex structure for the symplectic form

! on S
2
⇥ S

2. The Riemannian metric g0 = �·g is conformal to g and
!(X,Y ) = g0(X, JY ) for any two tangent vectors X,Y at one point. In
this case, the J-holomorphic curves are minimal with respect to g0; in fact,
each of them is area-minimizing in its homology class.

It remains to reparametrize S
2
⇥ S

2 so that vertical and horizontal
spheres would form pseudo-holomorphic curves in the homology classes
of x⇥ S

2 and S
2
⇥ y.

For general metrics, the form ! might vanish at some points. If the
metric is generic, then it happens on disjoint circles [143].

Volume and convexity. We use the idea from the proof of the Poincaré
recurrence theorem.

Let M be a complete Riemannian manifold that admits a convex func-
tion f . Denote by ⌧ : UM ! M the unit tangent bundle over M . Consider
the function F : UM ! R defined by F (u) = f � ⌧(u).

Note that there is a nonempty bounded open set ⌦ ⇢ UM such that
df(u) > " for any u 2 ⌦ and some fixed " > 0.

Denote by 't the geodesic flow for time t on UM . By Liouville’s
theorem about phase volume, we have

(⇤) vol['t
(⌦)] = vol⌦

for any t.
Given u 2 UM , consider the function hu(t) = F � 't

(u). Since f is
convex, so is hu. Therefore h0

u
(t) > " for any t > 0 and u 2 ⌦.
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Since ⌦ is a bounded set, the set of values F (⌦) is bounded as well.
It follows that there is an infinite sequence of time moments

0 = t0 < t1 < t2 < . . .

such that
hv(ti�1) < hu(ti)

for any u, v 2 ⌦ and i. In particular, we have

'ti(⌦) \ 'tj (⌦) = ?

for i 6= j. By (⇤), the latter implies that vol(UM) = 1. Hence

volM = 1. ⇤

The problem is due to Richard Bishop and Barrett O’Neill [144]; it
was generalized by Shing-Tung Yau [145].

Sasaki metric. Choose a point p 2 S
2. Note that any rotation of the

tangent space Tp = Tp(S
2, g) appears as a holonomy of a loop at p;

moreover, the length of such loop can be bounded by a constant, say `.
Indeed, fix a smooth homotopy �t : [0, 1] ! S

2, t 2 [0, 1] of loops
based at p that sweeps out S

2. By the Gauss–Bonnet formula, the total
curvature of (S2, g) is 4·⇡. Therefore any rotation of Tp appears as the
holonomy of �t for some t and we can take

` = max { length �t | t 2 [0, 1] } .

Denote by d the diameter of (S2, g). From the above, it follows that
for any two unit tangent vectors v 2 Tp and w 2 Tq there is a path
� : [0, 1] ! S

2 from p to q such that

length � 6 `+ d

and w is the parallel transport of v along �.
In particular, the diameter of the set of all vectors of fixed magnitude

in (TS
2, ĝ) has diameter at most `+ d. Therefore the map TS

2
! [0,1)

defined by v 7! |v| preserves the distance up to an error of ` + d. Hence
the result follows.

Two-systole. Consider the unit cube with three not intersecting cylin-
drical tunnels between the pairs of opposite faces. In each tunnel, shrink
the metric long-wise and expand it cross-wise while keeping the volume
the same.
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More precisely, assume (x, y, z) is the coordi-
nate system on the cylindrical tunnel D ⇥ [0, 1].
Then the new metric is defined by

g = '·[(dx)2 + (dy)2] + 1
'2 ·(dz)

2,

where ' = '(x, y) is a positive smooth function
on D taking huge values around the center and
equal to 1 near the boundary of D.

Gluing the opposite faces of the cube, we obtain a 3-dimensional torus
with a smooth Riemannian metric.

Since the surface S does not bound in T
3
= S

1
⇥ S

1
⇥ S

1, one of
the three coordinate projections T

3
! T

2
= S

1
⇥ S

1 induces a map of a
non-zero degree S ! T

2. It follows that

areaS > area(D,'·[(dx)2 + (dy)2]).

For the right choice of the function ', the right-hand side can be made
larger than the given number L. Hence the statement follows.

I learned this problem from Dmitri Burago. The three-tunnel con-
struction was invented by Gustav Hedlund in a different context [146,
147]. The following problem of Larry Guth [148] is closely related:� Given a small " > 0, construct a bi-Lipschitz area-nonincreasing

degree-one map

[0, 1]⇥ [0, 1]⇥ [0, "] ! [0, "

7 ]⇥ [0, "

7 ]⇥ [0, 1
7·" ].

Normal exponential map. Assume there are p 2 M and " > 0 such
that the image of the normal exponential map to L does not intersect the
ball B(p, ")M ; that is, no geodesic normal to L crosses the ball.

Choose a positive real number R such that B(p,R)M \ L 6= ?. The
sectional curvature of M in the ball B(p,R) is bounded below by a con-
stant, say K.

Given q 2 L, denote by vq 2 TqM the direction of a minimizing
geodesic [qp]. Note that vq /2 NqL. Moreover, there is � = �(",K,R) > 0

such that for any point q 2 B(p,R)M\L, and any normal vector n 2 NqL,
we have

](vq, n) > �.

Otherwise, the geodesic in the direction of n would cross B(p, ")M .
It follows that starting at any point q 2 B(p,R)M\L one can construct

a unit-speed curve � in L such that

|p� �(t)| 6 |p� q|� t· sin �.

Following � for some time brings us to p; that is, p 2 L � a contradiction.
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The problem was suggested by Alexander Lyt-
chak.

On the diagram, you see an example of an immer-
sion such that one point does not lie in the image of
the corresponding normal exponential map. It might
be interesting to understand what type of subsets can
be avoided by such images.

Symplectic squeezing in the torus. The embedding will be given as
a composition of a linear symplectomorphism � with the quotient map
' : R4

! T
2
⇥ R

2 by the integral (x1, y1)-lattice.

The composition '�� will preserve the symplectic structure; it remains
to find � such that the restriction ' � �|⌦ is injective.

Without loss of generality, we can assume that ⌦ is a ball centered at
the origin. Choose an oriented 2-dimensional subspace V of R4 such that
the integral of ! over ⌦ \ V is a positive number smaller than ⇡

4 .
Note that there is a linear symplectomorphism � that maps planes

parallel to V to planes parallel to the (x1, y1)-plane, and that maps the
disk V \ ⌦ to a round disk. It follows that the intersection of �(⌦) with
any plane parallel to the (x1, y1)-plane is a disk of radius at most 1

2 . In
particular ' � �|⌦ is injective.

This construction was given by Larry Guth [149] and attributed to
Leonid Polterovich.

Note that according to Gromov’s non-squeezing theorem [139], an
analogous statement with C ⇥ D as the target space does not hold; here
D ⇢ C is the open unit disk with the induced symplectic structure. In par-
ticular, it shows that the projection of �(⌦) as above to the (x1, y1)-plane
cannot be made arbitrarily small.

Diffeomorphism test. Note that the map f is an open immersion.
Let h be the pullback metric on M for f : M ! N . Clearly, h > g.

In particular, (M,h) is complete and the map f : (M,h) ! N is a local
isometry.

Note that any local isometry between complete connected Riemannian
manifolds of the same dimension is a covering map. Since N is simply-
connected, the result follows.

Volume of tubular neighborhoods. This problem is a direct corollary
of the so-called tube formula given by Hermann Weyl [150]. It expresses
the volume of the r-neighborhood of M as a polynomial p(r); the co-
efficients of p, up to a multiplicative constant, are integrals over M of
some quantities called the Lipschitz–Killing curvatures � these are cer-
tain scalars that can be expressed in terms of the curvature tensor at the
given point. The proof is done by straightforward calculations.
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Disk. The following claim is the key step in the proof.

(⇤) Given a positive integer n, there is a binary tree Tn embedded into the

disk D such that any null-homotopy of @D passes a curve that intersects

n different edges.

The proof of the claim can be done by induction on n; the base is
trivial. Assuming we constructed Tn�1, the tree Tn can be obtained by
identifying three endpoints of three copies of Tn�1.

T1 T2 T3

T4

Take " = 1
10 and fix a large integer n. Let us construct a metric on D

with the embedded tree Tn as in (⇤) such that its diameter and the length
of its boundary are less than 1 and the distance between any two edges
of Tn without a common vertex is at least ".

Choose a Riemannian metric g on the cylinder S
1
⇥ [0, 1] such that

⇧ The "-neighborhoods of the boundary components have product
metrics.

⇧ Any vertical segment x⇥ [0, 1] has length 1
2 .

⇧ One of the boundary components has length ".
⇧ The other boundary component has length 2·m·", where m is the

number of edges in the tree Tn.
Equip Tn with a length-metric so that each edge has length ". Glue the
cylinder (S

1
⇥ [0, 1], g) along its long boundary component to the tree

Tn by a piecewise isometry in such a way that the resulting space is
homeomorphic to a disk and the obtained embedding of Tn in D is the
same as in the claim (⇤).

By (⇤), any null-homotopy of the boundary passes a curve that inter-
sects n different edges of Tn. By construction this curve is longer than
"

10 ·n =
1

100 ·n.
The obtained metric is not Riemannian, but it is easy to smooth while

keeping this property. Since n is large the result follows.

This example was constructed by Sidney Frankel and Mikhail Katz
[151].

Shortening homotopy. Set

p = �0(0) and `0 = length �0.
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By a compactness argument, there exists � > 0 such that no geodesic
loop based at p has length in the interval (L�D,L+D + �].

Assume that `0 > L+ �. Choose t0 2 [0, 1] such that

length
�
�0|[0,t0]

�
= L+ �.

Let � be a minimizing geodesic from �(t0) to p. Note that �0 is homotopic
to the concatenation

�00 = �0|[0,t0] ⇤ � ⇤ �̄ ⇤ �|[t0,1],

where �̄ denotes the backward parametrization of �.
Applying a curve shortening process to the loop �0 = �|[0,t0] ⇤ �, we

get a homotopy �t relative to its endpoints from the loop �0 to a geodesic
loop �1 at p. From the above,

length�1 6 L�D.

p

�(t0)

�1 �

The concatenation �t = �t ⇤ �̄ ⇤ �|[t0,1] is a ho-
motopy from �00 to another curve �1. From the
construction, it is clear that

length �t 6 length �0 + 2· length� 6
6 length �0 + 2·D

for any t 2 [0, 1] and

length �1 = length�1 + length� + length �|[t0,1] 6
6 L�D +D + length � � (L+ �) =

= `0 � �.

Repeating the procedure a sufficient number of times, we get curves
�2, . . . , �n connected by the needed homotopies so that `i+1 6 `i � � and
`n < L+ �, where `i = length �i.

If `n 6 L, we are done. Otherwise, repeat the argument again for
�0 = `n � L.

The problem is due to Alexander Nabutovsky and Regina Rotman
[152].

Convex hypersurface. First, let us define the cone construction of
maps into M .

Let �0 be a simplex with a vertex v. Denote by � the facet in �0

opposite to v. Let f : � ! M be a map such that f(�) ⇢ B(x, 1)M
for some x 2 M . Given w 2 �, let �w : [0, 1] ! M be the minimizing
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geodesic path from x to f(w). Since the injectivity radius of M is at least
1, the path �w is uniquely defined. The map f 0

: �
0
! M defined as

f 0
: (1� t)·v + t·w 7! �w(t)

is called the cone over f with vertex x.
One may start with a map f0 : �0 ! M and iterate the cone construc-

tion for the vertices x1, . . . xk, to get a sequence of maps fi : �i ! M as
long as fi�1(�i�1) ⇢ B(xi, 1). A straightforward application of the tri-
angle inequality shows that the latter conditions hold if f0(�0) ⇢ B(xi, s)
for each i and s < 2

2+k
.

Now we go back to the solution.
Choose a fine triangulation of W so that M becomes a sub-complex

of W . We can assume that the diameter of each simplex in ⌧ is less than
any given " > 0. Furthermore, we can assume that all the vertices of ⌧
can be colored with m + 2 colors (0, . . . ,m + 1) in such a way that the
vertices of each simplex have different colors; the latter can be achieved
by passing to the barycentric subdivision of ⌧ . Denote by ⌧i the maximal
i-dimensional sub-complex of ⌧ with all the vertices colored by 0, . . . , i.

Let h be the maximal distance from points in W to M . For each
vertex v in ⌧ choose a point v0 2 M at distance 6 h. Note that if v and
w are vertices of one simplex, then

|v0 � w0
|M < 2·h+ ".

Assume that 2
m+3 > h. Choose positive " < 2

m+3 � h and use it in
the construction of the triangulation ⌧ above. Applying the iterated cone
construction for each simplex of ⌧ we get an extension of the map v 7! v0

defined on ⌧0 to ⌧1, . . . ⌧m+1. According to the above estimates, the cone
constructions are defined at each of the needed m+ 1 iterations.

This way we get to a retraction W ! M . It follows that the fundamen-
tal class of M vanishes in the homology ring of M � a contradiction.

This problem is a stripped version of the bound on filling radius given
by Mikhael Gromov [107].

Almost constant function. Given a positive integer m, denote by �m
the expected value of |x1| for the random unit vector x = (x1, . . . , xm) 2

2 S
m�1 with respect to the uniform distribution.
Observe that �m ! 0 as m ! 1. Indeed, from symmetry and Bun-

yakovsky inequality we get
1
m

=
1
m
·E(|x|2) = E(x2

1) > E(|x1|)
2
= �2

m
.

Since f is 1-Lipschitz,

E(|df(w)|) 6 �m
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for a random vector w in UM .
Note that

|f � �(1)� f � �(0)| =

�����

1w

0

df(�0(t))·dt

����� 6

6
1w

0

|df(�0(t))| ·dt.

Assume that �0(0) takes a random value in UM . By Liouville’s theo-
rem about phase volume, the same holds for �0(t) for any fixed t. There-
fore

E(|f � �(1)� f � �(0)|) 6 E

 
1w

0

|df(�0(t))|·dt

!
6 �m.

By Markov’s inequality, the probability of the event

|f � �(1)� f � �(0)| > "

is at most �m
"

. Hence the result follows.

I learned this problem from Mikhael Gromov. It gives an example
in the Riemannian world of the so-called concentration of measure phe-

nomenon [153, 154].



Chapter 5

Metric geometry

In this chapter, we consider metric spaces. The relevant background ma-
terial can be found in [155] or [156].

Let us fix a few standard notations.
⇧ The distance between two points x and y in a metric space X will

be denoted by

distx(y), |x� y| or |x� y|X ,

the latter notation is used to emphasize that x and y belong to the
space X.

⇧ A metric space X is called length-metric space if, for any two points
x, y 2 X and any " > 0, the points x and y can be connected by a
curve ↵ with

length↵ < |x� y|X + ".

In this case, we say the metric on X is a length-metric.

Embedding of a compact

� Prove that any compact metric space is isometric to a subset of a

compact length-metric space.

Semisolution. Let K be a compact metric space. Denote by B(K,R) the
space of real-valued bounded functions on K equipped with sup-norm;
that is,

|f | = sup { |f(x)| | x 2 K } .

Note that the map K ! B(K,R), defined by x 7! distx is a distance-
preserving embedding. Indeed, by the triangle inequality we have

| distx(z)� disty(z)| 6 |x� y|K

78
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for any z 2 K and the equality holds for z = x.
In other words, we can and will consider K as a subspace of B(K,R).
Denote by W the linear convex hull of K in B(K,R); that is, W is

the intersection of all closed convex subsets containing K. Clearly, W is
a complete subspace of B(K,R).

Since K is compact we can choose a finite "-net K" in K. The set
K" lies in a finite-dimensional subspace; therefore its convex hull W" is
compact. Note that W lies in the "-neighborhood of W". Therefore, W
admits a compact "-net for any " > 0. That is, W is totally bounded and
complete and therefore compact.

Note that line segments in W are geodesics for the metric induced
by the sup-norm. In particular, W is a compact length-metric space as
required.

The map x 7! distx is called the Kuratowski embedding, it was con-
structed in [157]. Essentially the same map was described by Maurice
Fréchet [158, this is the paper where metric spaces were introduced].

The problem also follows directly from a theorem of John Isbell, stat-
ing that injective envelopes of compact metric spaces are compact; the
injective envelope is an analog of convex hull in the category of metric
spaces [see 2.11 in 159].

The following related problem is open even for three-point sets. This
problem was mentioned by Mikhael Gromov [160, 6.B1(f)].� Is it true that any compact subset of a complete CAT(0) length-space

lies in a compact convex set?

Non-contracting map�

A map f : X ! Y between metric spaces is called distance non-contracting

if
|f(x)� f(x0

)|Y > |x� x0
|X

for any two points x, x0
2 X.� Let K be a compact metric space and

f : K ! K

a distance non-contracting map. Prove that f is an isometry.

Finite-whole extension
A map f : X ! Y between metric spaces is called non-expanding if

|f(x)� f(x0
)|Y 6 |x� x0

|X
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for any two points x, x0
2 X.� Let X and Y be metric spaces, Y compact, A ⇢ X, and f : A ! Y

a non-expanding map. Assume that for any finite set F ⇢ X there is a

non-expanding map F ! Y that agrees with f in F \A. Show that there

is a non-expanding map X ! Y that agrees with f on A.

Horo-compactification�

Let X be a metric space. Denote by C(X,R) the space of continuous
functions X ! R equipped with the compact-open topology ; that is, for
any compact set K ⇢ X and any open set U ⇢ R the set of all continuous
functions f : X ! R such that f(K) ⇢ U is declared to be open.

Choose a point x0 2 X. Given a point z 2 X, let fz 2 C(X,R) be the
function defined by

fz(x) = distz(x)� distz(x0).

Let FX : X ! C(X,R) be the map sending z to fz.
Denote by X̄ the closure of FX(X) in C(X,R); note that X̄ is compact.

That is, if FX is an embedding, then X̄ is a compactification of X, which
is called the horo-compactification. In this case, the complement @1X =

= X̄ \ FX(X) is called the horo-absolute of X.
The construction above is due to Mikhael Gromov [161].� Construct a proper metric space X such that

FX : X ! C(X,R)

is not an embedding. Show that there are no such examples among proper

length-metric spaces.

Approximation of the ball by a sphere

� Construct a sequence of Riemannian metrics on S
3

converging in the

sense of Gromov–Hausdorff to the unit ball in R
3
.

Macroscopic dimension�

Let X be a locally compact metric space and a > 0.
Following Mikhael Gromov [162], we say that the macroscopic dimen-

sion of X at scale a is the smallest integer m such that there is a contin-
uous map f from X to an m-dimensional simplicial complex K with

diam[f�1
{k}] < a
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for any point k 2 K.
Equivalently, the macroscopic dimension of X on the scale a can be

defined as the smallest integer m such that X admits an open cover with
diameter of each set less than a and such that each point in X is covered
by at most m+ 1 sets in the cover.� Let M be a simply-connected Riemannian manifold with the following

property: every closed curve is null-homotopic in its own 1-neighborhood.

Prove that the macroscopic dimension of M at scale 100 is at most 1.

No Lipschitz embedding⇤

� Construct a length-metric d on R
3

such that the space (R
3, d) does

not admit a locally Lipschitz embedding into the 3-dimensional Euclidean

space.

Sub-Riemannian sphere+

Let us explain what is a sub-Riemannian metric.
Let (M, g) be a Riemannian manifold. Assume that in the tangent

bundle TM a choice of sub-bundle H is given.
Let us call the sub-bundle H horizontal distribution. The tangent

vectors in H will be called horizontal. A piecewise smooth curve will be
called horizontal if all its tangent vectors are horizontal.

The sub-Riemannian distance between any two points x and y is de-
fined as the infimum of lengths of horizontal curves connecting x to y.

Alternatively, the distance can be defined as the limit of Riemannian
distances for the metrics

g�(X,Y ) = g(XH , Y H
) + �·g(XV , Y V

)

as � ! 1, where XH denotes the horizontal part of X; that is, the
orthogonal projection of X to H and XV denotes the vertical part of X;
so, XV

+XH
= X.

We also need an additional condition to ensure the following properties
⇧ The sub-Riemannian metric induces the original topology on the

manifold. In particular, if M is connected, then the distance cannot
take infinite values.

⇧ Any curve in M can be arbitrarily well approximated by a horizontal
curve with the same endpoints.

The most common condition of this type is the so-called complete non-

integrability ; it means that for any x 2 M , one can choose a basis in its
tangent space TxM from the vectors of the following type

A(x), [A,B](x), [A, [B,C]](x), [A, [B, [C,D]]](x), . . .
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where [⇤, ⇤] denotes the Lie bracket and the vector fields A,B,C,D, . . .
are horizontal.� Prove that any sub-Riemannian metric on S

m
is isometric to the

intrinsic metric of a hypersurface in R
m+1

.

It will be difficult to solve the problem without knowing a proof of
the Nash–Kuiper theorem about length preserving C1-embeddings. The
original papers of John Nash and Nicolaas Kuiper [163, 164] are very
readable.

Length-preserving map+

A continuous map f : X ! Y between metric spaces is called length-

preserving if it preserves the length of curves; that is, for any curve ↵ in
X we have

length(f � ↵) = length↵.

� Show that there is no length-preserving map R
2
! R.

The expected solution uses Rademacher’s theorem [165] about differ-
entiability of Lipschitz functions.

Fixed segment

� Let ⇢(x, y) = kx � yk be a metric on R
m

induced by a norm k⇤k.

Assume that f : (Rm, ⇢) ! (R
m, ⇢) is an isometry that fixes two distinct

points a and b. Show that f fixes the line segment between a and b.

Evidently, f maps the line segment [ab] to a minimizing geodesic con-
necting a to b in (R

m, ⇢). However, in general, there might be many
minimizing geodesics connecting a to b in (R

m, ⇢). The problem states
that [ab] is mapped to itself.

Pogorelov’s construction�

� Let µ be a centrally symmetric Radon measure on S
2

which is positive

on every open set and vanishes on every great circle. Given two points

x, y 2 S
2
, set

⇢(x, y) = µ[B(x, ⇡

2 ) \B(y, ⇡

2 ) ].

Show that ⇢ is a length-metric on S
2
, and moreover, the geodesics in

(S
2, ⇢) run along great circles of S

2
.
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Straight geodesics
Recall that a map f : X ! Y between metric spaces is called bi-Lipschitz
if there is a constant " > 0 such that

"·|x� y|X 6 |f(x)� f(y)|Y 6 1
"
·|x� y|X .

for any x, y 2 X.� Let ⇢ be a length-metric on R
m

that is bi-Lipschitz equivalent to the

canonical metric. Assume that every geodesic � in (R
d, ⇢) is affine; that

is, �(t) = v + w·t for constant vectors v, w 2 R
m

.

Show that ⇢ is induced by a norm on R
m

.

Hyperbolic space

� Construct a bi-Lipschitz map from the hyperbolic 3-space to the product

of two hyperbolic planes.

Quasi-isometry of a Euclidean space+

A map f : X ! Y between metric spaces is called a quasi-isometry if
there is a real constant C > 1 such that

1
C
·|x� x0

|X � C 6 |f(x)� f(x0
)|Y 6 C ·|x� x0

|X + C

for any x, x0
2 X and f(X) is a C-net in Y ; that is, for any y 2 Y there

is x 2 X such that |f(x)� y|Y 6 C.
Note that a quasi-isometry is not assumed to be continuous; for ex-

ample, any map between compact metric spaces is a quasi-isometry.� Let f : Rm
! R

m
be a quasi-isometry. Show that there is a (bi-

Lipschitz) homeomorphism h : Rm
! R

m
at a bounded distance from f ;

that is, there is a real constant C such that

|f(x)� h(x)| 6 C

for any x 2 R
m

.

The expected solution requires the so-called gluing theorem, a corollary
of the theorem proved by Laurence Siebenmann [166]. It states that if
V1, V2 ⇢ R

m are open and the two embedding f1 : V1 ! R
m and f2 : V2 !

! R
m are sufficiently close to each other on the overlap U = V1 \ V2,

then there is an embedding f defined on an open set W 0 which is slightly
smaller than W = V1 [ V2 and such that f is sufficiently close to each f1
and f2 at the points where they are defined.

The bi-Lipschitz version requires an analogous statement in the cate-
gory of bi-Lipschitz embeddings; it was proved by Dennis Sullivan [167];
a detailed proof is given by Pekka Tukia and Jussi Väisälä [168, 5.10].



84 CHAPTER 5. METRIC GEOMETRY

Family of sets with no section�

� Construct a family of closed sets Ct ⇢ S
1
, t 2 [0, 1] that is continuous

in the Hausdorff topology but does not admit a section. That is, there is

no path c : [0, 1] ! S
1

such that c(t) 2 Ct for all t.

Spaces with isometric balls

� Construct a pair of locally compact length-metric spaces X and Y that

are not isometric, but for some points x0 2 X, y0 2 Y and any radius R
the ball B(x0, R)X is isometric to the ball B(y0, R)Y .

Average distance�

� Show that for any compact length-metric space X there is a number

` such that for any finite collection of points there is a point z that lies

of average distance ` from the collection; that is, for any x1, . . . , xn 2 X
there is z 2 X such that

1
n
·

X

i

|xi � z|X = `.

Semisolutions

Non-contracting map. Given any pair of points x0, y0 2 K, con-
sider two sequences x0, x1, . . . and y0, y1, . . . such that xn+1 = f(xn)

and yn+1 = f(yn) for each n.
Since K is compact, we can choose an increasing sequence of integers

nk such that both sequences (xni)
1
i=1 and (yni)

1
i=1 converge. In particular,

both are Cauchy sequences; that is,

|xni � xnj |K , |yni � ynj |K ! 0 as min{i, j} ! 1.

Since f is non-contracting, we get

|x0 � x|ni�nj || 6 |xni � xnj |.

It follows that there is a sequence mi ! 1 such that

(⇤) xmi ! x0 and ymi ! y0 as i ! 1.

Set
`n = |xn � yn|K .
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Since f is non-contracting, the sequence (`n) is non-decreasing.
By (⇤), `mi ! `0 as mi ! 1. It follows that (`n) is a constant

sequence.
In particular

|x0 � y0|K = `0 = `1 = |f(x0)� f(y0)|K

for any pair of points (x0, y0) in K. That is, f is distance-preserving, in
particular injective.

From (⇤), we also get that f(K) is everywhere dense. Since K is
compact f : K ! K is surjective. Hence the result follows.

This is a basic lemma in the introduction to Gromov–Hausdorff dis-
tance [see 7.3.30 in 155]. I learned this proof from Travis Morrison, a
student in my MASS class at Penn State, Fall 2011.

As an easy corollary, one can see that any surjective non-expanding
map from a compact metric space to itself is an isometry. The follow-
ing problem due to Aleksander Ca lka [169] is closely related but more
involved.� Show that any local isometry from a connected compact metric space

to itself is a homeomorphism.

Finite-whole extension. Consider the space Y X of all maps X ! Y
equipped with the product topology.

Given a finite set F 2 X, denote by CF the set of maps h 2 Y X such
that the restriction h|F is short and the restriction h|A\F agrees with
f : A ! Y . By assumption, the sets CF ⇢ Y X are closed and nonempty.

Note that for any finite collection of finite sets F1, . . . , Fn ⇢ X, we
have

CF1 \ · · · \ CFn � CF1[···[Fn .

In particular, the intersection is nonempty.
According to Tikhonov’s theorem [see 170, and the references therein],

Y X is compact. By the finite intersection property, the intersectionT
F
CF with F ranging along all finite subsets of X is nonempty. It re-

mains to note that any map h 2
T

F
CF solves the problem.

This observation was used by Stephan Stadler and me [44].

Horo-compactification. For the first part of the problem, take X to
be the set of non-negative integers with the metric ⇢ defined by

⇢(m,n) = m+ n

for m 6= n.
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The second part is proved by contradiction. Assume that X is a proper
length space and FX is not an embedding. That is, there is a sequence
of points z1, z2, . . . and a point z1 such that fzn ! fz1 in C(X,R) as
n ! 1, while |zn � z1|X > " for fixed " > 0 and all n.

Note that any pair of points x, y 2 X can be connected by a minimizing
geodesic [xy]. Choose z̄n on a geodesic [z1zn] such that |z1 � z̄n| = ".
Note that

fzn(z1)� fzn(z̄n) = "

and

fz1(z1)� fzn(z̄n) = �"

for all n.
Since X is proper, we can pass to a subsequence of zn so that the

sequence z̄n converges; denote its limit by z̄1. The above identities imply
that

fzn(z̄1) 6! fz1(z̄1) or fzn(z1) 6! fz1(z1)

� a contradiction.

I learned this problem from Linus Kramer and Alexander Lytchak;
the example was also mentioned in the lectures of Anders Karlsson and
attributed to Uri Bader [see 2.3 in 171].

Approximation of the ball by a sphere. Make fine burrows in the
standard 3-ball without changing its topology, but at the same time come
sufficiently close to any point in the ball.

Consider the doubling of the obtained ball along its boundary. The
obtained space is homeomorphic to S

3. Note that the burrows can be
made so that the obtained space is sufficiently close to the original ball in
the Gromov–Hausdorff metric.

It remains to smooth the obtained space slightly to get a genuine
Riemannian metric with the needed property.

This problem appeared as an exercise in the textbook of Dmitri Bu-
rago, Yuri Burago, and Segei Ivanov [155, Ex. 7.5.17].

If M is a compact manifold of dimension at least 3 and X is a rea-
sonable compact length space, then the existence of a map M ! X
that induces a surjective homomorphism on their fundamental groups is
a necessary and sufficient condition for the existence of Gromov–Hausdorff
approximation of X by Riemannian metrics on M . This statement was
proved by Steven Ferry and Boris Okun [172].
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(A doubled cone over Hawaiian earring
gives an example of unreasonable space. It
has a nontrivial fundamental group, but ad-
mits an approximation by Riemannian met-
rics on S

3.)
The two-dimensional case is quite differ-

ent. There is no sequence of Riemannian metrics on S
2 converging to the

unit disk in the sense of Gromov–Hausdorff. In fact, if X is a limit of
(S

2, gn), then any point x0 2 X either admits a neighborhood homeomor-
phic to R

2 or is a cut point; that is, X \ {x0} is disconnected [see 3.32 in
79].

Macroscopic dimension. The following claim resembles Besicovitch
inequality; it is key to the proof.

(⇤) Let a be a positive real number. Assume that a closed curve � in a

metric space X can be subdivided into 4 arcs ↵, �, ↵0
, and �0

in such a

way that

⇧ |x� x0
| > a for any x 2 ↵ and x0

2 ↵0
and

⇧ |y � y0| > a for any y 2 � and y0 2 �0
.

Then � is not contractible in its
a

2 -neighborhood.

To prove (⇤), consider two functions defined on X as follows:

w1(x) = min{ a, dist↵(x) },

w2(x) = min{ a, dist�(x) },

and the map w : X ! [0, a]⇥ [0, a], defined by

w : x 7! (w1(x), w2(x)).

Note that

w(↵) = 0⇥ [0, a], w(�) = [0, a]⇥ 0,

w(↵0
) = a⇥ [0, a], w(�0

) = [0, a]⇥ a.

Therefore, the composition w � � is a degree 1 map

S
1
! @([0, a]⇥ [0, a]).

It follows that if h : D ! X shrinks �, then there is a point z 2 D such
that w � h(z) = (

a

2 ,
a

2 ). Therefore h(z) lies at distance at least a

2 from ↵,
�, ↵0, �0 and therefore from �. Hence the claim (⇤) follows.

Choose a point p 2 M . Let us cover M by the connected components
of the inverse images dist�1

p
((n� 1, n+1)) for all integers n. Clearly, any

point in M is covered by at most two of these components. It remains to
show that each of these components has diameter less than 100.



88 CHAPTER 5. METRIC GEOMETRY

⌧

p x

y

m

Assume the contrary; let x and y be two points
in one connected component and |x � y|M > 100.
Connect x to y with a curve ⌧ in this component.
Consider the closed curve � formed by ⌧ and two
geodesics [px], [py].

Note that |p � x| > 40. Therefore there is a
point m on [px] such that |m� x| = 20.

By the triangle inequality, the subdivision of �
into the arcs [pm], [mx], ⌧ , and [yp] satisfy the conditions of the claim (⇤)

for a = 10. Hence the statement follows.

The problem is due to Mikhael Gromov [107, Appendix 1(E2)].

No Lipschitz embedding. Consider a chain of circles c0, . . . , cn in R
3;

that is, ci and ci�1 are linked for each i.

c0 c1 . . . cn

Assume that R3 is equipped with a length-metric ⇢ such that the total
length of the circles is ` and U is an open bounded set containing all the
circles ci. Note that for any L-Lipschitz embedding f : (U, ⇢) ! R

3, the
distance from f(c0) to f(cn) is less than L·`.

The ⇢-distance from c0 to cn might be much larger than L·`. Indeed,
fix a line segment [ab] in R

3. Modify the length-metric on R
3 in a small

neighborhood of [ab] so that there is a chain (ci) of circles as above, that
goes from a to b such that (1) the total length, say `, of all the circles ci
is arbitrarily small, but (2) the obtained metric ⇢ is arbitrarily close to
the canonical one, say

��⇢(x, y)� |x� y|
�� < "

for any two points x, y 2 R
3 and fixed in advanced small " > 0. The con-

struction of ⇢ is done by shrinking the length of each circle and expanding
the length in the normal directions to the circles in a small neighborhood.
The latter makes it impossible to use the circles ci as a shortcut; that is,
the time needed to go from one circle to another is larger than the time
one could save by going along the circle.

Set an = (0, 1
n
, 0) and bn = (1, 1

n
, 0). Note that the line segments

[anbn] are disjoint and converging to [a1b1], where a1 = (0, 0, 0) and
b1 = (1, 0, 0).

Apply the above construction in non-overlapping convex neighbor-
hoods of [anbn] for sequences "n and `n converging to zero very fast.
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The obtained length-metric ⇢ is still close to the canonical metric on
R

3, but it does not admit a locally Lipschitz homeomorphism to R
3.

Indeed, assume that such homeomorphism h exists. Choose a bounded
open set U containing [a1b1]; note that the restriction h|U is L-Lipschitz
for some L. From the above construction, we get

|h(a1)� h(b1)| 6 |h(an)� h(bn)|+

+ |h(a1)� h(an)|+ |h(bn)� h(b1)| 6
6 L·`n +

2
n
+ 100·"n

for any positive integer n. The right-hand side converges to 0 as n ! 1.
Therefore

h(a1) = h(b1)

� a contradiction.

The problem is due to Dmitri Burago, Sergei Ivanov, and David Shoen-
thal [173].

It is expected that any metric on R
2 admits locally Lipschitz embed-

dings into the Euclidean plane. Also, it seems feasible that any metric on
R

3 admits a locally Lipschitz embedding into R
4.

Note that any metric on the cube in R
3 admits a proper locally Lips-

chitz map to the unit cube with the canonical metric of degree 1. More-
over, one can make this map injective on any finite set of points. It is
instructive to visualize this map for the metric of the solution.

Sub-Riemannian sphere. If d is a sub-Riemannian metric on S
m, then

there is a non-decreasing sequence of Riemannian metric tensors g0 <
< g1 < . . . such that their induced metrics d1 < d2 < . . . converge to d.
The metric g0 can be assumed to be the metric of a round sphere, so it is
induced by an embedding h0 : S

m
! R

m+1.
Applying the construction from the Nash–Kuiper theorem, one can

produce a sequence of smooth embeddings hn : S
m

! R
m+1 with the

induced metrics g0
n

such that |g0
n
� gn| ! 0. In particular, if we denote

by d0
n

the metric corresponding to g0
n
, then d0

n
! d an n ! 1.

It follows from the same construction that if one chooses "n > 0,
depending on hn, then we can assume that

|hn+1(x)� hn(x)| < "n

for any x 2 S
m.

Let us introduce two conditions on the values "n, called weak and
strong.

The weak condition states that "n < 1
2 ·"n�1 for any n. This ensures

that the sequence of maps hn converges pointwise; denote its limit by h1.
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Denote by d̄ the length-metric induced by h1. Note that d̄ 6 d. The
strong condition on "n will ensure that actually d̄ = d.

Fix n and assume that hn and therefore "n�1 are constructed already.
Set ⌃ = hn(S

m
), and let ⌃r be the tubular r-neighborhood of ⌃. Equip ⌃

and ⌃r with the induced length-metrics. Since ⌃ is a smooth hypersurface,
we can choose rn 2 (0, "n�1] so that the inclusion ⌃ ,! ⌃rn preserves the
distance up to error 1

2n . Then the strong condition states that "n < 1
2 ·rn,

which is evidently stronger than the weak condition "n < 1
2 ·"n�1 above.

Note that if the sequence hn is constructed with the described choice
of "n, then |h1(x)� hn(x)| < rn for any x 2 S

m. Therefore

d̄(x, y) + 2·rn +
1
2n > d0

n
(x, y)

for any n and x, y 2 S
m; hence d̄ > d as required.

The problem on this list was first discovered by Enrico Le Donne [174].
A similar construction is described in the lecture notes by Allan Yashinski
and the author [175] which are aimed for undergraduate students. Yet
the results in [176] are closely relevant.

The construction in the Nash–Kuiper embedding theorem can be used
to prove strange statements. Here is one example based on the observation
that the Weyl curvature tensor vanishes on hypersurfaces in the Euclidean
space.� Let M be a Riemannian manifold diffeomorphic to the m-sphere. Show

that there is a Riemannian manifold M 0
arbitrarily close to M in the

Lipschitz metric whose Weyl curvature tensor is identically 0.

Length-preserving map. Assume the contrary; let f : R2
! R be a

length-preserving map.
Note that f is Lipschitz. Therefore by Rademacher’s theorem [165],

the differential dxf is defined for almost all x.
Choose a unit vector u. Given x 2 R

2, consider the path ↵x(t) =

= x+ t·u defined for t 2 [0, 1]. Note that

↵0
x
(t) = (d↵x(t)f)(u)

holds for almost all x and t. It follows that

length(f � ↵x) =

1w

0

|(d↵x(t)f)(u)|·dt

for almost all x.
Therefore |dxf(v)| = |v| for almost all x, v 2 R

2. In particular, there
is x 2 R

2 such that the differential dxf is defined and

|dxf(e1)| = |e1|, |dxf(e2)| = |e2|, |dxf(e1 + e2)| = |e1 + e2|
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for a basis (e1, e2) of R2. It follows that dxf has rank 2 � a contradiction.

The idea above can also be used to solve the following problem.� Let ⇢ be a metric on R
2

that is induced by a norm. Show that (R
2, ⇢)

admits a length-preserving map to R
3

if and only if (R
2, ⇢) is isometric

to the Euclidean plane.

Fixed segment. Note that it is sufficient to show that if f is an isometry
such that

f(a) = a and f(b) = b

for some a, b 2 R
m, then

f(a+b

2 ) =
1
2 ·(f(a) + f(b)).

Without loss of generality, we can assume that b+ a = 0.
Set f0 = f . Consider the sequence of isometries f0, f1, . . . recursively

defined by
fn+1(x) = �f�1

n
(�fn(x))

for all n.
Note that for all n we have fn(a) = a, fn(b) = b and

|fn+1(0)| = 2·|fn(0)|.

Therefore if f(0) 6= 0, then |fn(0)| ! 1 as n ! 1.
On the other hand, since fn is isometry and f(a) = a, we also have

|fn(0)| 6 2·|a| � a contradiction.

The idea of the proof is due to Jussi Väisälä [177]. The problem is the
main step in the proof of the Mazur–Ulam theorem [178], which states
that any isometry of (Rm, ⇢) is an affine map.

Pogorelov’s construction. The positivity and symmetry of ⇢ are evi-
dent.

The triangle inequality follows since

(⇤) [B(x, ⇡

2 ) \B(y, ⇡

2 )] [ [B(y, ⇡

2 ) \B(z, ⇡

2 )] ◆ B(x, ⇡

2 ) \B(z, ⇡

2 ).

Observe that B(x, ⇡

2 )\B(y, ⇡

2 ) does not overlap
B(y, ⇡

2 ) \B(z, ⇡

2 ) and we get equality in (⇤) if and
only if y lies on the great circle arc from x to z.
Therefore the second statement follows.

This construction was given by Aleksei
Pogorelov [179]. It is closely related to the con-
struction given by David Hilbert in [180] which was
the motivating example for his 4th problem.
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The following problem was suggested by Jairo Bochi [181]; it looks
similar, but actually quite different.� Consider the set E of all ellipses with unit area centered at the origin

of the plane. Equip E with the metric defined by

⇢(A,B) = area(A4B),

where 4 denotes symmetric difference; that is, A4B = (A\B)[ (B \A).

Let ⇢̂ be the length-metric induced by ⇢. Show that (E, ⇢̂) is isometric to

a Lobachevsky plane.

The metrics of the form ⇢(A,B) = µ(A4B) are very special; evidently,
they can be embedded into the corresponding L1 space. Also, they satisfy
the so-called hypermetric inequalities; that is,

X

i,j

bi ·bj ·⇢(Ai, Aj) 6 0

for any sequence of sets A1, . . . An and any sequence of integers b1, . . . , bn
such that

P
i
bi = 1. Note that for n = 3 and b1 = b2 = �b3 = 1 we get

the usual triangle inequality. For more on the subject, see [182].

Straight geodesics. From the uniqueness of the straight segment be-
tween two given points in R

m, it follows that any straight line in R
m is a

geodesic in (R
m, ⇢).

Set
kvkx = ⇢(x, (x+ v)).

Note that
k�·vkx = |�|·kvkx

for any x, v 2 R
m, and � 2 R.

Denote by |x� y| the Euclidean distance between the points x and y.
Since ⇢ and |⇤ � ⇤| are bi-Lipschitz equivalent, applying the triangle in-
equality twice to the points x, x+ �·v, x0 and x0

+ �·v, we get
��k�·vkx � k�·vkx0

�� 6 C ·|x� x0
|

for any x,x0,v 2 R
m, � 2 R and a fixed real constant C.

Passing to the limit as �! 1, we obtain that kvkx does not depend
on x; hence the result follows.

This idea is due to Thomas Foertsch and Viktor Schroeder [183]. A
more general statement was proved by Petra Hitzelberger and Alexander
Lytchak [184]. Namely, they showed that if any pair of points in a geodesic
metric space X can be separated by an affine function, then X is isometric
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to a convex subset of a normed vector space. (A function f : X ! R is
called affine if, for any geodesic � in X, the composition f � � is affine.)

Hyperbolic space. The hyperbolic plane H
2 is isometric to (R

2, g),
where

g(x, y) =

✓
1 0

0 ex

◆
.

The same way, the hyperbolic space H
3 can be viewed as (R

3, h), where

h(x, y, z) =

0

@
1 0 0

0 ex 0

0 0 ex

1

A .

In the described coordinates, consider the projections ', : H
3
! H

2

defined by ' : (x, y, z) 7! (x, y) and  : (x, y, z) 7! (x, z). Note that

max{ |'(p)� '(q)|H2 , | (p)�  (q)|H2 } 6
6 |p� q|H3 6
6 |'(p)� '(q)|H2 + | (p)�  (q)|H2

for any two points p, q 2 H
3. In particular, the map H

3
! H

2
⇥ H

2

defined by p 7! ('(p), (p)) is 2
⌥1-bi-Lipschitz.

We used that horo-spheres in the hyperbolic space are isometric to the
Euclidean plane. This observation was made by Nikolai Lobachevsky [see
34 in 185]. The same observation is used in the following construction
discovered by Károly Böröczky [see 186 and also 187].� Construct a tessellation of the hyperbolic plane with one polygonal tile

of arbitrarily small area and/or diameter.

Quasi-isometry of a Euclidean space. Choose two constants M > 1

and A > 0. A map f : X ! Y between metric spaces X and Y such that
for any x, y 2 X, we have

1
M

·|x� y|�A 6 |f(x)� f(y)| 6 M ·|x� y|+A

and any point in Y lies on the distance at most A from a point in the
image f(X) will be called (M,A)-quasi-isometry.

Note that (M, 0)-quasi-isometry is a [
1
M
,M ]-bi-Lipschitz map. More-

over, if fn : Rm
! R

m is a (M, 1
n
)-quasi-isometry for each n, then any

subsequential limit of fn as n ! 1 is a [
1
M
,M ]-bi-Lipschitz map.

Therefore given M > 1 and " > 0 there is � > 0 such that for any
(M, �)-quasi-isometry f : Rm

! R
m and any p 2 R

m there is an [
1
M
,M ]-

bi-Lipschitz map h : B(p, 1) ! R
m such that

|f(x)� h(x)| < "
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for any x 2 B(p, 1).
Using rescaling, we can get the following equivalent formulation. Given

M > 1, A > 0, and " > 0, there is sufficiently large R > 0 such that for
any (M,A)-quasi-isometry f : Rm

! R
m and any p 2 R

m there is a
[
1
M
,M ]-bi-Lipschitz map h : B(p,R) ! R

m such that

|f(x)� h(x)| < "·R

for any x 2 B(p,R).
Cover Rm by balls B(pn, R) and construct a [

1
M
,M ]-bi-Lipschitz map

hn : B(pn, R) ! R
m close to the restrictions f |B(pn,R) for each n.

The maps hn are 2·"·R close to each other on the overlaps of their
domains of definition. This makes it possible to deform slightly each hn

so that they agree on the overlaps. This can be done by Siebenmann’s
theorem [166]. If instead you apply Sullivan’s theorem [see 167 and also
5.10 in 168], you get a bi-Lipschitz homeomorphism h : Rm

! R
m.

The problem was suggested by Dmitri Burago.

Family of sets with no section. Given t 2 (0, 1], consider the real
interval C̃t = [

1
t
+ t, 1

t
+ 1]. Denote by Ct the image of C̃t under the

covering map ⇡ : R ! S
1
= R/Z.

Set C0 = S
1. Note that the Hausdorff distance from C0 to Ct is

t

2 . Therefore {Ct}t2[0,1] is a family of compact subsets in S
1 that is

continuous in the sense of Hausdorff.

Assume there is a continuous section c(t) 2 Ct, for t 2 [0, 1]. Since ⇡
is a covering map, we can lift the path c to a path c̃ : [0, 1] ! R such that
c̃(t) 2 C̃t for all t. In particular, c̃(t) ! 1 as t ! 0 � a contradiction.

The problem was suggested by Stephan Stadler. Here is a simpler,
closely related problem.� Show that any Hausdorff continuous family of

compact sets in R admits a continuous section.

The existence of sections for a family of sets
parametrized by a topological space was considered
by Ernest Michael [188–190].

Spaces with isometric balls. The needed ex-
amples can be constructed by cutting the upper
half-plane along a “dyadic comb” shown on the di-
agram; the obtained space should be equipped with
the intrinsic metric induced from the `1-norm on
the plane.

First, let us describe the comb precisely. Choose an infinite sequence
a0, a1, . . . of zeros and ones. Given an integer k, cut the upper half-plane
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along the line segment between (k, 0) and (k, 2m+1
) if m is the maximal

number such that

k ⌘ a0 + 2·a1 + · · ·+ 2
m�1

·am�1 (mod 2
m
);

If the equality holds for all m, cut the half-plane along the vertical half-line
starting at (k, 0).

Note that all the obtained spaces, independently from the sequence
(an), meet the conditions of the problem for the point x0 = (

1
2 , 0).

Further, note that the resulting spaces for two sequences (an) and (a0
n
)

are isometric only in the following two cases
⇧ if an = a0

n
for all large n, or

⇧ if an = 1� a0
n

for all large n.
It remains to produce two sequences that do not have these identities

for all large n; two random sequences of zeros and ones will do the job
with probability one.

Average distance. If such a number does not exist then the ranges of
average distance functions have empty intersection. Since X is a compact
length-metric space, the range of any continuous function on X is a closed
interval. By 1-dimensional Helly’s theorem, there is a pair of such range
intervals that do not intersect. That is, for two point-arrays (x1, . . . , xn)

and (y1, . . . , ym) and their average distance functions

f(z) = 1
n
·

X

i

|xi � z|X and h(z) = 1
m
·

X

j

|yj � z|X ,

we have

(⇤) min { f(z) | z 2 X } > max { h(z) | z 2 X } .

Note that

1
m
·

X

j

f(yj) =
1

m·n ·
X

i,j

|xi � yj |X =
1
n
·

X

i

h(xi);

that is, the average value of f(yj) coincides with the average value of
h(xi), which contradicts (⇤).

This is a result of Oliver Gross [191]. The value ` is called the ren-

dezvous value of X; in fact, it is uniquely defined.
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Actions and coverings

Bounded orbit
Recall that a metric space is called proper if all its bounded closed sets
are compact.� Let X be a proper metric space and ◆ : X ! X an isometry. Assume

that for some x 2 X, the sequence xn = ◆n(x), n 2 Z has a convergent

subsequence. Prove that the sequence xn is bounded.

Semisolution. Note that we can assume that the orbit {xn} is dense in
X; otherwise, we can pass to the closure of the orbit. In particular, we
can choose a finite number of positive integers n1, . . . , nk such that the
set of points {xn1 , . . . , xnk} is a 1-net for the ball B(x0, 10); that is, for
any x 2 B(x0, 10) there is xni such that

|x� xni | < 1.

Assume that xm 2 B(x0, 1) for some m. Then

B(xm, 10) = fm
(B(x0, 10)) � B(x0, 1).

In particular, {xm+n1 , . . . , xm+nk} is a 1-net for the ball B(x0, 1) There-
fore xm+ni 2 B(x0, 1) for some i 2 {1, . . . , k}.

Set N = maxi{ni}. Applying the above observation inductively, we
get that at least one point from any string xi+1, . . . xi+N lies in B(x0, 1).
In particular, the N balls

B(x1, 10), . . . , B(xN , 10)

cover whole X. Hence the result follows.

The problem is due to Aleksander Ca lka [192].

96
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Finite action

� Show that for any nontrivial continuous action of a finite group on

the unit sphere there is an orbit that does not lie in the interior of a

hemisphere.

Covers of the figure eight
Given a covering

f : X̃ ! X

of the length-metric space X, one can consider the induced length-metric
on X̃, defining the length of curve ↵ in X̃ as the length of the composition
f � ↵; the obtained metric space X̃ is called the metric covering of X.

Let us define the figure eight as the length-metric
space obtained by gluing together all four ends of two
unit segments.� Show that any compact length-metric space is a Gromov–Hausdorff

limit of a sequence (e�n, d̃/n) where

(e�n, d̃) ! (�, d),

are metric coverings of the figure eight (�, d).

Diameter of m-fold covering⇤

The metric covering is defined in the previous problem.� Let X be a length-metric space, and let X̃ be an m-fold metric covering

of X. Show that

diam X̃ 6 m· diamX.

The figure below shows a 5-fold covering with the diameter of the total
space being exactly 5 times the diameter of the target.

�!

Symmetric square�

Let X be a topological space. Note that X⇥X admits a natural Z2-action
generated by the involution (x, y) 7! (y, x). The quotient space X⇥X/Z2

is called the symmetric square of X.� Show that the symmetric square of any path-connected topological space

has a commutative fundamental group.
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Sierpiński gasket�

To construct the Sierpiński gasket, start with a solid
equilateral triangle, subdivide it into four smaller con-
gruent equilateral triangles and remove the interior of
the central one. Repeat this procedure recursively for
each of the remaining solid triangles.� Find the homeomorphism group of the Sierpiński gasket.

Lattices in a Lie group

� Let L and M be two discrete subgroups of a connected Lie group G,

and let h be a left-invariant metric on G. Equip the groups L and M with

the metric induced from G. Assume that L \ G and M \ G are compact

and

vol(L \ (G, h)) = vol(M \ (G, h)).

Prove that there is a bi-Lipschitz one-to-one mapping f : L ! M , not

necessarily a homomorphism.

Piecewise Euclidean quotient
Note that the quotient of the Euclidean space by a finite subgroup of
SO(m) is a polyhedral space as is defined on page 120; on the same page,
you can find the definition of piecewise linear homeomorphism.� Let � be a finite subgroup of SO(m). Denote by P the quotient R

m/�
equipped with the induced polyhedral metric. Assume that P admits a

piecewise linear homeomorphism to R
m

. Show that � is generated by

rotations around subspaces of codimension 2.

The action of the symmetric group Sm on C
m

= R
2·m by permutation

of complex coordinates provides a remarkable example. The homeomor-
phism C

m/Sm ! C
m can be given by symmetric polynomials on C

m;
that is, (z1, . . . , zm) 7! (a0, . . . , am�1), where

(z + z1) · · · (z + zm) = a0 + a1 ·z + · · ·+ am�1 ·z
m�1

+ zm.

This homeomorphism is isotopic to a piecewise linear homeomorphism.

Subgroups of a free group

� Show that every finitely generated subgroup of a free group is an in-

tersection of subgroups of finite index.
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Short generators�

� Let M be a compact Riemannian manifold and p 2 M . Show that the

fundamental group ⇡1(M,p) is generated by the homotopy classes of the

loops with length at most 2· diamM .

Number of generators

� Let M be a complete connected Riemannian manifold with non-negative

sectional curvature. Show that the minimal number of generators of the

fundamental group ⇡1M can be bounded above in terms of the dimension

of M .

An equation in a Lie group�

� Let G be a compact connected Lie group and n a positive integer. Show

that given a collection of elements g1, . . . , gn 2 G the equation

x·g1 ·x·g2 · · ·x·gn = e

has a solution x 2 G; here e is the identity element in G.

Quotient of the Hilbert space⇤

� Construct an isometric action on the Hilbert space with the quotient

space isometric to the sphere S
3
.

Semisolutions

Finite action. Without loss of generality, we may assume that the action
is generated by a nontrivial homeomorphism

a : Sm ! S
m

of prime order p.
Assume the contrary; that is, assume that any a-orbit lies in an open

hemisphere. Then

h(x) =
pX

n=1

an ·x 6= 0

for any x 2 S
m; here we consider S

m as the unit sphere in R
m+1.

Consider the map f : Sm ! S
m defined by f(x) = h(x)

|h(x)| . Note that
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(a) if a(x) = x, then f(x) = x;
(b) f(x) = f � a(x) for any x 2 S

m.
Note further that f is homotopic to the identity; in particular

(⇤) deg f = 1.

The homotopy can be defined by (x, t) 7! �x(t), where �x is the minimiz-
ing geodesic path in S

m from x to f(x). By construction, |x�f(x)|Sm < ⇡

2 ;
therefore �x is uniquely defined.

Choose x 2 S
m such that a(x) 6= x. Note that the group acts without

fixed points on the inverse image W = f�1
(V ) of a small open neigh-

borhood V 3 x. Therefore the quotient map ✓ : W ! W 0
= W/Zp is a

p-fold covering. By (b), the restriction f |W factors thru ✓; that is, there
is f 0

: W 0
! V such that f |W = f 0

� ✓.
Assume that p 6= 2. Note that f 0 and ✓ have well-defined degrees and

deg f ⌘ deg ✓· deg f 0
(mod p).

Since ✓ is a p-fold covering, we have deg ✓ ⌘ 0 (mod p). Therefore

(⇤⇤) deg f ⌘ 0 (mod p).

Finally, observe that (⇤) contradicts (⇤⇤).
In the case p = 2 the same proof works, but the degrees have to be

considered modulo 2.

Along the same lines, one can get a lower bound for the maximal
diameter of the orbits for any nontrivial action of a finite group on a
Riemannian manifold.

Applying the problem to the conjugate actions, one gets that if a fixed
point set of a finite group acting on a sphere has nonempty interior, then
the action is trivial. The same holds for any connected manifold. All this
was proved by Max Newman [193].

The following problem from [194] can be solved using Newman’s the-
orem.� Let h be a homeomorphism of a connected manifold M such that each

h-orbit is finite. Show that h has finite order.

Covers of the figure eight. First note that any compact length-metric
space K can be approximated by finite metric graphs.

Indeed, fix a finite "-net F in K. For each pair x, y 2 F choose a chain
of points x = x0, x1, . . . , xn = y such that |xi � xi�1|K < " for each i and

|x� y|K = |x0 � x1|K + · · ·+ |xn�1 � xn|K .
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Denote by F 0 the union of all these chains with F . Connect a pair of
vertices v, w 2 F 0 by an edge of length |v � w|K if |v � w|K < ". Note
that the obtained metric graph is " close to K in the Gromov–Hausdorff
metric.

Further, any finite metric graph can be approxi-
mated by a graph made from the fragments shown on
the diagram (we have to attach each pair of free ends
of one fragment to a pair of ends in another fragment).

It remains to observe that metric graphs obtained
from these fragments are finite coverings of (�, d/n).

The same idea works if instead of the figure eight,
we have a compact length-metric space X that admits a
map X ! � inducing an epimorphism of fundamental
groups. Such spaces X can be found among compact hyperbolic manifolds
of any dimension > 2. All this is due to Vedrin Šahović [195].

A similar idea was used later to show that any finitely presented
group can appear as a fundamental group of the underlying space of a
3-dimensional hyperbolic orbifold [196].

Diameter of m-fold covering. Choose points p̃, q̃ 2 M̃ . Let �̃ : [0, 1] !
! M̃ be a minimizing geodesic path from p̃ to q̃.

We need to show that

length �̃ 6 m· diamM.

Suppose the contrary.
Denote by p, q, and � the projections to M of p̃, q̃, and �̃ respectively.

Represent � as the concatenation of m paths of equal length,

� = �1⇤ . . . ⇤�m,

so
length �i =

1
m
· length � > diamM.

Let �i be a minimizing geodesic in M connecting the endpoints of �i.
Note that

length�i 6 diamM < length �i.

Consider m+ 1 paths ↵0, . . . ,↵m defined as the concatenations

↵i = �1⇤ . . . ⇤�i⇤�i+1⇤ . . . ⇤�m.

Let ↵̃0, . . . , ↵̃m be their liftings with q̃ as an endpoint. The starting
point of each curve ↵̃i is one of m inverse images of p. Therefore two
curves, ↵̃i and ↵̃j for i < j, have the same starting point in M̃ .
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Note that the concatenation

� = �1⇤ . . . ⇤�i⇤�i+1⇤ . . . ⇤�j⇤�j+1⇤ . . . ⇤�m.

admits a lift �̃ that connects p̃ to q̃ in M̃ . Clearly, length �̃ < length � �
a contradiction.

The question was asked by Alexander Nabutovsky and answered by
Sergei Ivanov [197]. A closely related problem for universal coverings is
discussed by Sergio Zamora in [198].

Symmetric square. Let � = ⇡1X and � = ⇡1((X ⇥X)/Z2). Consider
the homomorphism ' : �⇥�! � induced by the quotient map X⇥X !

! (X ⇥X)/Z2.
Note that '(↵, 1) = '(1,↵) for any ↵ 2 � and the restrictions '|�⇥{1}

and '|{1}⇥� are onto.
It remains to note that

'(↵, 1)·'(1,�) = '(1,�)·'(↵, 1)

for any ↵ and � in �.

The problem was suggested by Rostislav Matveyev.

Sierpiński gasket. Denote the Sierpiński gasket by 4.
Let us show that any homeomorphism of 4 is also an isometry. There-

fore its homeomorphism group is the symmetric group S3.

x

y

z

Let {x, y, z} be a 3-point set in 4 such that its com-
plement has 3 connected components. Show that there
is a unique choice for the set {x, y, z} and it is formed
by the midpoints of the long sides.

It follows that any homeomorphism of 4 permutes
the set {x, y, z}.

Applying a similar argument recursively to the smaller triangles, we
get that this permutation uniquely describes the homeomorphism.

The problem was suggested by Bruce Kleiner. The homeomorphism
group of the Sierpiński carpet is much more interesting [199].

Lattices in a Lie group. Denote by V` and Wm the Voronoi domains
for each ` 2 L and m 2 M respectively; that is,

V` = { g 2 G | |g � `|G 6 |g � `0|G for any `0 2 L } ,

Wm = { g 2 G | |g �m|G 6 |g �m0
|G for any m0

2 M } .

Note that for any ` 2 L and m 2 M , we have

(⇤) volV` = vol(L \ (G, h)) = vol(M \ (G, h)) = volWm.
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Consider the bipartite graph � with the parts L and M such that
` 2 L is adjacent to m 2 M if and only if V` \Wm 6= ?.

By (⇤) the graph � satisfies the condition of the marriage theorem
[200] � any subset S in L has at least |S| neighbors in M and the other
way around; here |S| denotes the number of elements in S. Therefore
there is a bijection f : L ! M such that

V` \Wf(`) 6= ?

for any ` 2 L.
It remains to observe that f is bi-Lipschitz.

The problem is due to Dmitri Burago and Bruce Kleiner [201]. For a
finitely generated group G, it is not known if G and G ⇥ Z2 can fail to
be bi-Lipschitz. (The groups are assumed to be equipped with the word
metric.)

`
the disc

x0

Piecewise Euclidean quotient. Note that
the group � is the holonomy group of the quo-
tient space P = R

m/�. More precisely, one can
identify R

m with the tangent space to a regular
point x0 of P in such a way that for any � 2 �

there is a loop ` based at x0 that runs in the
regular locus of P and has the holonomy �.

Choose � and ` as above. Since P is simply-
connected, we can shrink ` by a disk. By the
general position argument, we can assume that the disk only passes thru
simplices of codimension 0, 1 and 2 and intersects the simplices of codi-
mension 2 transversely.

In other words, ` can be presented as a product of loops such that
each loop goes around a single simplex of codimension 2 and comes back.
The holonomy for each of these loops is a rotation around a hyperplane.
Hence the result follows.

The converse of the problem also holds; it was proved by Christian
Lange [202]; his proof is based on earlier results of Marina Mikhailova
[203].

Note that the cone over the spherical suspension over the Poincaré
sphere is homeomorphic to R

5 and it is the quotient of R5 by the binary
icosahedral group, which is a subgroup of SO(5) of order 120. Therefore, if
one replaces “piecewise linear homeomorphism” with “homeomorphism” in
the formulation, then the answer will be different; a complete classification
of such actions is given in [202].

Subgroups of a free group. The proof exploits the fact that free groups
are fundamental groups of graphs.
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p̃

B̄(p̃, 2 1
2 )

Let F be a free group and G a finitely gen-
erated subgroup in F . We need to show that
G is an intersection of subgroups of finite in-
dex in F . Without loss of generality, we can
assume that F has a finite number of genera-
tors, denote it by m.

Let W be the wedge sum of m circles so
that ⇡1(W, p) = F . Equip W with the length-
metric such that each circle has unit length.

Pass to the metric covering W̃ of W such
that ⇡1(W̃ , p̃) = G for a lift p̃ of p.

Choose a sufficiently large integer n and consider the doubling of the
closed ball B̄(p̃, n +

1
2 ) along its boundary. Let us denote the obtained

doubling by Zn and set Gn = ⇡1(Zn, p̃).
Note that Zn is a metric covering of W ; this allows us to consider Gn

as a subgroup of F . By construction, Zn is compact; therefore Gn has a
finite index in F .

It remains to show that

G =

\

n>k

Gn,

where k is the maximal word length in the generating set of G.
Originally the problem was solved by Marshall Hall [204–206]. Our

proof is close to the solution of John Stallings [207, 208]. Note that the
statement does not hold for infinitely generated subgroups.

The same idea can be used to solve many other problems; here are
some examples.� Show that a subgroup of a free group is free.

� Show that two elements u and v of a free group commute if and only

if they are both powers of an element w.

Short generators. Choose a length-minimizing loop � that represents
a given element a 2 ⇡1M .

p

p1

pi. .
. �
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�
i

Choose " > 0. Represent � as a concatenation of paths
� = �1⇤ . . . ⇤�n such that

length �i < "

for each i.
Denote by p = p0, p1, . . . , pn = p the endpoints of

these arcs. Connect p with pi by a minimizing geodesic
�i. Note that � is homotopic to a product of loops

↵i = �i�1⇤�i⇤�̄i,
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where �̄i denotes the path �i traveled backward. In particular,

length↵i < 2· diamM + "

for each i.
Note that given ` > 0, there are only finitely many elements of the

fundamental group that can be realized by loops at p with length shorter
than `. It follows that for the right choice of " > 0, any loop ↵i is
homotopic to a loop of length at most 2· diamM . Hence the result follows.

The statement is due to Mikhael Gromov [Proposition 3.22 in 79].

Number of generators. Consider the universal Riemannian covering M̃
of M . Note that M̃ is non-negatively curved and ⇡1M acts by isometries
on M̃ .

Choose p 2 M̃ . Given a 2 ⇡1M , set

|a| = |p� a·p|
M̃
.

Consider the so-called short basis in ⇡1M ; that is, a sequence of ele-
ments a1, a2, . . . 2 ⇡1M defined in the following way:

(i) choose a1 2 ⇡1M so that |a1| takes the minimal value,
(ii) choose a2 2 ⇡1M \ ha1i so that |a2| takes the minimal value,
(iii) choose a3 2 ⇡1M \ ha1, a2i so that |a3| takes the minimal value, and

so on.
Note that the sequence terminates at the n-th step if a1, . . . , an gen-

erate ⇡1M . By construction, we have

|aj ·a
�1
i

| > |aj | > |ai|

for any j > i. Set pi = ai ·p. Note that

|pj � pi|M̃ = |aj ·a
�1
i

| >
> |aj | =

= |pj � p|
M̃

>
> |ai| =

= |pi � p|
M̃
.

By the Toponogov comparison theorem we get

][p pi
pj
] > ⇡

3 .

That is, the directions from p to all pi make an angle of at least ⇡

3 with
each other.
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Therefore the number of points pi can be bounded in terms of the
dimension of M . Hence the result follows.

The short-basis construction, as well as the result above are due to
Mikhael Gromov [19].

An equation in a Lie group. We will assume that G is equipped with
a bi-invariant metric. In particular, geodesics starting at the identity
element e 2 G are given by homomorphisms R ! G.

Consider the map ' : G ! G defined by

'(x) = x·g1 ·x·g2 · · ·x·gn.

We need to show that ' is onto. Note that it is sufficient to show that '
has a non-zero degree.

The map ' is homotopic to the map  : x 7! xn. Therefore it is
sufficient to show that

(⇤) deg 6= 0

Note that the claim (⇤) follows from (⇤⇤).

(⇤⇤) For any x 2 G the differential

dx : TxG ! TxnG

does not revert orientation.

Indeed, connect e to a given point y 2 G by a geodesic path �, so
�(0) = e and �(1) = y. Since � : R ! G is a homomorphism,  (x) = y
for x = �( 1

n
). In particular, the inverse image  �1

{y} is nonempty for
any y 2 G.

By (⇤⇤), for a regular value y, each point in the inverse image  �1
{y}

contributes 1 to the degree of  . Hence (⇤) follows.
It remains to prove (⇤⇤). Given an element g 2 G, denote by Lg and

Rg the left and right shift G ! G respectively; that is, Lg(x) = g ·x and
Rg(x) = x·g.

Identify the tangent spaces TxG and TxnG with the Lie algebra g =

= TeG using dRx : g ! TxG and dRn

x
: g ! TxnG respectively. Then for

any V 2 g, we have

dx (V ) = V +Adx(V ) + · · ·+Ad
n�1
x

(V ),

where Adx = de(Lx �Rx�1) : g ! g. Since the metric on G is bi-invariant,
Adx is an isometry of g. It remains to note that the linear transformation

V 7! V + T (V ) + · · ·+ Tn�1
(V )
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cannot revert orientation for any isometric linear transformation T of the
Euclidean space. The last statement is an exercise in linear algebra.

The idea of this solution is due to Murray Gerstenhaber and Oscar
Rothaus [209]. In fact, the degree of g is nk, where k is the rank of G
[210].

Quotient of Hilbert space. We consider S
3 as the set of unit quater-

nions; in particular, it has a group structure.
Let H be the set of paths of class W 1,2 in S

3 starting at the identity
element e; that is, the path’s velocity is square-integrable. The pointwise
multiplication of paths defines a group structure on H. Denote by ⌦ the
subset of all loops in H.

It remains to equip H with the structure of a Hilbert space so that the
right action of ⌦ on H is isometric and the quotient is isometric to S

3.

We will prove the statement for any connected Lie group G with a
bi-invariant metric; in particular, for G = S

3. Denote by g = TeG the Lie
algebra of G. Equip G with a bi-invariant metric, and let h⇤, ⇤ig be the
corresponding scalar product in g.

Consider the Hilbert space H of all L2-functions f : [0, 1] ! g with the
scalar product defined by

hf, gi =
1w

0

hf(t), g(t)ig ·dt.

Construction of the quotient map ' : H ! G. Given v 2 g, denote by ṽ
the corresponding right-invariant tangent field on G.

Given f : [0, 1] ! g in H, consider the path

�f : [0, 1] ! G

with �f (0) = 1 and �0
f
(t) = f̃(t) for any t.

The map ' : H ! G is the evaluation map ' : f 7! �f (1). Since G is
connected, ' is onto.

Group structure on H. Note that the functional f 7! �f is an injective
map from H to the space of paths in G starting at e.

Given ↵ 2 G, we denote by Ad↵ : g ! g its the adjoint transfor-
mation; that is, Ad↵ = de Inn↵, where Inn↵ : x 7! ↵·x·↵�1 is the inner
automorphism of G. Note that Ad↵ preserves the scalar product on g.

Consider the multiplication ? on H defined by

(⇤) (h ? f)(t) = h(t) + Ad�h(t)[f(t)].
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Note that
�h?f (t) = �h(t)·�f (t)

for any t 2 [0, 1]. In particular, (H, ?) is a group with neutral element 0.
From (⇤), we get

(h ? f)(t)� (h ? g)(t) = Ad�h(t)(f(t)� g(t))

and therefore

|(f ? h)(t)� (g ? h)(t)| = |f(t)� g(t)|

for any t. It follows that for any fixed h, the transformation f 7! h ? f is
an affine isometry of H.

The set ⌦ = '�1
{e} is a subgroup of (H, ?); it can be viewed as the

group of W 1,2-loops in G. It remains to note that ' : H ! G is the
quotient map for the right action of ⌦ on H.

Alternative solution. Again, we will prove the statement for any connected
Lie group G with a bi-invariant metric.

Denote by Gn the direct product of n copies of G. Consider the map
'n : Gn

! G defined by

'n : (↵1, . . . ,↵n) 7! ↵1 · · ·↵n.

Note that 'n is the quotient map for the Gn�1-action on Gn defined by

(�1, . . . ,�n�1)·(↵1, . . . ,↵n) = (↵1 ·�
�1
1 ,�1 ·↵2 ·�

�1
2 , . . . ,�n�1 ·↵n).

Denote by ⇢n the product metric on Gn rescaled with factor
p
n. Note

that the quotient (Gn, ⇢n)/Gn�1 is isometric to G = (G, ⇢1).
As n ! 1 the curvature of (Gn, ⇢n) converges to zero and its injec-

tivity radius goes to infinity. Therefore passing to the ultra-limit of Gn

as n ! 1 we get a Hilbert space. It remains to observe that the limit
action has the required property.

This construction is given by Chuu-Lian Terng and Gudlaugur Thor-
bergsson [see section 4 in 211]; the alternative solution was suggested by
Alexander Lytchak.

Instead of the group ⌦, one could consider the subgroup ⌦H of paths
� : [0, 1] ! G such that the pair (�(0), �(1)) belongs to a given subgroup
H < G ⇥ G. In this case, the quotient H/⌦H is isometric to the dou-

ble quotient G//H; that is, the quotient of the action on G defined by
(h1, h2)·g = h1 ·g ·h

�1
2 for (h1, h2) 2 H < G⇥G.

The following question is open.
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� Suppose R is a compact simply-connected Riemannian manifold that

is isometric to a quotient of the Hilbert space by a group of isometries (or

more generally R is the target of Riemannian submersion from a Hilbert

space). Is it true that R is isometric to a double quotient? That is, is it

true that R is a quotient of compact Lie group G by a group of isometries?



Chapter 7

Topology

In this chapter, we consider geometrical problems with strong topological
flavor. A typical introductory course in topology, say [212], contains all
the necessary material.

Isotopy
Recall that an isotopy is a continuous one-parameter family of embed-
dings.� Let K1 and K2 be homeomorphic closed subsets of the coordinate sub-

space R
m

in R
2·m

. Show that there is a homeomorphism

h : R2·m
! R

2·m

such that K2 = h(K1). Moreover, h can be chosen to be isotopic to the

identity map.

Semisolution. Choose a homeomorphism ' : K1 ! K2.
By the Tietze extension theorem, the homeomorphisms ' : K1 ! K2

and '�1
: K2 ! K1 can be extended to continuous maps; denote these

maps by f : Rm
! R

m and g : Rm
! R

m respectively.

R
m

R
m

K1 K2

h1

h2

h3

Consider homeomorphisms h1,
h2, and h3 of Rm

⇥ R
m defined in

the following way:

h1(x, y) = (x, y + f(x)),

h2(x, y) = (x� g(y), y),

h3(x, y) = (y,�x).

110
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It remains to observe that each homeomorphism hi is isotopic to the
identity map and

K2 = h3 � h2 � h1(K1). ⇤

This construction is due to Victor Klee [213] and it is called Klee’s

trick. This trick is used in the five-line proof of the Jordan separation
theorem by Patrick Doyle [214]; a proof of the separation theorem for
embeddings S

n ,! S
n+1 can be given using the same idea [215].

The problem “Monotonic homotopy” on page 133 looks similar.

Immersed disks

Two immersions f1 and f2 of the disk D into the plane will be called
essentially different if there is no diffeomorphism h : D ! D such that
f1 = f2 � h.

� Construct two essentially different smooth immersions of the disk into

the plane that coincide near the boundary.

Positive Dehn twist

h
��!

Let ⌃ be a surface and

� : R/Z ! ⌃

be a non-contractible closed simple curve.
Let U� be a neighborhood of � that admits
a parametrization

◆ : R/Z⇥ (0, 1) ! U� .

A Dehn twist along � is a homeomorphism h : ⌃! ⌃ that is the identity
outside of U� and such that

◆�1
� h � ◆ : (x, y) 7! (x+ y, y).

If ⌃ is oriented and ◆ is orientation preserving, then the Dehn twist
described above is called positive.

� Let ⌃ be a compact oriented surface with nonempty boundary. Prove

that any composition of positive Dehn twists of ⌃ is not homotopic to the

identity relative to the boundary.

In other words, any product of positive Dehn twists represents a non-

trivial class in the mapping class group of ⌃.
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Conic neighborhood

Let p be a point in a topological space X. We say that an open neighbor-
hood U 3 p is conic if there is a homeomorphism from a cone to U that
sends the vertex to p.

� Show that any two conic neighborhoods of one point are homeomorphic

to each other.

Note that two cones Cone(⌃1) and Cone(⌃2) might be homeomorphic
while ⌃1 and ⌃2 are not; the existence of such examples follows from the
double suspension theorem.

Unknots�

� Prove that the set of smooth embeddings f : S1 ! R
3

equipped with the

C0
-topology forms a connected space.

Stabilization

� Construct two compact subsets K1,K2 ⇢ R
2

such that K1 is not

homeomorphic to K2, but K1 ⇥ [0, 1] is homeomorphic to K2 ⇥ [0, 1].

Homeomorphism of a cube

� Let ⇤ be a cube in R
m

and h : ⇤ ! ⇤ be a homeomorphism that sends

each face of ⇤ to itself. Extend h to a homeomorphism f : Rm
! R

m
that

coincides with the identity map outside of a bounded set.

Finite topological space�

� Given a finite topological space F , construct a finite simplicial complex

K that admits a weak homotopy equivalence K ! F .

Dense homeomorphism�

� Denote by H be the set of all orientation preserving homeomorphisms

S
2
! S

2
equipped with the C0

-metric. Show that there is a homeomor-

phism h 2 H such that its conjugations a � h � a�1
for all a 2 H form a

dense set in H.
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Simple path�

� Let p and q be distinct points in a Hausdorff topological space X.

Assume that p and q are connected by a path. Show that they can be

connected by a simple path; that is, there is an injective continuous map

� : [0, 1] ! X such that �(0) = p and �(1) = q.

(This statement might be intuitively obvious, but its proof is not sim-
ple.)

Path on a surface�

� Show that any path with distinct ends in a surface is homotopic (rel-

ative to the ends) to a simple path.

Semisolutions

Immersed disks. Both circles on the picture bound
essentially different disks.

On the first diagram, the dashed lines and the
solid lines together bound three embedded disks;
gluing these disks along the dashed lines gives the
first immersion. The reflection of this immersion
across the vertical line of symmetry gives another
essentially different immersion.

It is a good exercise to count the essentially different disks in the
second example. (The answer is 5.)

The existence of examples of that type is gener-
ally attributed to John Milnor [216].

An easier problem would be to construct two
essentially different immersions of annuli with the
same boundary curves; a solution is shown on the
picture [for more details and references see 217].

Positive Dehn twist. Consider the universal covering f : ⌃̃ ! ⌃. The
surface ⌃̃ has a boundary and it comes with the orientation induced from
⌃.

Choose a point x0 on the boundary @⌃̃. Given two other points y and
z in @⌃̃, we will write z � y if y lies on the right side from a simple curve
from x0 to z in ⌃̃. Note that � defines a linear order on @⌃̃ \ {x0}. We
will write z ⌫ y if z � y or z = y.
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x0

z y⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃
Note that any homeomorphism h : ⌃ ! ⌃ iden-

tical on the boundary lifts to the unique homeomor-
phism h̃ : ⌃̃! ⌃̃ such that h̃(x0) = x0. The following
claim is the key step in the proof:

(⇤) If h is a positive Dehn twist along a closed curve �, then y ⌫ h̃(y)
for any y 2 @⌃̃ \ {x0} and y0 � h̃(y0) for some y0 2 @⌃̃ \ {x0}.

Note that the problem follows from (⇤). Indeed, the property in (⇤) is
a homotopy invariant and it survives under compositions of maps.

If ⌃ is not an annulus, then by the uniformization theorem we can
assume that ⌃ has a hyperbolic metric with geodesic boundary; the lifted
metric on ⌃̃ has the same properties. Furthermore, we can assume that
(1) � is a closed geodesic, (2) the parametrization ◆ : R/Z ⇥ (0, 1) ! U�

from the definition of Dehn twist is rotationally symmetric and (3) for
any u 2 R/Z the arc ◆(u⇥ (0, 1)) is a geodesic perpendicular to �.

Consider the polar coordinates (', ⇢) on ⌃̃ with the origin at x0; since
x0 lies on the boundary, the angle coordinate ' is defined in [0,⇡]. By
construction of the Dehn twist, we get

'(x) > ' � h̃(x)

for any x 6= x0, and if the geodesic [x0x] crosses f�1
(U�), then

'(x) > ' � h̃(x).

In particular, if x lies on the boundary then h̃(x) lies on the right of the
geodesic [x0x]; hence the claim (⇤) follows.

'(x)

x0

x h̃(x)

f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)f�1
(U�)

f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)f�1
(�)

If ⌃ is an annulus, then the same argument works except we have to
choose a flat metric on ⌃. In this case, ⌃̃ is a strip between two parallel
lines in the plane, see the diagram.

Note that if the surface has an empty boundary, then the answer is
different:
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� Construct a composition of positive Dehn twists on a compact oriented

surface without boundary that is homotopic to the identity.

I learned the problem from Rostislav Matveyev. The described con-
struction was given by Hamish Short and Bert Wiest [218] and attributed
to William Thurston.

It turns out that there is no upper bound on the length of the product.
Namely, there is a compact oriented surface ⌃ with a nonempty boundary
and a homeomorphism f : ⌃ ! ⌃ that does not move boundary points
such that f is homotopic relative to the boundary to an arbitrary long
product of positive Dehn twists. Such an example was constructed by
Refik İnanç Baykur and Jeremy Van Horn-Morris [219]; see also [220].

Conic neighborhood. Let V and W be two conic neighborhoods of p.
Without loss of generality, we may assume that V b W ; that is, the
closure of V lies in W .

We will need to construct a sequence of embeddings fn : V ! W such
that

⇧ For any compact set K ⇢ V there is a positive integer n = nK such
that fn(k) = fm(k) for any k 2 K and m,n > nK .

⇧ For any point w 2 W there is a point v 2 V such that fn(v) = w
for all large n.

Note that once such a sequence is constructed, f : V ! W defined by
f(v) = fn(v) for all large values of n gives the needed homeomorphism.

The sequence fn can be constructed recursively

fn+1 =  n � fn � �n,

where �n : V ! V and  n : W ! W are homeomorphisms of the form

�n(x) = 'n(x) ⇤ x and �n(x) =  n(x) ? x,

where 'n : V ! R>0,  n : W ! R>0 are suitable continuous functions;
“⇤” and “?” denote the multiplication in the cone structures of V and W
respectively.

The problem is due to Kyung Whan Kwun [221].

Unknots.

Observe that it is possible to draw an arbitrary tight knot while keep-
ing it smoothly embedded at all times including the last moment.
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This problem was suggested by Greg Kuperberg.
Stabilization. The example can be guessed from the diagram.

K1 K2

The two sets K1 and K2 are sub-
spaces of the plane, each one being a
closed annulus with two attached line
segments. In K1 one segment is at-
tached from the inside and another
from the outside; in K2 both segments
are attached from the outside.

The product spaces K1 ⇥ [0, 1] and K2 ⇥ [0, 1] are solid tori with
attached rectangles. A homeomorphism K1 ⇥ [0, 1] ! K2 ⇥ [0, 1] can be
constructed by twisting a part of one solid torus.

To prove the nonexistence of a homeomorphism K1 ! K2 consider
the sets of cut points Vi ⇢ Ki and the sets Wi ⇢ Ki of points that
admit a punctured simply-connected neighborhood. Note that the set
Vi is the union of the attached line segments and Wi is the boundary of
the annulus without points where the segments are attached. Note that
Vi [ Wi = @Ki; in particular, a homeomorphism K1 ! K2 (if it exists)
sends @K1 to @K2.

Finally, note that each @Ki has two connected components and V1

intersects both components of @K1 while V2 lies in one component of
@K2. Hence K1 � K2.

It should be an old puzzle; I learned it from Maria Goluzina around
1988.
Homeomorphism of a cube. Let us extend the homeomorphism h to
R

m by reflecting the cube across its facets. We get a homeomorphism
h̃ : Rm

! R
m such that h̃(x) = h(x) for any x 2 ⇤ and

h̃ � � = � � h̃,

where � is any reflection with respect to the facets of the cube.
Without loss of generality, we may assume that the cube ⇤ is inscribed

in the unit sphere centered at the origin of R
m. In this case, h̃ has

displacement at most 2; that is,

|h̃(x)� x| 6 2

for any x 2 R
m.

Choose a smooth increasing function ' : R>0 ! R such that '(r) = r
for r 6 1 and '(r) ! 2 as r ! 1.

Equip R
m with polar coordinates (u, r), where u 2 S

m�1, r > 0.
Consider a homeomorphism � from R

m to an open ball of radius 2 defined
by

�(u, r) = (u,'(r)).
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⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤⇤

Set

f(x) =

"
x if |x| > 2,

� � h̃ � �
�1

(x) if |x| < 2.

It remains to observe that f : Rm
! R

m is
a solution.

This problem is stripped from the proof
of Robion Kirby [222]. The condition that
each face is mapped to itself can be removed
and instead of homeomorphism one could
take any embedding close to the identity.

An interesting twist to this idea was given by Dennis Sullivan [see 167
and also 5.10 in 168]. Instead of the discrete group of motions of the Eu-
clidean space, he uses a discrete group of motions of the hyperbolic space
in the conformal disk model. To see the idea, note that the construction
of h̃ can be done for a Coxeter polytope in the hyperbolic space instead of
a cube.1 Then the constructed map h̃ coincides with the identity on the
absolute and therefore the last “shrinking” step in the proof above is not
needed. Moreover, if the original homeomorphism is bi-Lipschitz, then
the Sullivan construction produces a bi-Lipschitz homeomorphism � this
is its main advantage.

Finite topological space. Given a point p 2 F , denote by Op the
minimal open set in F containing p. Note that we can assume that F is
a connected T0-space; in particular, Op = Oq if and only if p = q.

Let us write p 4 q if Op ⇢ Oq. Evidently, 4 is a partial order on F .
Let us construct a simplicial complex K by taking F as the set of

vertices and declaring a collection of vertices to be a simplex if it can be
linearly ordered with respect to 4.

Given k 2 K, consider the minimal simplex (f0, . . . , fm) 3 k; we can
assume that f0 4 · · · 4 fm. Set h : k 7! f0; it defines a map K ! F .

It remains to check that h is continuous and induces isomorphisms for
all the homotopy groups.

In a similar fashion, one can construct a finite topological space F
for any given simplicial complex K such that there is a weak homotopy
equivalence K ! F . Both constructions are due to Pavel Alexandrov
[225, 226].

Dense homeomorphism. Note that there is a countable set of homeo-
morphisms h1, h2, . . . that is dense in H such that each hn fixes all the
points outside an open round disk, say Dn.

1By Vinberg’s theorem [223, 224] hyperbolic space of large dimension has no Coxeter
polytopes, but the idea works after some modifications.
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Choose a countable disjoint collection of round disks D0
n
. Consider the

homeomorphism h : S2 ! S
2 that fixes all the points outside of

S
n
D0

n

and for each n, the restriction h|D0
n

is conjugate to hn|Dn .
Note that for large n, the homeomorphism h is conjugate to a home-

omorphism close to hn. Therefore h is a solution.

The problem was mentioned by Frederic Le Rox [227] on a problem
section at a conference in Oberwolfach, where he also conjectured that
this is not true for the area-preserving homeomorphisms. An affirmative
answer to this conjecture was given by Daniel Dore, Andrew Hanlon,
and Sobhan Seyfaddini [228, 229]. In particular, it implies the following
seemingly evident but nontrivial statement.� Given " > 0, there is � > 0 such that

⌦ \ h(⌦) 6= ?

for any topological disk ⌦ ⇢ S
2

with area at least " and any area-preserving

homeomorphism h : S2 ! S
2

with displacement at most �; that is, such

that |h(x)� x|S2 < � for any x 2 S
2
.

Simple path. We will give two solutions, the first one is elementary and
the second one is involved.

First solution. Let ↵ be a path connecting p to q.
Passing to a subinterval if necessary, we can assume that ↵(t) 6= p, q

for t 6= 0, 1.
An open set ⌦ in (0, 1) will be called suitable if, for any connected

component (a, b) of ⌦, we have ↵(a) = ↵(b). Since the union of nested
suitable sets is suitable, we can find a maximal suitable set ⌦̂.

Define �(t) = ↵(a) for any t in a connected component (a, b) ⇢ ⌦.
Note that � is continuous and monotonic; that is, for any x 2 [0, 1] the
set ��1

{�(x)} is connected.
It remains to reparametrize � to make it injective. In other words, we

need to construct a non-decreasing surjective function ⌧ : [0, 1] ! [0, 1]
such that ⌧(t1) = ⌧(t2) if and only if there is a connected component (a, b)
such that t1, t2 2 [a, b]. The construction is similar to the construction of
the devil’s staircase.

Second solution. Note that one can assume that X coincides with the
image of ↵. In particular, X is a connected locally connected compact
Hausdorff space.

Any such space admits a length-metric. This statement is not at all
trivial; it was conjectured by Karl Menger [230] and proved independently
by R. H. Bing [231, 232] and Edwin Moise [233].
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It remains to consider a geodesic path from p to q.

The problem was inspired by a lemma proved by Alexander Lytchak
and Stefan Wenger [see 7.13 in 234].

Path on a surface. Denote the surface by ⌃; assume that the path runs
from p to q. The following picture suggests an idea for an induction on
the number of self-crossings.

To do the proof formally, let us present the path as a concatenation
↵ ⇤ � of two paths such that ↵ is simple and � does not pass thru p. We
can assume that � : [0, 1] ! ⌃ is smooth.

Choose a smooth time-dependent vector field Vt on ⌃ such that

Vt(�(t)) = �0
(t) and Vt(p) = 0

for any t 2 [0, 1].
Consider the flow �

t
: ⌃! ⌃ along Vt; that is,

�
0
(x) = x and d

dt
(�

t
(x)) = Vt(�

t
(x))

for any t 2 [0, 1] and x 2 ⌃. The map �1
: ⌃ ! ⌃ is a diffeomorphism;

in particular, �1 sends the simple path ↵ to a simple path ↵1 = �
1
� ↵.

By construction ↵1(1) = q. Since Vt(p) = 0 for any t, we have ↵1(0) = p.
That is, the path ↵1 runs from p to q.

It remains to show that ↵1 is homotopic to ↵ ⇤ � relative to the ends.
Set ↵⌧ = �

⌧
�↵ and denote by �⌧ the path running along � from �(⌧) to

q; that is,
�⌧ (t) = �(⌧ + 1

1�⌧
·t).

The concatenation ↵⌧ ⇤ �⌧ provides a homotopy from ↵ ⇤ � to ↵1 ⇤ �1.
Since �1 is a constant path, ↵⇤� is homotopic to ↵1. Hence the statement
follows.

This is a stripped version of the problem suggested by Jaros law Kędra
[2]; it was used by Michael Khanevsky [Lemma 3 in 235].
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Piecewise linear geometry

A polyhedral space is a complete length-metric space that admits a locally
finite triangulation such that each simplex is isometric to a simplex in
a Euclidean space. By a triangulation of a polyhedral space, we always
mean a triangulation of that type.

A point in a polyhedral space is called regular if it has a neighborhood
isometric to an open set in a Euclidean space; otherwise, it is called
singular.

If we replace the Euclidean spaces by the unit spheres or the hyperbolic
spaces, we arrive at the definition of spherical and hyperbolic polyhedral

spaces respectively.
The term piecewise typically means that there is a triangulation with

some property on each triangle. For example, if P and Q are polyhedral
spaces, then

⇧ a map f : P ! Q is called piecewise distance-preserving if there is a
triangulation T of P such that for any simplex� 2 T the restriction
f |� is distance-preserving;

⇧ a map h : P ! Q is called piecewise linear if both spaces P and
Q admit triangulations such that each simplex of P is mapped to
a simplex of Q by an affine map. In particular, a piecewise linear

homeomorphism is a piecewise linear map which is a homeomor-
phism.

Spherical arm lemma
Recall that a polygon without self-intersections is called simple.� Let A = [a1 . . . an] and B = [b1 . . . bn] be two simple spherical polygons

with equal corresponding sides. Assume that A lies in a hemisphere and

]ai > ]bi for each i. Show that A is congruent to B.

120
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Semisolution. Cut out A from the sphere and glue B in its place. Denote
by ⌃ the obtained spherical polyhedral space. Note that

⇧ ⌃ is homeomorphic to S
2.

⇧ ⌃ has curvature > 1 in the sense of Alexandrov; that is, the total
angle around each singular point is less than 2·⇡.

⇧ All the singular points of ⌃ lie outside of an isometric copy of a
hemisphere S

2
+ ⇢ ⌃.

Denote by n the number of singular points in ⌃. It is sufficient to
show that n = 0.

Assume the contrary; that is, n > 1. We can assume that n takes the
minimal possible value.

Clearly, n > 1; that is, ⌃ cannot have a single singular point. There-
fore we can choose two singular points p, q 2 ⌃. Cut ⌃ along a geodesic
[pq]. The obtained hole can be patched so that we obtain a new polyhe-
dral space ⌃0 of the same type but with n� 1 singular points. Since n is
minimal, we arrive at a contradiction.

Namely, if the total angles around p and q are 2·⇡ � ↵ and 2·⇡ � �
respectively, consider the spherical triangle 4 with the base |p� q|⌃ and
the adjacent angles ↵

2 , �

2 . The needed patch is obtained by doubling 4

along its lateral sides.

Alternative end of the proof. By the Alexandrov embedding theorem, ⌃
is isometric to the surface of a convex polyhedron P in the unit sphere
S
3. The center of the hemisphere has to lie in a facet of P , say F . It

remains to note that F contains the equator and therefore P has to be a
hemisphere in S

3 or an intersection of two hemispheres. In both cases, its
surface is isometric to S

2.

The problem is due to Victor Zalgaller [236]; the result of Victor To-
ponogov in [237] gives a smooth analog of this statement. The patch
construction above was introduced by Aleksandr Alexandrov in his proof
of convex embeddability of polyhedra [see VI, §7 in 238]. The alternative
end of the proof is taken from [131].

Triangulation of 3-sphere

� Construct a triangulation of S
3

with 100 vertices such that any two

vertices are connected by an edge.

Folding problem

� Let P be a compact 2-dimensional polyhedral space. Construct a piece-

wise distance-preserving map f : P ! R
2
.
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Piecewise distance-preserving extension

� Prove that any 1-Lipschitz map from a finite subset F ⇢ R
2

to R
2

can

be extended to a piecewise distance-preserving map R
2
! R

2
.

Closed polyhedral surface

� Construct a closed polyhedral surface ⌃ in R
3

with nonpositive curva-

ture; that is, the total angle around each vertex of ⌃ is at least 2·⇡.

Minimal polyhedral disk
By a polyhedral disk in R

3 we mean a triangulation of a plane polygon
P with a map P ! R

3 that is affine on each triangle. The area of the
polyhedral disk is defined as the sum of areas of the images of the triangles
in the triangulation.� Consider the class of polyhedral disks glued from n triangles in R

3
with

a fixed broken line as the boundary. Let ⌃n be a disk of minimal area in

this class. Show that ⌃n is a saddle surface; that is, a plane cannot cut

all the edges coming from one of the interior vertices of ⌃n.

Coherent triangulation�

A triangulation of a convex polygon is called coherent if there is a convex
function that is linear on each triangle and changes its gradient on every
edge of the triangulation.� Find a non-coherent triangulation of a triangle.

Sphere with one edge⇤

� Construct a polyhedral space that is homeomorphic to S
3

and such that

its singular locus is formed by a circle.

Triangulation of a torus

� Show that the torus does not admit a triangulation such that one vertex

has 5 edges, one has 7 edges and all other vertices have 6 edges.

No simple geodesics�

� Construct a convex polyhedron P whose surface does not have a closed

simple geodesic.
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Semisolutions

Triangulation of 3-sphere. Choose 100 distinct points p1 . . . , p100 on
the moment curve

� : t 7! (t, t2, t3, t4)

in R
4. Denote by P the convex hull of {p1, . . . , p100}.

The surface of P is homeomorphic to S
2. Therefore it is sufficient to

show that any two vertices of P are connected by an edge. The latter
follows from the following claim.

(⇤) Given two points p and q on �, there is a hyperplane H in R
4

that

intersects � only at p and q and leaves � on one side.

To prove the claim, assume that p = �(t1) and q = �(t2). Consider
the polynomial

f(t) = a+ b·t+ c·t2 + d·t3 + t4 = (t� t1)
2
·(t� t2)

2.

Clearly, f(t) > 0, and the equality holds only at t1 and t2. It follows that
the affine function ` : R4

! R defined by

` : (w, x, y, z) 7! a+ b·w + c·x+ d·y + z

is nonnegative at the points of � and vanishes only at p and q. Therefore
the zero-set of ` is the required hyperplane H in (⇤).

The polyhedron P above is an example of the so-called cyclic polytopes.

Folding problem. Given a triangulation of P , consider the Voronoi
domain Vv for each vertex v; that is, Vv is the set of all points in P
closer to v than to any other vertex. Note that the triangulation can
be subdivided if necessary so that the Voronoi domain of each vertex is
isometric to a convex subset in the cone with the vertex at its tip.

The boundaries of all the Voronoi domains form a graph with straight
edges. Let us triangulate P so that each triangle has one of those edges
as the base and the opposite vertex is the center of an adjacent Voronoi
domain; such a vertex will be called the main vertex of the triangle.

✓

a

b

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Choose a solid triangle 4 = [vab] in
the constructed triangulation; let v be
its main vertex. Given a point x 2 4,
set

⇢(x) = |x� v|

and

✓(x) = min{][v a

x
],][v b

x
]}.
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Let us map x to the point with polar coordinates (⇢(x), ✓(x)) in the plane.
Note that for each triangle 4, the constructed map 4 ! R

2 is piece-
wise distance-preserving. It remains to check that these maps agree on
the common sides of the triangles.

This construction was given by Victor Zalgaller [239]. Svetlana Krat
generalized the statement to higher dimensions [240].

Piecewise distance-preserving extension. Let a1, . . . , an and b1, . . .
. . . , bn be two collections of points in R

2 such that

|ai � aj | > |bi � bj |

for all pairs i, j. We need to construct a piecewise distance-preserving
map f : R2

! R
2 such that f(ai) = bi for each i.

Assume that the problem is already solved for n < m; let us do the
case n = m. By assumption, there is a piecewise linear length-preserving
map f : R2

! R
2 such that f(ai) = bi for each i > 1.

Consider the set

⌦ =
�
x 2 R

2
�� |f(x)� b1| > |x� a1|

 
.

Since |ai � a1| > |bi � b1|, we get ai /2 ⌦ for i > 1.
Note that we can assume that the map f and therefore the set ⌦ are

bounded. Indeed, let ⇤ be a square containing all the points bi. There
is a piecewise isometric map h : R2

! ⇤ obtained by folding plane along
the lines of the grid defined by ⇤. Then the composition h � f is bounded
and it satisfies all the properties of f described above.

If ⌦ = ?, then f(a1) = b1; that is, f is a solution. It remains to
consider the case ⌦ 6= ?.

Note that ⌦ is star-shaped with respect to a1. Indeed, if x 2 ⌦, then
|a1 � x| < |b1 � f(x)|. If y 2 [a1x] then |a1 � y|+ |y � x| = |a1 � x| and
since f is length-preserving we get |f(x)�f(y)| 6 |x�y|. By the triangle
inequality, |a1 � y| < |b1 � f(y)|; that is, y 2 ⌦.
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The boundary @⌦ can be subdivided
into a finite collection of line segments
{Ei} so that f maps rigidly each Ei.
Note that

|f(x)� b1| = |x� a1|

for any x 2 Ei. Denote by Ti the trian-
gle with the base Ei and the vertex a1.
From the above, there is a rigid motion
mi of Ti such that mi(x) = f(x) for any
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x 2 Ei and mi(a1) = b1. Let us redefine the map f in ⌦ by sending x to
mi(x) for any x 2 Ti.

The maps mi agree on the common sides of triangles Ti. Therefore we
have produced a new piecewise isometric map f 0

: R
2
! R

2 satisfying all
the requirements.

The same proof works in all dimensions.
The statement was proved by Ulrich Brehm and rediscovered by Ar-

seniy Akopyan and Alexey Tarasov [see 241, 242, and Section 2 in 175].

Closed polyhedral surface. An example can be constructed by drilling
a polyhedral cave in your favorite convex polyhedron. On the diagram,
you see the result of this construction for the octahedron.

Choose a convex polyhedron K. We
can assume that the interior of K contains
the origin 0 2 R

3. Remove from K the
interior of K 0

=
4
5 ·K.

Note that one can drill from each ver-
tex of K a polyhedral tunnel to the corre-
sponding vertex of K 0 so that the surface
⌃ of the obtained non-convex polytope is a
solution.

The problem suggested by Jaros law
Kędra.

The given construction above produces
a surface of genus at least 3. Another ex-
ample shown on the diagram is isometric
to a flat torus. It is a bent version of the
so-called Schwarz boot [243]. It is made by
joining a few identical cylinders, each made
from six triangles.

The existence of such a torus also fol-
lows from a general result of Yuri Burago
and Victor Zalgaller [244]. They show in
particular that any 1-Lipschitz smooth embedding of the flat torus in R

3

can be approximated by a piecewise distance-preserving embedding.
The following related problem was proposed by Brian Bowditch.� Construct a polyhedral metric on the 3-sphere such that the total angle

around any edge of its triangulation is at least 2·⇡.

A solution can be built using the construction of Joel Hass [245]. An-
other solution was given by Karim Adiprasito [246]; he proved that an
example can be found among spaces that admit a cubulation into unit



126 CHAPTER 8. PIECEWISE LINEAR GEOMETRY

cubes. One can also show that it is impossible to find such an example by
starting with a doubled cube (as well as other simple polyhedral metrics
on the sphere) and passing to coverings branching along unknots а finite
number of times.

Minimal polyhedral disk. Arguing by contradiction, assume that a
polyhedral disk ⌃ minimizing the area is not saddle; that is, there is an
interior vertex v of ⌃ such that all the edges from v can be cut with a
plane.

Note that we can move v in such a way that the lengths of all its edges
decrease.

q

p

v

w

q

p

v

w

Since the area is minimal, this defor-
mation does not decrease the area. Tak-
ing the derivative of the total area along
this deformation implies that ⌃ contains
two adjacent non-coplanar triangles [pvw]
and [qvw] such that

][p v

w
] + ][q v

w
] > ⇡.

In this case, replacing the triangles [pvw] and [qvw] by the triangles [vpq]
and [wpq] leads to a polyhedral surface with a smaller area. That is, ⌃ is
not area-minimizing � a contradiction.

For a general polyhedral surface, a de-
formation decreasing the lengths of all
edges may not decrease the area. More-
over, the surface that minimizes the area
among all surfaces with a fixed triangula-
tion might not be saddle; the symmetric
tent shown on the diagram provides an ex-
ample [see 247 for more details].

Coherent triangulation. An example is
shown on the diagram. The triangulation
of the triangle [x0y0z0] has a homothetic triangle [xyz] and the edges [xx0

],
[yy0], [zz0], [yx0

], [zy0], [xz0].

z

z0

x

x0 y
y0

Assume this triangulation is coherent; let f be
the corresponding piecewise linear convex func-
tion. Without loss of generality, we can assume
that f vanishes on the boundary of the big trian-
gle.

From the convexity of f at the edges [x0y],
[y0z], and [z0x], we get

f(x) > f(y) > f(z) > f(x)
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� a contradiction.

The problem is discussed in the book of Israel Gelfand, Mikhail Kapra-
nov, and Andrei Zelevinsky [see 7C in 248]. The given example is closely
related to the so-called Schönhardt polyhedron, an example of a non-
convex polyhedron that does not admit a triangulation [249].

Sphere with one edge. An example can be found among flat orb-
ifolds; in other words, the required polyhedral space can be chosen to be
a quotient of R3 by a crystallographic action.

Consider the action on R
3 generated by order-3 rota-

tions around two diagonals of the cubes shown on the di-
agram. Note that this action is crystallographic; in fact,
it preserves the cubical grid. Therefore the quotient of
R

3 by this action, say P , is a compact polyhedral space.
For the described action, the isotropy group of any

point is either trivial or has order 3. Therefore any point in P admits a
neighborhood that is isometric to an open set either in R

3 or R3/Z3. Both
of these spaces are topological 3-manifolds; therefore, P is a 3-dimensional
manifold as well.

Note that P is simply-connected; this follows since the action is gener-
ated by rotations. By the Poincaré conjecture, P is a topological sphere.

The singular locus of P is the image of the axes of all the order-3
rotations. Note that the action is transitive on the set of all these axes. It
follows that the singular locus Ps of P is connected; that is, Ps is a circle.

This is the so-called P213 action. Among 219 crystallographic actions,
this is the only one with the quotient space that has the required property;
see [250].

Note that a 3-fold covering of P that is branching in Ps is a flat
manifold. In particular, this covering is not simply-connected. Therefore
Ps is not a trivial knot; it is, in fact, the figure-eight knot.

There are a few crystallographic actions with singu-
lar locus formed by links. The simplest is the Borromean
rings; it is the singular locus of a flat orbifold obtained by
gluing each face of a cube to itself along the reflections
with respect to the middle lines shown on the picture;
the corresponding action is called I212121.

Other examples (nonorbifold, spherical, hyperbolic) are discussed by
Michel Boileau and Joan Porti [251, Chapter 9]; more examples are given
by Alexander Mednykh [252].

I get intrigued by this problem because of the following connection:
spaces of directions in 4-dimensional polyhedral Kähler manifolds are 3-
spheres with a spherical polyhedral metric with a singular locus formed
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by a knot or link. In addition, these spaces have an isometric R-action
induced by the complex structure.

Polyhedral Kähler manifolds admit a natural stratification into flat
manifolds of even codimensions. So the existence problem of polyhedral
Kähler metrics on a given manifold or with a given stratification might
be considered as a higher-dimensional analog of the original problem.

A polyhedral metric on a manifold is called Kähler if it comes with
a complex structure on each simplex of maximal dimension that agrees
on each simplex of codimension 1 (plus a minor condition). This class of
spaces was defined and studied by Dmitri Panov [253]. In particular, he
constructed many examples of polyhedral Kähler metrics on CP

2 � try
to construct one, it is not that easy. The following problem is completely
open:

� Is it possible to approximate the canonical metric on CP
2

by polyhedral

metrics with nonnegative curvature in the sense of Alexandrov?

Triangulation of a torus. Assume the contrary; let ⌧ be a triangulation
of the torus with the vertex z5 meeting 5 triangles, vertex z7 meeting 7

triangles, and every other vertex meeting 6 triangles.
Let us equip the torus with the flat metric such that each triangle is

equilateral. The metric will have two singular cone points z5 and z7. The
total angle around z5 is 5

3 ·⇡ and the total angle around z7 is 7
3 ·⇡. Note

that

(⇤) the holonomy group of the obtained polyhedral metric on the torus is

generated by the rotation by
⇡

3 .

Indeed, since parallel translation along any loop preserves the direc-
tions of the sides of any triangle; it can only permute it cyclically, which
corresponds to rotations by multiples of ⇡

3 . On the other hand, the holon-
omy of the loop that surrounds z5 is a rotation by ⇡

3 .
Consider a closed geodesic �1 minimizing the length among all not

null-homotopic circles. Let �2 be another closed geodesic that minimizes
the length and is not homotopic to any power of �1.

Note that �1 and �2 intersect at a single point; otherwise, one could
shorten one of them keeping the defining property.

Note that �i does not contain z5. In fact, no geodesic can pass thru
any singular point with a total angle smaller than 2·⇡.

Assume that �i passes thru z7. Then by (⇤), one of the two angles cut
by �i at z7 is ⇡. It follows that one can push �i aside so that it does not
longer pass thru z7, but remains to be a closed geodesic with the same
length.



129

z5

z7
Cut the torus along �1 and �2. In the obtained

quadrilateral, connect z5 to z7 by a minimizing
geodesic and cut along it. This way we obtain an
annulus ⌦ with a flat metric.

Note that a neighborhood of the first bound-
ary component is a parallelogram � it has equal
opposite sides and its angles add up to 2·⇡. In particular, ⌦ admits an
isometric immersion into the plane.

The second boundary component has to be mapped to a diangle with
straight sides and angles ⇡

3 . Such diangle does not exist in the plane � a
contradiction.

The problem was originally discovered and solved by Stanislav Jendroľ
and Ernest Jucovič [254], their proof is combinatorial. The solution de-
scribed above was given by Rostislav Matveyev [255]. A complex-analytic
proof was found by Ivan Izmestiev, Robert Kusner, Günter Rote, Boris
Springborn, and John Sullivan [256].

There are flat metrics on the torus with only two sin-
gular points of total angles 5

3 ·⇡ and 7
3 ·⇡. Such an example

can be obtained by identifying the hexagon on the picture
according to the arrows. However, the holonomy group of
the obtained torus is generated by the rotation by ⇡

6 . In
particular, the observation (⇤) is essential in the proof.

The same argument shows that the holonomy group of
a flat torus with exactly two singular points of total angle
2·(1 ±

1
n
)·⇡ has more than n elements. In the solution, we did the case

n = 6.
If one denotes by vm the number of vertices in a triangulation of the

torus with m incoming edges, then by Euler’s formula, we get

(⇤⇤)

X

m

(m� 6)·vm = 0.

Note that this equation says nothing about v6. It turns out that for
almost any sequence v3, v4, . . . satisfying (⇤⇤) one can adjust v6 so that
it corresponds to a triangulation of the torus � the sequence

0, 0, 1, v6, 1, 0, 0, . . .

discussed in the problem is the only exception.
The following problem is harder. Recall that the curvature of a point

s in a polyhedral surface is defined as 2·⇡ � ✓, where ✓ denotes the total
angle around s. Note that all regular points in a polyhedral surface have
zero curvature.
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� Let ⌃ be a spherical polyhedral space homeomorphic to the 2-sphere

and !1, . . . ,!n be the curvatures of its singular points. Set

�i = min
�
|
!i
2 � 2·k·⇡|

�� k 2 Z
 
.

Show that there is a closed polygonal line in the unit sphere with sides

�1, . . . , �n.

This problem was stated and solved by Gabriele Mondello and Dmitri
Panov [257]. The solution requires another holonomy group � it assigns
an element of the double covering of SO(3) (which is SU(2) = S

3) to any
loop in ⌃ that avoids singularities.

No simple geodesics. The curvature of a vertex on the surface of a
convex polyhedron is defined as 2·⇡�✓, where ✓ is the total angle around
the vertex.

By the Gauss–Bonnet formula, a simple closed geodesic cuts the sur-
face into two disks each with total curvature 2·⇡. Therefore it is suffi-
cient to construct a convex polyhedron with curvatures of the vertices
!1, . . . ,!n such that 2·⇡ cannot be obtained as a sum of some of the !i.

An example of that type can be found among the tetrahedrons.

The problem is due to Gregory Galperin [258]; it was rediscovered
by Dmitry Fuchs and Serge Tabachnikov [see 20.8 in 8]. The following
problem is closely related.� Assume that the surface of convex polyhedron P contains arbitrary

long closed simple geodesics. Show that P is an isosceles tetrahedron;

that is, the opposite edges of the tetrahedron are equal.

The latter statement was proved by Vladimir Protasov [see 259 and
also 260, 261].



Chapter 9

Discrete geometry

In this chapter, we consider geometrical problems with a strong combina-
toric flavor. No special prerequisite is needed.

Round circles in 3-sphere

� Suppose that C is a finite collection of pairwise linked round circles in

the unit 3-sphere. Prove that there is an isotopy of C that moves all of

them into great circles.

Semisolution. For each circle in C, consider the plane containing it. Note
that the circles are linked if and only if the corresponding planes intersect
at a single point inside the unit sphere S

3
⇢ R

4.
Consider the collection of circles formed by the intersections of the

planes with the sphere of radius R > 1. Rescale the sphere and pass to
the limit as R ! 1. This way we get the needed isotopy.

This problem was discussed by Genevieve Walsh [262]. The same
idea was used by Michael Freedman and Richard Skora to show that any
link made from pairwise not linked round circles is trivial; in particular,
Borromean rings cannot be realized by round circles [see Lemma 3.2 in
263].

Box in a box

� Suppose a rectangular parallelepiped with sides a, b, c lies inside another

rectangular parallelepiped with sides a0, b0, c0. Show that

a0 + b0 + c0 > a+ b+ c.

131
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Piercing the cube

� Let ⇧ be a k-plane that passes thru the center of a unit n-cube Q.

Show that k-area of the intersection ⇧ \Q is at least 1.

Harnack’s circles

� Prove that a smooth algebraic curve of degree d in RP
2

consists of at

most n =
1
2 ·(d

2
� 3·d+ 4) connected components.

Two points on each line

� Construct a set in the Euclidean plane that intersects each line at

exactly 2 points.

Balls without gaps

� Let B1, . . . , Bn be balls of radii r1, . . . , rn in a Euclidean space. As-

sume that no hyperplane divides the balls into two non-empty sets without

intersecting at least one of the balls. Show that the balls B1, . . . , Bn can

be covered by a ball of radius r = r1 + · · ·+ rn.

Covering lemma

� Let {Bi}i2F be any finite collection of balls in R
m

. Show that there is

a subcollection of pairwise disjoint balls {Bi}i2G, G ⇢ F such that

vol

 
[

i2F

Bi

!
6 3

m
· vol

 
[

i2G

Bi

!
.

W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0W0 W1

W2W3

W4

W5 W6

Kissing number�

Let W0 be a convex body in R
m. We say that k is

the kissing number of W0 (briefly k = kissW0) if k
is the maximal integer such that there are k bodies
W1, . . . ,Wk such that (1) each Wi is congruent to W0,
(2) Wi \ W0 6= ? for each i and (3) no pair Wi,Wj

has common interior points.
As you may have guessed from the diagram, the kissing number of the

round disk in a plane is 6.
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� Show that for any convex body W0 in R
m

we have that

kissW0 > kissB,

where B denotes the unit ball in R
m

.

Monotonic homotopy

� Let F be a finite set and h0, h1 : F ! R
m

be two maps. Consider R
m

as a subspace of R
2·m

. Show that there is a homotopy ht : F ! R
2·m

from

h0 to h1 such that the function t 7! |ht(x)� ht(y)| is monotonic for any

pair x, y 2 F .

Facet cover

� Show that any facet of a convex polyhedron can be covered by the

remaining facets.

Cube

� Half of the vertices of an m-dimensional cube are colored in white

and the other half in black. Show that the cube has at least 2
m�1

edges

connecting vertices of different colors.

Geodesic loop

� Show that the surface of a cube in R
3

does not admit a geodesic loop

with a vertex as the base point.

Right and acute triangles

� Let x1, . . . , xn 2 R
m

be a collection of points such that any triangle

[xixjxk] is right or acute. Show that n 6 2
m

.

Upper approximant

� Let µ be a Borel probability measure on the plane. Show that given

" > 0, there is a finite set of points S that intersects every convex figure

of measure at least ". Moreover, we can assume that |S| � the number of

points in S, depends only on " (in fact, one can take |S| = d
1
"5
e).
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Right-angled polyhedron+

A polyhedron is called right-angled if all its dihedral angles are right.

� Show that in all sufficiently large dimensions, there is no compact

convex hyperbolic right-angled polyhedron.

Here is a summary of the Dehn–Sommerville equations that can help.
Let P be a simple Euclidean m-dimensional polyhedron; that is, ex-

actly m facets meet at each vertex of P . Denote by fk the number of
k-dimensional faces of P ; the array of integers (f0, . . . fm) is called the
f -vector of P .

Choose a linear function ` that takes different values on the vertices
of P . The index of a vertex v is defined as the number of edges [vw] of P
such that `(v) > `(w). The number of vertices of index k will be denoted
by hk. The array of integers (h0, . . . hm) is called the h-vector of P .

Each k-face of P contains a unique vertex that maximizes `. If the
vertex has index i, then i > k, and then it is the maximal vertex of exactly�
i

k

�
faces of dimension k. This observation can be packed in the following

polynomial identity:
X

k

hk ·(t+ 1)
k
=

X

k

fk ·t
k.

This identity implies that the h-vector does not depend on the choice
of `. Changing the sign of `, we get that, the h-vector is the same for the
reversed order; that is,

(⇤) hk = hm�k for all k.

The identities (⇤) for all k are called the Dehn–Sommerville equations.
They give a complete list of linear equations for h-vectors (and therefore
f -vectors) of simple polyhedrons. For more on the subject, see [264,
Chapter 9].

Real roots of random polynomial�

Consider the moment curve �n : t 7! (1, t, . . . , tn) in R
n+1. Let

`n = length
�n

|�n| .

� Show that
`n
⇡

is the expected number of real roots of a polynomial of

degree n with independent normally distributed real coefficients.
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Space coloring�

� Let A be a set of colored points in R
d
. We are allowed to color any

line containing at least k already colored points. Suppose that in a finite

number of steps, we can color any point in R
d
. What is the minimal

number of points in A as a function of d and k?

Semisolutions

Box in a box. Let ⇧ be a parallelepiped with dimensions a, b, and c.
Denote by v(r) the volume of the r-neighborhood of ⇧,

Note that for all positive r we have

(⇤) v⇧(r) = w3(⇧) + w2(⇧)·r + w1(⇧)·r
2
+ w0(⇧)·r

3,

where
⇧ w0(⇧) =

4
3 ·⇡ is the volume of the unit ball,

⇧ w1(⇧) = ⇡ ·(a+ b+ c),
⇧ w2(⇧) = 2·(a·b+ b·c+ c·a) is the surface area of ⇧,
⇧ w3(⇧) = a·b·c is the volume of ⇧,
Let ⇧0 be another parallelepiped with dimensions a0, b0 and c0. If

⇧ ⇢ ⇧
0, then v⇧(r) 6 v⇧0(r) for any r. For r ! 1, these inequalities

imply
a+ b+ c 6 a0 + b0 + c0. ⇤

Alternative proof. Note that the average length of the projection of ⇧ to
a line is Const ·(a+ b+ c) for some Const > 0. (In fact, Const = 1

2 , but
we will not need it.)

Since ⇧ ⇢ ⇧
0, the average length of the projection of ⇧ cannot exceed

the average length of the projection of ⇧0. Hence the statement follows.

The problem was discussed by Alexander Shen [265].
A formula analogous to (⇤) holds for an arbitrary convex body B of

arbitrary dimension m. It was discovered by Jakob Steiner [266]. The
coefficient wi(B) in the polynomial (with different normalization con-
stants) appears under different names, most commonly intrinsic volumes

and quermassintegrals. Up to a normalization constant, they can also be
defined as the average area of the projections of B to the i-dimensional
planes. In particular, if B0 and B are convex bodies such that B0

⇢ B,
then wi(B0

) 6 wi(B) for any i. This generalizes our problem quite a bit.
Further generalizations lead to the theory of mixed volumes [267].
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The equality w1(⇧) = ⇡ ·(a + b + c) still holds for all parallelepipeds,
not only rectangular ones. In particular, if one parallelepiped lies inside
another then the sum of all edges of the first one cannot exceed the sum
for the second.

Piercing the cube. Observe that there is an odd increasing 1-Lipschitz
function ' : R ! (�

1
2 ,

1
2 ) that pushes the measure with the density e�⇡x

2

to the Lebesgue measure on (�
1
2 ,

1
2 ).

We can assume that Q =
�
(x1, . . . , xn) 2 R

n
�� |xi| 6 1

2

 
. Apply-

ing ' to each coordinate, we get a 1-Lipschitz diffeomorphism from R
n

to the interior of Q that pushes the measure with the Gauss density
⇢(x1, . . . , xn) = e�⇡(x2

1+···+x
2
n) to the Lebesgue measure on Q.

Note that the inverse image ⇧0
= '�1

(⇧) is a symmetric k-surface
in R

n. Since ' is 1-Lipschitz, we get that the area of ⇧ \ Q cannot be
smaller than the ⇢-weighted k-area of ⇧0. Moreover, we have equality for
coordinate k-planes.

Denote by Sr the sphere of radius r in R
n centered at the origin.

Note that ⇧0
\ Sr intersects each great (n � k � 1)-sphere in Sr. By

Crofton’s formula, we get that (k � 1)-area of ⇧0
\ Sr cannot be smaller

than (k�1)-area of the great (k�1)-sphere in Sr. By the coarea formula,
the ⇢-weighted k-area of ⇧0 cannot be smaller than ⇢-weighted k-area of
a k-plane that passes thru the origin � hence the result.

The problem was posed by Anton Good and solved by Jeffrey Vaaler
[268]. The presented solution was found by Arseniy Akopyan, Alfredo
Hubard, and Roman Karasev [269]; note that it proves the following more
general statement: If f : Q ! R

n�k
is an odd continuous map, such that

Z = f�1
{0} is smooth k-surface, then the k-area of Z is at least 1. The

map R
n
! Q was first used by Gilles Pisier [270, p. 182]

Harnack’s circles. Let � ⇢ RP
2 be an algebraic curve of degree d.

Consider the complexification ⌃ ⇢ CP
2 of �. Without loss of generality,

we may assume that ⌃ is regular.
Note that all regular complex algebraic curves of degree d in CP

2 are
isotopic to each other in the class of regular algebraic curves of degree d.
Indeed, the set of equations of degree d that correspond to singular curves
has real codimension 2. It follows that the set of equations of degree d that
correspond to regular curves is connected. Therefore, one can construct
an isotopy from one regular curve to any other by changing continuously
the parameters of the equations.

In particular, it follows that all regular complex algebraic curves of
degree d in CP

2 have the same genus, denote it by g. Perturbing a
singular curve formed by d lines in CP

2, we can see that

g =
1
2 ·(d� 1)·(d� 2).
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The real curve � forms the fixed point set in ⌃ by the complex con-
jugation. In particular ⌃ \ � has at most two connected components.
Therefore, the number of components of � cannot exceed g + 1.

This problem is a background for Hilbert’s 16th problem. The in-
equality was originally proved by Axel Harnack using a different method
[271]. The idea to use complexification is due to Felix Klein [272]. In fact
any number of connected components up to g + 1 is realizable, with one
exception: if d is odd, then � has at least one connected component.

Two points on each line. Take any complete ordering of the set of all
lines so that each beginning interval has cardinality less than continuum.

Assume we have a set of points X of cardinality less than continuum
such that each line intersects X in at most 2 points.

Choose the least line ` in the ordering that intersects X in 0 or 1 point.
Note that the set of all lines intersecting X at two points has cardinality
less than continuum. Therefore we can choose a point on ` and add it to
X so that the remaining lines are not overloaded.

It remains to apply the well-ordering principle.

This problem has an endless list of variations. The following problem
looks similar but far more involved; a solution follows from the proof of
Paul Monsky that a square cannot be cut into triangles with equal areas
[273].� Subdivide the plane into three everywhere dense sets A, B, and C such

that each line meets exactly two of these sets.

Balls without gaps. Assume the mass of each ball is proportional to
its radius. Denote by z the center of mass of the balls. It is sufficient to
show the following.

(⇤) The ball B(z, r) contains all B1, . . . , Bn.

Assume this is not the case. Then there is a line ` thru z, such that
the orthogonal projection of a ball Bi to ` does not lie completely inside
the projection of B. (This observation reduces the problem to the one-
dimensional case.)

Note that the projection of all balls B1, . . . , Bn has to be connected
and it contains a line segment longer than r on one side from z. In this
case, the center of mass of the balls projects inside of this segment � a
contradiction.

The statement was conjectured by Paul Erdős. The solution was given
by Adolph and Ruth Goodmans [see 274 and also 275].

Covering lemma. The required collection {Bi}i2G is constructed using
the greedy algorithm. We choose the balls one by one; on each step we
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take the largest ball that does not intersect those which we have chosen
already.

Note that each ball in the original collection {Bi}i2F intersects a ball
in {Bi}i2G with a larger radius. Therefore

(⇤)

[

i2F

Bi ⇢

[

i2G

3·Bi,

where 3·Bi denotes the ball concentric to Bi and three times larger radius.
Hence the statement follows.

The constant 3m can be improved slightly [276]. For m = 1 the optimal
constant is 2. Possibly, for any m, the optimal constant is 2

m; it can not
be smaller, an example can be found among collections of unit balls that
contain a fixed point.

The inclusion (⇤) is called the Vitali covering lemma. The following
statement is called the Besicovitch covering lemma; it has a similar proof.� For any positive integer m, there is a positive integer M such that any

finite collection of balls {Bi}i2F in R
m

contains a subcollection {Bi}i2G

such that (1) center of any ball in {Bi}i2F lies inside one of a ball from

{Bi}i2G and (2) the collection {Bi}i2G can be subdivided into M subcol-

lections of pairwise disjoint balls.

Both lemmas were used to prove the so-called covering theorems in
measure theory, which state that “undesirable sets” have vanishing mea-
sures. Their applications overlap but aren’t identical, the Vitali covering

theorem works for nice measures in arbitrary metric spaces while the Besi-

covitch covering theorem works in nice metric spaces with arbitrary Borel
measures.

More precisely, Vitali works in arbitrary metric spaces with a doubling

measure µ; the latter means that

µ[2·B] 6 C ·µB

for a fixed constant C and any ball B in the metric space. On the other
hand, Besicovitch works for all Borel measures in the so-called direction-

ally limited metric spaces [see 2.8.9 in 277]; these include Alexandrov
spaces with curvature bounded below.

Kissing number. Set n = kissB. Let B1, . . . , Bn be copies of the ball
B that touch B and don’t have common interior points. For each Bi

consider the vector vi from the center of B to the center of Bi. Note that
](vi, vj) > ⇡

3 if i 6= j.
For each i, consider the supporting hyperplane ⇧i of W with the outer

normal vector vi. Denote by Wi the reflection of W with respect to ⇧i.
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WiWj

⇧i

⇧j

Note that Wi and Wj have no common
interior points if i 6= j; the latter gives the
needed inequality.

The proof is given by Charles Halberg,
Eugene Levin, and Ernst Straus [278]. It
is not known if the same inequality holds
for the orientation-preserving version of the
kissing number.

Monotonic homotopy. Note that we can
assume that h0(F ) and h1(F ) both lie in
the coordinate m-spaces of R2·m

= R
m
⇥R

m; that is, h0(F ) ⇢ R
m
⇥ {0}

and h1(F ) ⇢ {0}⇥ R
m.

Direct calculations show that the following homotopy is monotonic

ht(x) =
�
h0(x)· cos

⇡ ·t
2 , h1(x)· sin

⇡ ·t
2

�
. ⇤

This homotopy was discovered by Ralph Alexander [279]. It has a
number of applications, one of the most beautiful is given by Károly
Bezdek and Robert Connelly [280]; they proved the Kneser–Poulsen and
Klee–Wagon conjectures in the two-dimensional case.

The dimension 2·m is optimal; that is, for any positive integer m, there
are two maps h0, h1 : F ! R

m that cannot be connected by a monotonic
homotopy ht : F ! R

2·m�1. The latter was shown by Maria Belk and
Robert Connelly [281]

Facet cover. Choose a convex polyhedron P and its facet F . Denote by
⇧ the hyperplane of F .

For each point p 2 F consider the maximal ball Bp ⇢ P that con-
tains p. Note that Bp touches another facet of P at some point q.

Show that the restriction of the partially defined map q 7! p to any
other facet F 0 can be extended to a distance-preserving map F 0

! ⇧. By
construction union of all such images cover F .

This problem was considered by Igor Pak and Rom Pinchasi [282]; the
presented proof was given by Arseniy Akopyan [283]. A slightly different
version of this problem made it to the All-Russian olympiad of 2012 [284,
№ 116774].

In the three-dimensional case, a more involved, but straightforward
solution can be built on the fact that orthogonal projection of a convex
figure can be covered by the figure itself. The latter statement is not as
simple as one might think [see 285, and the references therein].

Cube. Consider the cube [�1, 1]m ⇢ R
m. Any vertex of this cube has

the form q = (q1, . . . , qm), where qi = ±1.



140 CHAPTER 9. DISCRETE GEOMETRY

For each vertex q, consider the intersection of the corresponding hy-
peroctant with the unit sphere; that is, consider the set

Vq =
�
(x1, . . . , xm) 2 S

m�1
�� qi ·xi > 0 for each i

 
.

Let A ⇢ S
m�1 be the union of all the sets Vq for black q. Note that

volm�1 A =
1
2 · volm�1 S

m�1.

By the spherical isoperimetric inequality,

volm�2 @A > volm�2 S
m�2.

It remains to observe that

volm�2 @A =
k

2m�1 · volm�2 S
m�2,

where k is the number of edges of the cube with one black end and the
other in white.

The problem was suggested by Greg Kuperberg.

Geodesic loop. Let � be a geodesic from vetrex to vertex; denote by v
its midpoint.

Show that there is symmetry of the cube that fixes v, reverts �, and
moves all the vertices of the cube. Conclude that the endpoints of � are
different.

I learned this problem from Jaros law Kędra; it was rediscovered inde-
pendently by Diana Davis, Victor Dods, Cynthia Traub, and Jed Yang
[286]. The presented solution is taken from the paper of Serge Troubet-
zkoy [287]. This idea can be used to solve the following harder problems.� Show the same for the surface of the n-dimensional cube, n > 4.

� Show the same for the surface of the tetrahedron, octahedron, and

icosahedron.

For the dodecahedron such loops exist; a development of one example

is on the diagram. Vertices of an inscribed tetrahedron are circled. A
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classification of all such loops is found by Jayadev S. Athreya, David
Aulicino, and W. Patrick Hooper [288].

These and related problems are discussed by Dmitry Fuchs [289].

Right and acute triangles. Denote by K the convex hull of {x1, . . .
. . . , xn}. Without loss of generality, we can assume that dimK = m.

xi xj

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

zizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizizjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzjzj
KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

Note that for any distinct points xi, xj , and
any interior point z in K, we have

(⇤) ][xi
xj
z
] < ⇡

2 .

Indeed, if (⇤) does not hold, then hxj � xi, z �

xii < 0. Since z 2 K we have hxj�xi, xk�xii <
< 0 for some vertex xk. That is, ][xi

xj
xk ] >

⇡

2 �
a contradiction.

Denote by hi the homothety with center xi and coefficient 1
2 . Set

Ki = hi(K).
Let us show that Ki and Kj have no common interior points. Assume

the contrary; that is,
z = hi(zi) = hj(zj);

for some interior points zi and zj in K. Note that

][xi
xj
zj
] + ][xj

xi
zi
] = ⇡,

which contradicts (⇤).
Note that Ki ⇢ K for any i; it follows that

n

2m · volK =

nX

i=1

volKi 6 volK.

Hence the result follows.

The problem was posted by Paul Erdős [290] and solved by Ludwig
Danzer and Branko Grünbaum [291].

Grigori Perelman noticed that the same proof works for a similar prob-
lem in Alexandrov spaces [292]. The latter led to interesting connections
with the crystallographic groups [293]; in particular, it gives an approach
to the following open problem.� Let � y R

n
be an effective properly discontinuous isometric action.

Denote by m the number of maximal finite subgroups � up to conjugation.

Is it true that m 6 2
n
?

Surprisingly, the maximal number of points that make only acute tri-
angles grows exponentially with m as well. The latter was shown by Paul
Erdős and Zoltán Füredi [294] using the probabilistic method. Later, an
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elementary constructive argument was found and improved by Dmitriy
Zakharov, grizzly (an anonymous mathematician), Balázs Gerencsér,
and Viktor Harangi [295–297]; the current lower bound is 2m�1

+1, which
is exponentially optimal.

Upper approximant. We assume that the measure is given by a distri-
bution. The general case is done by a straightforward modification.

Cut the plane by two lines into 4 angles of equal measure. Let p be the
intersection point of the two lines. Note that every convex set avoiding p
is fully contained in three angles out of the four. In particular, its measure
cannot exceed 3

4 .
Apply this construction recursively for the restriction of the measure

to each triple of angles. After n steps we get a (1 + . . .+ 4
n�1

)-point set
that intersects each convex figure F of measure (

3
4 )

n.

This is a stripped version of a theorem proved by Boris Bukh and
Gabriel Nivasch [298].

Right-angled polyhedron. Let P be a right-angled hyperbolic poly-
hedron of dimension m. Note that P is simple; that is, exactly m facets
meet at each vertex of P .

From the projective model of the hyperbolic plane, one can see that
for any simple compact hyperbolic polyhedron, there is a simple Eu-
clidean polyhedron with the same combinatorics. In particular, the Dehn–
Sommerville equations hold for P .

Denote by (f0, . . . fm) and (h0, . . . hm) the f - and h-vectors of P . Re-
call that

hi = hm�i,

f1 = h1 + 2·h2 + · · ·+m·hm,

f2 = h2 + 3·h3 + · · ·+
�
m

2

�
·hm.

Observe that hi > 1; together with the identities above it implies that

(⇤) f2 > m�2
4 ·f1.

Since P is hyperbolic, each 2-dimensional face of P has at least 5 sides.
It follows that

f2 6 m�1
5 ·f1.

The latter contradicts (⇤) for m > 6.

This is the core of the proof of nonexistence of compact hyperbolic
Coxeter’s polyhedrons of large dimensions given by Ernest Vinberg [223,
224].

Playing a bit more with the same inequalities, one gets the nonexis-
tence of right-angled hyperbolic polyhedrons, in all dimensions starting
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from 5. In the 4-dimensional case, there is a regular right-angled hyper-
bolic polyhedron with 120-cells � a 4-dimensional uncle of the dodecahe-
dron.

The following related question is open:� Let m be a large integer. Is there a cocompact properly discontinuous

isometric action on the m-dimensional Lobachevsky space that is gener-

ated by finite order elements (for example, involutions)?

Real roots of random polynomial. Choose a polynomial

p(t) = a0 + · · ·+ an ·t
n.

Consider the hyperplane ⇧ in R
n+1 defined by the equation

a0 ·x0 + · · ·+ an ·xn = 0.

Note that the number of real roots of p equals the number of intersections
of ⇧ with the moment curve.

It remains to apply the spherical Crofton formula.

The observation is due to Alan Edelman and Eric Kostlan [299].

Space coloring. The answer is
�
d+k�1

d

�
.

Choose d + k � 1 hyperplanes in R
d in general position. Let A be

the set of all
�
d+k�1

d

�
intersection points of every d-tuple of the chosen

hyperplanes. Show that starting with A one can color every point in R
d.

To prove the lower bound, note that
�
d+k�1

d

�
is the dimension of the

space of polynomials p : Rd
! R of total degree at most k� 1. Therefore,

if A has less than
�
d+k�1

d

�
points, then there is a non-zero polynomial p

of degree at most k� 1 such that A lies in its zero-set Z. Observe that if
a line does not lie in Z, then it has at most k� 1 common points with Z.
Therefore, it is impossible to color a point outside of Z.

This is a problem of Ivan Mitrofanov and Fedor Petrov [300, № 10];
a three-dimensional version of this problem appeared at the 28th An-
nual Vojtěch Jarńık International Mathematical Competition, Category
II [301].

The problem illustrates the so-called polynomial method ; for more on
the subject check the book of Lary Guth [302].
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regular point, 120
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[96] C. Böhm and B. Wilking. “Manifolds with positive curvature operators are space
forms.” Ann. Math. (2) 167.3 (2008), 1079–1097.

[97] A. Lytchak. “Singular Riemannian foliations on spaces without conjugate points”.
Differential geometry. 2009, 75–82.

[98] A. Zeghib. “Subsystems of Anosov Systems”. American Journal of Mathematics
117.6 (1995), 1431–1448.

[99] J. L. Synge. “On the connectivity of spaces of positive curvature.” Q. J. Math., Oxf.
Ser. 7 (1936), 316–320.

[100] T. Frankel. “On the fundamental group of a compact minimal submanifolds.” Ann.
Math. (2) 83 (1966), 68–73.

[101] S. Bochner. “Vector fields and Ricci curvature.” Bull. Am. Math. Soc. 52 (1946),
776–797.

[102] W.-Y. Hsiang and B. Kleiner. “On the topology of positively curved 4-manifolds
with symmetry.” J. Differ. Geom. 29.3 (1989), 615–621.

[103] K. Grove. “Geometry of, and via, symmetries”. Conformal, Riemannian and La-
grangian geometry (Knoxville, TN, 2000). Vol. 27. Univ. Lecture Ser. 2002, 31–
53.

[104] K. Grove and B. Wilking. “A knot characterization and 1-connected nonnegatively
curved 4-manifolds with circle symmetry.” Geom. Topol. 18.5 (2014), 3091–3110.

[105] C. Croke. “Lower bounds on the energy of maps.” Duke Math. J. 55 (1987), 901–908.

[106] B. White. “Infima of energy functionals in homotopy classes of mappings.” J. Differ.
Geom. 23 (1986), 127–142.

[107] M. Gromov. “Filling Riemannian manifolds.” J. Differ. Geom. 18 (1983), 1–147.

[108] C. Croke. “A sharp four dimensional isoperimetric inequality.” Comment. Math.
Helv. 59 (1984), 187–192.

[109] C. Croke. “Some isoperimetric inequalities and eigenvalue estimates.” Ann. Sci. Éc.
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[294] P. Erdős and Z. Füredi. “The greatest angle among n points in the d-dimensional
Euclidean space”. Combinatorial mathematics (Marseille-Luminy, 1981). Vol. 75.
North-Holland Math. Stud. 1983, 275–283.

[295] D. Zakharov. “Acute sets”. Discrete Comput. Geom. 61.1 (2019), 212–217.

[296] grizzly. Улучшено (?) решение Эрдёша по остроугольным треугольникам.
url: http://dxdy.ru/post1222167.html. .

[297] B. Gerencsér and V. Harangi. “Acute sets of exponentially optimal size”. Discrete &
Computational Geometry (2018), 1–6.

[298] B. Bukh and G. Nivasch. “One-sided epsilon-approximants”. A journey through dis-
crete mathematics. 2017, 343–356.

[299] A. Edelman and E. Kostlan. “How many zeros of a random polynomial are real?”
Bull. Amer. Math. Soc. (N.S.) 32.1 (1995), 1–37.

[300] А. Я. Канель-Белов (составитель). �Задачник�. Матем. просв., третья серия
24 (2019), 175�180.
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