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Preface

On June 4, 2019, at a conference hosted by the ETH Zürich on geo-
metric analysis and general relativity in honour of Gerhard Huisken’s
60th birthday, Richard Hamilton presented a lecture enigmatically en-
titled “Fraternal Twins”. In this lecture, he presented an overview
of the key historical and mathematical developments in the study of
the mean curvature and Ricci flows, emphasizing the striking similar-
ities which consistently occur at a superficial level, but also pointing
out the imperfection of these similarities, and some of the analytical
differences which lie behind them—much like fraternal twins, the two
flows appear very alike at first sight, even though they are by no means
identical.

Recognition of the likeness of the two flows goes back much further,
of course. Indeed, the drawing of parallels between the two flows is
now customary amongst experts; it is often exclaimed, for instance,
that “Ricci flow is the extrinsic analogue of mean curvature flow”, or
that “mean curvature flow in n-dimensions behaves like Ricci flow
in 2n-dimensions”, or “since P holds for mean curvature flow/Ricci
flow, P̃ must be true for Ricci flow/mean curvature flow".1 And the 1 Some brave souls even speculate that

there is a hidden canonical correspon-
dence between the two; but no such cor-
respondence is yet to be observed.

comparison is more than superficial: despite the fact that the two flows
continue to be treated independently, often with quite different tools,
Hamilton’s analogy continues to be vindicated.

The aim of this book is to provide an introduction to geometric
evolution equations through a study of these twin flows. It contains
two parts: the first is dedicated to the mean curvature flow and the
second to the Ricci flow, though the order does not matter much: each
part may be treated entirely independently of the other. On the other
hand, once the reader has gained some familiarity with one twin, they
will feel at once an uncanny familiarity with the other.

We do not attempt to provide a comprehensive treatment2 of our 2 This would take up many volumes, and
has already been achieved, to a large de-
gree, by others.

twin subjects but rather offer the reader an enticing aperitif, which
we hope may whet their appetite for the subject.3 Each part begins

3 Incidentally, we heartily recommend a
glass of Glenlivet (Founder’s Reserve) to
accompany this text, not least because
“Glenlivet” may be translated as “Valley
of the smooth flow".

with The fundamentals, introducing the reader to each twin, followed
by a technical chapter which lays The groundwork for further analysis.
This second chapter could be skipped on first reading, and referred
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back to as needed in the later chapters; on the other hand, the pa-
tient reader will certainly benefit in the long run from any effort put
into the groundwork. The third chapter of each part is concerned
with curvature Pinching and its consequences, with a focus on the first
major milestone in each of our twin subjects—Huisken’s theorem on
the contraction of convex hypersurfaces to round points under mean
curvature flow and Hamilton’s theorem on the contraction of three-
manifolds of positive Ricci curvature to round points under Ricci flow,
respectively. We then study each flow in its smallest nontrivial di-
mension, where the behaviour is particularly nice. The fifth chapter
introduces the reader to a selection of tools and results pertaining to
Singularities and their analysis for the respective flow (in higher dimen-
sions). We conclude by surveying some of the recent progress Towards
a classification of ancient solutions to each flow.

Each chapter ends with a selection of exercises, and the book would
be well-suited to a one or two semester graduate course in geometry,
or even an undergraduate “special topics” course. For a one semester
course, one could plausibly cover, e.g., Chapters 1-5, or Chapters 7-11,
or selected parts of Chapters 1-4 and 7-10

4. 4 A great deal of material can be covered
by adopting an alternating structure—
1,7,2,8,3,9,...—due to much constructive
approximate redundancy arising from the
fraternal resemblance of the two sub-
jects.

The project grew out of notes for a minicourse on the Ricci flow
which I presented in a series of lectures at the summer school “Geo-
metric Flows and Relativity" hosted by the Centro de Matemática of
the Universidad de la República in Montevideo, Uruguay, in March
2024, which were subsequently used in a special topics course on both
the mean curvature and Ricci flows aimed at advanced undergraduate
and beginning graduate students at The Australian National Univer-
sity. I am grateful to Theodora Bourni and Martín Reiris for the invi-
tation to speak at the CMAT summer school, and to the outstanding
cohort of students who attended my lectures, keeping me on my toes
each morning; I am equally grateful to my wife, Kirsty, who—heavily
pregnant with our second child—encouraged me to go!

Many individuals have contributed to this book through useful dis-
cussions, particularly Ben Andrews, Theodora Bourni, Tim Buttsworth,
Bennett Chow, Apostolos Damialis, Ramiro Lafuente, Stephen Lynch,
Martín Reiris and Jonathan Zhu.

I do not claim priority for any of the mathematical results presented
herein, and have endeavoured to provide appropriate bibliographic in-
formation throughout. The manuscript was compiled on Overleaf in
Tufte-LATEX and the cover was designed using Adobe Illustrator and
Adobe Express. Illustrations were created using GeoGebra and Math-
ematica. No AI tools were used in any stage of the preparation.

Mat Langford
Canberra, August 16, 2025



Part I

Mean curvature flow





Make a soap bubble and observe it;
you could spend a whole life studying it.

– Sir William Thomson, Lord Kelvin

The next time you stare into a beer,
contemplate the bubbles.

– Kenneth Chang, In Bubbles and Metal, the Art of Shape-Shifting





Preamble to Part I

In 1952, in a short discussion appearing in an appendix to a paper
by Cyril S. Smith,5 John von Neumann arrived at a mean curvature 5 Smith, “Shape of metal grains”.

driven motion for the dynamics of bubbles in a foam as a result of
surface tension and the diffusion of gas between neighbouring bub-
bles. Four years later, William W. Mullins derived the same curva-
ture driven motion for the dynamics of grain boundaries in annealing
metals, a process which also seems to be governed by surface tension
and interfacial diffusion.6 These appear to be the earliest appearances 6 Mullins, “Two-dimensional motion of

idealized grain boundaries”.of the mean curvature flow in the scientific literature. This is a re-
markable fact given that the mean curvature flow has a very natural
interpretation as “the heat equation for submanifolds”, and its steady
state equation—the minimal surface equation—had been introduced
and studied by Lagrange already in 1762!7 7 By comparison, the heat equation had

been introduced by Fourier, in 1822, a
mere 40 years after Laplace had devel-
oped his eponymous equation.

A systematic mathematical analysis of the mean curvature flow had
to wait even longer. It wasn’t until 1984 that Gerhard Huisken (in-
spired in no small part by Hamilton’s 1982 introduction of the Ricci
flow of Riemannian metrics) brought the full arsenal of differential
geometry and partial differential equations to bear on the problem,
proving the well-known theorem now carrying his name.8 8 Although it must be noted that, in an-

other fascinating historical peculiarity,
geometric measure theoretic weak solu-
tions to the mean curvature flow were
actually studied a little earlier, in 1979,
by Brakke, The motion of a surface by its
mean curvature. A good introduction to
these “Brakke flows” can be found in
Ecker, Regularity theory for mean curvature
flow and Tonegawa, Brakke’s mean curva-
ture flow; we shall not study them here.

Since that time, our understanding of this beautiful equation has
developed rapidly, and several new applications have emerged (for in-
stance in image processing, geometry and topology, and general rela-
tivity). Applications aside, the mean curvature flow gives rise to many
remarkable and beautiful geometric structures (e.g. solitons, ancient
solutions) and analytic features (e.g. differential Harnack inequalities,
pseudolocality, gradient structures) and as such is a fascinating area of
study for topologists, geometers, and analysts alike.

We shall present here an introduction to the mean curvature flow
leading up to the foundations of some modern developments.9 We 9 There are now a number of texts on the

subject, including the excellent lectures
of Mantegazza, Lecture notes on mean cur-
vature flow, the beautiful book of Ecker,
Regularity theory for mean curvature flow
and the more recent tome of Andrews,
Chow, et al., Extrinsic geometric flows,
each of which this part has drawn upon
to some degree.

assume the reader has some basic familiarity with partial differential
equations and the geometry of Euclidean submanifolds. For back-
ground, the reader may refer, for instance, to the books of Olver10 and

10 Olver, Introduction to partial differential
equations.

Kühnel.11

11 Kühnel, Differential geometry.





1
The fundamentals

A smooth one-parameter family {Xt}t∈I of smooth immersions Xt :
Mn → Rn+k of a smooth1 n-manifold Mn into Euclidean space2 Rn+k 1 Henceforth, we shall stop using the

qualifier “smooth” so irritatingly often,
leaving it for the most part to the reader
to decide how regular they wish a given
object to be in order to make sense of a
given statement.
2 The interested reader may wish to con-
sider the question of how to proceed
when Rn+k is replaced by a general Rie-
mannian manifold (Nn+k , h). We will
be mostly concerned here with the case
k = 1.

evolves by/satisfies/is a mean curvature flow
3 if

3 In fact, we shall soon replace this by a
more abstract definition, which may ap-
pear more complicated at first but has
many advantages. The two definitions
are equivalent in the sense that there is
a canonical bijection between their solu-
tions.

dXt

dt
= H⃗Xt , (1.1)

where (upon identifying tangent spaces to Rn with Rn in the canonical
way) H⃗Xt is the mean curvature vector associated to Xt and the
time derivative is understood in the usual sense: for any x ∈ Mn,

dXt

dt
(x) ≑ lim

h→0

Xt+h(x)− Xt(x)
h

.

If we represent Xt(x) and H⃗Xt(x) with respect to the canonical basis
{eα}n+1

α=1 for Rn+1 as

Xt(x) = Xα(x, t)eα and H⃗Xt(x) = H⃗α(x, t)eα

and introduce local coordinates {xi : U → R}n
i=1 in some region U ⊂

Mn, then for each x ∈ U we see that4 4 Note that we follow the convention
DdXU(dXV) = dX∇UV + I⃗I(U, V) for
the second fundamental form I⃗I,
where dX : TMn → TRn+k denotes the
differential of X : Mn → Rn+k .

∂Xα

∂t
= H⃗α

= gij I⃗Iα
ij (1.2)

= gij
(

∂2Xα

∂xi∂xj − gkℓδβγ
∂2Xβ

∂xi∂xj
∂Xγ

∂xℓ
∂Xα

∂xk

)
, (1.3)

where gij(·, t) are the dual components (matrix inverse) of the induced
metric gXt , whose components are given by

gij = δαβ
∂Xα

∂xi
∂Xβ

∂xj .

The equation (1.2) is thus a system of nonlinear second order partial
differential equations. Unappealing, certainly, but it does have the
redeeming feature that it is weakly parabolic.
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Observe that, with respect to gXt -normal coordinates for Mn about
a point x, the mean curvature flow system takes the form

∂Xα

∂t
=

n

∑
k=1

∂2Xα

∂xk∂xk (1.4)

at (x, t). Even though this equation only holds at the point x and the
time t, it suggests that we should view the mean curvature flow as
a kind of geometric heat equation for immersions5. We shall soon 5 In fact, there is a very natural way to

view the mean curvature flow as a lit-
eral (albeit abstract) heat equation: iden-
tifying the differential dX of the position
vector X with a section of the bundle
T∗M ⊗ X∗TRn+k , which we equip with
the metric and connection canonically
induced by those on T∗M and X∗TRn+k ,
the mean curvature vector may be rec-
ognized as the divergence of dX—the
“Laplacian” of X.

see that it is quite right to do so, but before pursuing this further,
let us first establish some additional useful intuition, this time more
geometric.

1.1 Invariance properties

The mean curvature flow is invariant under certain canonical opera-
tions6, in the sense that these operations take one solution and produce 6 The following list is not intended to be

exhaustive.another.

1.1.1 Pullback by diffeomorphisms

If {Xt : Mn → Rn+k}t∈I is a mean curvature flow and ϕ : Nn → Mn is
a diffeomorphism, then (since the mean curvature vector is invariant
under diffeomorphisms)

d(Xt ◦ ϕ)

dt
(x) =

dXt

dt
(ϕ(x)) = H⃗Xt(ϕ(x)) = H⃗Xt◦ϕ(x) .

That is, {Xt ◦ ϕ : Nn → Rn+k}t∈I is a mean curvature flow on Nn. This
is not at all surprising.

On the other hand, if we allow the diffeomorphism to change with
time7, then we pick up an extra term due to the chain rule: 7 We shall always assume the group

property ϕt1 ◦ ϕt2 = ϕt1+t2 for one-
parameter families of diffeomorphisms
ϕt.

d(Xt ◦ ϕt)

dt
= H⃗Xt◦ϕt + (dXt)Xt◦ϕt Vϕt ,

where V is the vector field on Mn defined by

V(ϕt(x)) ≑
d
dt
(t 7→ ϕt(x)) .

The converse of this statement is that if Xt satisfies the equation

dXt

dt
= H⃗Xt + dXt V

for some vector field V, then the family of immersions Xt ◦ ϕ−t : Mn →
Rn+k satisfies mean curvature flow, where ϕt is the flow of V.

1.1.2 Time translations

If {Xt : Mn → Rn+k}t∈I is a mean curvature flow and τ ∈ R, then
clearly {Xt+τ : Mn → Rn+k}t∈I−τ is a mean curvature flow.
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1.1.3 Ambient isometries

If {Xt : Mn → Rn+k}t∈I is a mean curvature flow and v ∈ Rn+1,
O ∈ O(n + k), then {x ∈ Mn 7→ Xt(x) + v ∈ Rn+k}t∈I and {x ∈ Mn 7→
OXt(x) ∈ Rn+k}t∈I are mean curvature flows.

1.1.4 Parabolic rescaling

If {Xt : Mn → Rn+k}t∈I is a mean curvature flow and λ > 0, then

d(λXλ−2t)

dt
(x) = λ−1H⃗X

λ−2t
= H⃗λX

λ−2t
,

so {λXλ−2t : Mn → Rn+k}t∈λ2 I is a mean curvature flow.

1.1.5 Orthogonal sums with flat factors

If {Xt : Mn → Rn+k}t∈I is a mean curvature flow on Mn and ℓ ∈
N, then {(x, y) ∈ Mn × Rℓ 7→ (Xt(x), y) ∈ Rn+k × Rℓ}t∈I is a mean
curvature flow.

1.1.6 Quotients and lifts

Let q : Nn → Mn = Nn/G be a quotient map (induced by a proper
and free action of a Lie group G on Nn). If {Xt : Mn → Rn+k}t∈I

evolves by mean curvature, then so does its lift to Nn. Conversely, if
{Xt : Nn → Rn+k}t∈I is a mean curvature flow which is constant on
the fibres of the quotient, then it descends to Mn and evolves by mean
curvature.

Nn Nn/G

Rn+k
X̃t

q

Xt

1.2 Invariant solutions (a.k.a. self-similar solutions/solitons)

The continuous symmetries of mean curvature flow (domain diffeo-
morphism, time translation, scaling and orientation preserving ambi-
ent isometry) give rise to special types of solutions: those that evolve
purely by some combination of these symmetries. There are four pri-
mary types (but more generally one might consider combinations of
these motions).

1.2.1 Translating self-similar solutions

A solution {Xt : Mn → Rn+k}t∈R to mean curvature flow is called
a translating self-similar solution if there is a one-parameter
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family of diffeomorphisms {ϕt}t∈R of Mn such that

Xt−ε ◦ ϕε + εv = Xt

for all ε and t. Differentiating with respect to ε at ε = 0, we find that
such a solution must satisfy the equation

−H⃗Xt + dXt V + v = 0

for all t, where V is the vector field tangent to t 7→ ϕt. Resolving
tangential and normal components yields

H⃗Xt = v⊥ and dXt V = −v⊤ .

An immersion X : Mn → Rn+k satisfying

H⃗X = v⊥

for some v ∈ Rn+k is called a translator.
Conversely, if X : Mn → Rn+k is a translator, then the family of im-

mersions Xt ≑ X ◦ ϕt + tv, t ∈ R, where ϕt is the flow of −(dX)−1v⊤,
satisfies

dXt

dt
= dXV + v = −v⊤ + v = v⊥ = H⃗Xt .

1.2.2 Rotating self-similar solutions

A solution {Xt : Mn → Rn+k}t∈R to mean curvature flow is called a
rotating self-similar solution if there is a one-parameter family
of diffeomorphisms {ϕt}t∈R of Mn such that

eεAXt−ε ◦ ϕε = Xt

for all ε and t for some A ∈ so(n + k). Differentiating with respect to ε

at ε = 0, we find that such a solution must satisfy the equation

−H⃗Xt + dXt V + AX = 0

for all t, where V is the vector field tangent to t 7→ ϕt. Resolving
tangential and normal components yields

H⃗Xt = (AX)⊥ and dXt V = −(AX)⊤ .

An immersion X : Mn → Rn+k satisfying

H⃗X = (AX)⊥

for some A ∈ so(n + k) is called a rotator.
Conversely, if X : Mn → Rn+k is a rotator, then the family of

immersions Xt ≑ etAX ◦ ϕt, t ∈ R, where ϕt is the flow of V ≑
−(dX)−1(AX)⊤, satisfies

dXt

dt
= etA(dXV + AX) = etA(AX)⊥ = etAH⃗X = H⃗Xt .
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1.2.3 Shrinking/expanding self-similar solutions

A solution {Xt : Mn → Rn+k}t∈I to mean curvature flow is called
a homothetic self-similar solution if there is a one-parameter
family of diffeomorphisms {ϕt}t∈I of Mn such that

eεϕ∗
ε Xe−2εt = Xt

for all t ∈ I and ε such that e−2εt ∈ I. Differentiating with respect to ε

at ε = 0, we find that such a solution must satisfy the equation

Xt + dXt V − 2tH⃗Xt = 0

for all t ∈ I. There are two cases: if I = (−∞, 0), then {Xt : Mn →
Rn+k}t∈(−∞,0) is called a shrinking self-similar solution. If I =
(0, ∞), then {Xt : Mn → Rn+k}t∈(0,∞) is called an expanding self-
similar solution.

Resolving tangential and normal components, we find that

X⊥
t = 2tH⃗Xt and X⊤

t = −dXt V .

An immersion X : Mn → Rn+k satisfying

H⃗X = −1
2

X⊥ resp. H⃗X =
1
2

X⊥ .

is called a shrinker resp. expander.
Conversely, if X : Mn → Rn+k is a shrinker resp. an expander,

then the family {Xt ≑
√
−tϕ∗

log
√
−tX}t∈R resp. {Xt ≑

√
tϕ∗

log
√

t
X}t∈R

satisfies
dXt

dt
= H⃗X .

1.2.4 Examples generated by minimal immersions

Recall that an immersion X : Mn → Rn+k is minimal if

H⃗ = 0.

Minimal immersions provide (rather dull) examples of mean curvature
flows via {x ∈ Mn 7→ X(x) ∈ Rn+k}t∈(−∞,∞). These may also be
viewed as (trivial) translating mean curvature flows (by taking v = 0).

Minimal immersions also generate slightly less trivial translating
mean curvature flows: given any v ∈ {0} × Rℓ, the product {(x, y) ∈
Mn × Rℓ 7→ (X(x), y) ∈ Rn+k × Rℓ}t∈(−∞,∞) is still minimal (and
hence static under mean curvature flow), but also invariant under
translation in the v direction, and may thus be viewed as a translating
mean curvature flow with nontrivial bulk velocity v. In particular, we
may view static affine subsbaces as translating mean curvature flows
with respect to parallel translation vectors.

Analogously, minimal cones (including linear subspaces) may be
viewed as nontrivial shrinking or expanding mean curvature flows.
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1.3 Explicit solutions

Certain “explicit” solutions can be constructed “by hand” by impos-
ing suitable symmetry or other algebraic ansätze. We present three
examples here, but there are many more examples which have been
discovered by analogous methods.

By imposing a large enough symmetry group, the mean curvature
flow equation may be reduced to a (possibly complicated) system of
ordinary differential equations.

Vanishing like a
Sigh and slowly
Disappear
Disappear
Vanish
Vanish
Into the air
Slowly disappear
Never really here.
– A Perfect Circle, “Vanish-
ing”

Example 1 (The shrinking sphere). We seek a solution to mean cur-
vature flow starting from a round sphere, X0(Mn) = Sn

r0
in Rn+1.

Since we expect roundness to be preserved, we suppose a priori that the
timeslices are always round,

Xt(x) = r(t)
X0(x)

r0
.

The mean curvature vector of Xt is then

H⃗Xt = − n
r(t)

X0

r0

while the time derivative is

dXt

dt
= r′

X0

r0
.

Equating the two yields rr′ = −n, and hence

r2(t) = r2
0 − 2nt , t ∈ (−∞, r2

0
2n ) .

When r0 = 0, this solution is called the (standard) shrinking sphere.
■

We can play a similar game with self-similar solutions, though in
this case—since the time evolution is already trivial—we may relax
the symmetry by one degree of freedom. In particular, in one space
dimension, no symmetry conditions are required.

Example 2 (The Grim Reaper). We seek a nontrivial one-dimensional
translator in the plane. I.e. a curve γ : M1 → R2 which satisfies

κ = − ⟨N , v⟩

for some nonzero8 vector v ∈ R2, where N is a choice of unit nor- 8 The solutions corresponding to v = 0
are not so interesting.mal field and κ is the corresponding choice of curvature function. To

this end, assume that γ is clockwise oriented and parametrized by ar-
clength s (so that T ≑ γs = JN, where J denotes counterclockwise
rotation through angle π

2 ) and define

x(s) ≑ ⟨N , e⟩ and y(s) ≑ ⟨T , e⟩ ,
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where e ≑ v
|v| . By the Frenet–Serret equations,[

x
y

]′
= κ

[
0 1
−1 0

] [
x
y

]
,

we are led to consider the system

[
x
y

]
s

=

[
−xy
x2

]
[

x(0)
y(0)

]
=

[
x0

y0

]

subject to the geometric constraint x2
0 + y2

0 = 1. If x0 = 0, then the
unique solution is (x, y) = (0, 1), which integrates to one of the (par-
allel) straight lines

γ(s) = γ(0) + se , p ∈ R2 .

In particular, if x0 ̸= 0, then it must remain nonzero. Consider, then,
the curve parameter

θ(s) ≑ −
ˆ s

0
x(σ) dσ .

Observe that [
x
y

]
θ

=

[
−y
x

]
and hence

(x, y) = (cos(θ + θ0), sin(θ + θ0)) ,

where (x0, y0) = (cos θ0, sin θ0). Setting e ≑ v
|v| , we have

T = xJe + ye

and we conclude that

γ(s)− γ(0) = Je
ˆ s

0
cos(θ + θ0) ds + e

ˆ s

0
sin(θ + θ0) ds

= Je
ˆ θ(s)

0
dθ + e

ˆ θ(s)

0
tan(θ + θ0) dθ

= (θ(s)− θ0)Je − log cos(θ(s)− θ0)e .

When v = e2, γ(0) = 0 and θ0 = 0, this solution is called the (standard)
Grim Reaper. For general initial parameter values, the solution is
obtained from the standard Grim Reaper by translation, rotation and
scaling. ■

Observe that the computations of Example 2 actually yield the fol-
lowing elementary but important theorem.
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Theorem 1.1. The straight lines and the Grim Reapers are the only one-
dimensional translators.

In higher dimensions, we have the following examples.

Example 3 (The radio-dish soliton). For each n ≥ 2, there exists a
(unique modulo rigid motions and scaling) convex, axially symmetric
translator in Rn+1. It is the graph of a (convex) function u : Rn → R

satisfying u(x) = ϕ(|x|) with

ϕ(r) =
r2

2(n − 1)
− log r + O(r−1) as r → ∞ .

This is proved by seeking axially symmetric solutions u(x) = ϕ(|x|) to
the graphical9 translator equation 9 (Mean) convexity guarantees graphical-

ity via the translator equation.

div

(
Du√

1 + |Du|2

)
=

1√
1 + |Du|2

. (1.5)

The axial symmetry ensures that ϕ satisfies the equation

ϕrr

1 + ϕ2
r
+ (n − 1)

ϕr

r
= 1

and hence Φ ≑ ϕr satisfies the equation

Φr

1 + Φ2 + (n − 1)
Φ
r
= 1.

Local existence and uniqueness of a solution Φ : [r0, ∞) → R upon
prescribing Φ(r0) is a consequence of the Picard–Lindelöf theorem and
a straightforward barrier construction, so long as r0 > 0. The asymp-
totics are established in10 by barrier and bootstrapping arguments. By 10 Clutterbuck, Schnürer, and Schulze,

“Stability of translating solutions to
mean curvature flow”.

a barrier argument and the Arzelà–Ascoli theorem, the desired solu-
tion can then be obtained by taking a limit of solutions Φk : [ 1

k , ∞)

arising from initial conditions Φk(
1
k ) = 1

nk (see, for instance11). Al- 11 Rengaswami, “Classification of bowl-
type translators to fully nonlinear curva-
ture flows”.

ternatively, one may apply standard elliptic pde methods to solve the
graphical translator equation (1.5) in a ball about the origin with zero
Dirichlet data on the boundary (producing an axially symmetric so-
lution due to the maximum principle), and then extend to all of Rn

using the above ode arguments.12 ■ 12 See, for example, Andrews, Chow, et
al., Extrinsic geometric flows, §13.8.
13 Sigurd B. Angenent, “Shrinking
doughnuts”

Example 4 (Shrinking doughnuts13). For each n ≥ 2, there exists an
axially symmetric shrinker in Rn+1 which is obtained by rotating about
the x-axis an embedding of S1 which lies in the upper half-plane Σ ≑
{(x, r) : r > 0}. (The resulting surface is therefore topologically a
handle S1 × Sn−1.)

Indeed, a curve in Σ generates an axially symmetric shrinker in
Rn+1 if and only if it is a geodesic in the metric14 14 See Exercise 5.2.
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σ ≑ r2(n−1)e−
x2+r2

4 (dx2 + dr2) .

The geodesic equation for (Σ, σ) can always be solved locally for pre-
scribed initial data (p, v) ∈ TΣ. However, most of these geodesics will
neither remain embedded nor close up. By a “shooting” argument, it
is possible to pinpoint a geodesic arc which meets the r-axis orthogo-
nally at both endpoints, hence defining the desired closed geodesic in
Σ upon reflection about the r-axis. ■

0 1 2 3 4
0

1

2

3

4

Figure 1.1: Some geodesics in (Σ, σ)
(profiles of the shrinking sphere, shrink-
ing cylinder and shrinking doughnut
among them). Cf. ibid., Figure 3a.

1.4 Uniqueness and (short-time) existence of solutions

We would like to exhibit the mean curvature flow equation as an equa-
tion or system of equations for which known methods from the theory
of partial differential equations may be applied. There is indeed a
general short-time existence theory which applies to strictly parabolic
second order partial differential equations for maps between mani-
folds (with compact domain). Unfortunately, this theory cannot be
directly applied to the mean curvature flow due to the lack of strict
parabolicity.

For nonlinear equations, parabolicity is determined by the lineariza-
tion.

Lemma 1.2 (Linearization of the mean curvature flow). Suppose that the
two parameter family of immersions Xε

t : Mn → Rn+1, t ∈ I, ε ∈ (−ε0, ε0),
forms a one-parameter family of mean curvature flows {Xε

t : Mn → Rn+1}t∈I

about Xt ≑ X0
t . The variation field Yt ≑ d

dε

∣∣∣
ε=0

Xε
t satisfies, in any local co-

ordinate chart,

∂Yα

∂t
= gij

(
∂2Yα

∂xi∂xj −
∂2Yβ

∂xi∂xj
∂Xβ

∂xk
∂Xα

∂xℓ

)
+ lower order terms , (1.6)

where gij(·, t) are the dual components of the metric gt induced by Xt.

Proof. We leave the proof as an exercise.

The equation (1.6) is weakly but not strictly parabolic. The lack of
strict parabolicity is due to the identity πdXt(TM)H⃗Xt = 0, which guar-

antees that πdXt(TM)
dYt
dt = 0. Treating this equation as a constraint,

Gage and Hamilton15 are able to prove short-time existence using di- 15 Gage and R. S. Hamilton, “The
heat equation shrinking convex plane
curves”.

rect methods (in particular, the Nash—Moser implicit function theo-
rem) following Hamilton’s earlier work on the Ricci flow.16 Soon after, 16 Richard S. Hamilton, “Three-

manifolds with positive Ricci curva-
ture”.

de Turck found a way to relate the mean curvature flow to a strictly
parabolic equation, to which the standard theory may be more read-
ily applied. We will present yet another proof, due to Huisken and
Polden17 (see also18). 17 Huisken and Polden, “Geometric evo-

lution equations for hypersurfaces”.
18 Mantegazza, Lecture notes on mean cur-
vature flow.
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Theorem 1.3 (Short time existence and uniqueness). Let Mn be a com-
pact manifold. Given any immersion X0 : Mn → Rn+1, there exists δ > 0
and a mean curvature flow {Xt : Mn → Rn+1}t∈(0,δ) such that Xt con-
verges uniformly to X0 as t → 0 (in the smooth sense if X0 is smooth).
Moreover, any other mean curvature flow starting from X0 agrees with Xt

on their common interval of existence. Finally, the mean curvature flow
{Xt : Mn → Rn+1}t∈(0,δ) depends continuously on X0 (in the smooth sense
if X0 is smooth).

19 We only present the argument in the
setting of hypersurfaces, but it can ac-
tually be generalized to any codimen-
sion, due to suitable existence theory for
strictly parabolic systems.

Sketch of the Huisken–Polden argument19. Let X0 : Mn → Rn+1 be an
immersion of a compact manifold Mn. Given a smooth function u :
Mn × [0, T) → Rn+1, we can form a family of smooth maps Xt : Mn →
Rn+1 by setting Xt(x) ≑ X0(x) + u(x, t)N0(x). If u(x, 0) ≡ 0, then
Xt|t=0 agrees with our initial immersion X0. Moreover, by smoothness
of u and compactness of Mn, Xt is an immersion for sufficiently small
times. By a somewhat involved calculation, this family of immersions
will satisfy 〈

dXt

dt
, NXt

〉
= −HXt

if and only if u satisfies an equation of the form

ut(x, t) = ∆Xt u(x, t) + P(∇u(x, t), u(x, t), x) ,

where ∆Xt is the Laplacian induced by Xt. But since this equation
is strictly parabolic (and Mn is compact), it admits a unique solution
with zero initial condition. Existence of our mean curvature flow now
follows by composing the corresponding family of normal graphs with
a (unique) time-dependent diffeomorphism.

Uniqueness and continuous dependence also follow from this argu-
ment since, due to compactness of Mn, any small perturbation of X0

may be represented as a normal graph over X0.

1.5 The time-dependent geometric formalism

A one-parameter family {Xt}t∈I of immersions Xt : Mn → Rn+k may
(perhaps more properly) be viewed as a map X : Mn × I → Rn+k via
(x, t) 7→ X(x, t) ≑ Xt(x); we call such a map a time-dependent

immersion. We may exhibit the time derivative dXt
dt as a section

(x, t) 7→ dXt
dt (x) of the pullback bundle

20 X∗TRn+k → Mn × I. In- 20 This is the “obvious” vector bundle
over Mn × I whose fibre at (x, t) is
TX(x,t)R

n+k .
deed,

dXt

dt
(x) = dX(x,t) ∂t|(x,t) ,

where the canonical vector field ∂t ∈ Γ(T(Mn × I)) is defined
by

∂t f (x, t) =
d

dh

∣∣∣∣
h=0

f (x, t + h) for f ∈ C∞(Mn × I) .
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Denoting ∂tX ≑ dX ∂t and identifying H⃗Xt with a section (x, t) 7→
H⃗(x, t) ≑ H⃗Xt(x) of X∗TRn+k, the mean curvature flow may be recast
as the equation

∂tX = H⃗. (1.7)

Now, this may seem like abstract nonsense (and it is), but it does have
a more pragmatic purpose: any time-dependent immersion X : Mn ×
I → Rn+k induces a natural (and computationally convenient) “time-
dependent” extrinsic geometric formalism on Mn, which is entirely
analogous to the extrinsic geometric formalism induced by a (time-
independent) immersion. This geometry is exhibited on the spatial

tangent bundle
21 21 Here, t : M × I → R denotes the pro-

jection onto the second factor.
Note that the fibres of S are canoni-

cally identified with those of TM; how-
ever, S is a bundle over Mn × I (not Mn),
which means that its sections are “time-
dependent”.

S ≑ {ξ ∈ T(M × I) : dt(ξ) = 0}

of M × I through the assignment of a (canonical) metric and connec-
tion. The time-dependent metric g ∈ Γ(S∗ ⊙S) is defined by

g(x,t)(u, v) ≑
〈

dX(x,t)u , dX(x,t)v
〉

for u, v ∈ S(x,t)

and the time-dependent connection ∇ : T(M × I)× Γ(S) → S

is defined by

dX∇ξU ≑ (DdX ξ(dXU))⊤ for ξ ∈ T(M × I), U ∈ Γ(S) .

The time-dependent metric induces the orthogonal splitting

X∗TRn+k = dX(S)⊕⊥ N .

The vector bundle N → Mn × I defined by this splitting is called the
normal bundle of X. Since the time-dependent metric coincides at
each time t with the metric induced by Xt, the fibre of N at (x, t) is the
fibre of the normal bundle to Xt at x. Projecting the ambient connec-
tion onto N produces the time-dependent second fundamental

form I⃗I ∈ Γ(T∗(M × I)⊗S∗ ⊗N):

I⃗I(ξ, U) ≑ DdX ξ(dXU)− dX(∇ξU) for ξ ∈ T(M × I) , U ∈ Γ(S) .

Note that S induces a canonical splitting

T(M × I) = S⊕ R∂t .

With respect to this splitting, the restriction of the time-dependent con-
nection and second fundamental form to S may at any fixed time t be
identified with the (Levi–Civita) connection and second fundamental
form induced by Xt. In particular, H⃗ = trg (⃗II|S).

The time-dependent connection provides a natural notion of differ-
entiation in the time direction of time-dependent vector fields
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(sections of S). The upshot is that this notion is computationally very
convenient, as it is compatible with the time-dependent metric:

∂t(g(U, V)) = ∂t ⟨dXU , dXV⟩
=
〈

DdX ∂t(dXU) , dXV
〉
+
〈
dXU , DdX ∂t(dXV)

〉
= g(∇tU, V) + g(U,∇tV)

for U, V ∈ Γ(S), where we are denoting ∇t ≑ ∇∂t .
Observe that

g(∇tU, V) =
〈

DdX ∂t(dXU) , dXV
〉

= ⟨DdXU(dX ∂t) + [dX ∂t, dXU] , dXV⟩

=
〈

DdXU
(
(dX ∂t)

⊤ + (dX ∂t)
⊥)+ [dX ∂t, dXU] , dXV

〉
=
〈

dX∇U(∂tX)⊤ + dXW(∂tX)⊥(U) + dX[∂t, U] , dXV
〉

= g
(
[∂t, U] +∇U(∂tX)⊤ + W(∂tX)⊥(U), V

)
, (1.8)

where the time-dependent Weingarten map WN ∈ Γ(S∗ ⊗ S)

associated with the normal field N ∈ Γ(N) is defined for any ξ ∈ S

by22 22 Note that the normal projection

∇ξ N = (DdX ξ N)⊥ (1.9)

defines a (time-dependent) connec-
tion ∇ : T(Mn × I)× Γ(N) → N on the
normal bundle N.

dXWN(ξ) ≑ (DdX ξ N)⊤ .

Returning to (1.8), we have established that

∇tU = [∂t, U] +∇U(∂tX)⊤ + W(∂tX)⊥(U) . (1.10)

In particular, for mean curvature flow,

∇tU = [∂t, U] + WH⃗(U) . (1.11)

Note that Equation (1.10) is sufficient to determine ∇, since ∇ξU is
given by the Levi-Civita formula when ξ ∈ S.

In the sequel, when it is clear that we are working in the “time-
dependent” setting, we shall conflate S with TMn and write NMn for
N.

1.6 Exercises It takes two, it’s up to me and
you, to prove it.
– Gossip, “Heavy Cross”

Exercise 1.1. Suppose that the family of graphs Mn
t ≑ graph u(·, t) in-

duced by a function u : Ω× I → R, Ω ⊂ Rn, evolve by mean curvature
flow, in the sense that the parametrizations Xt(x) ≑ (x, u(x, t)) satisfy(

dXt

dt

)⊥
= H⃗Xt .
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Show that u satisfies

∂tu =
√

1 + |Du|2 div

(
Du√

1 + |Du|2

)
.

Exercise 1.2. Suppose that the family of level sets Mn
t ≑ {X ∈ Ω :

u(X) = t} of a nondegenerate function u : Ω → R, Ω ⊂ Rn+1, evolve
by mean curvature flow, in the sense that there exist local parametriza-
tions Xt : U → Rn+1 satisfying

dXt

dt
= H⃗Xt .

Show that u satisfies

−1 = |Du|div
(

Du
|Du|

)
. (1.12)

Exercise 1.3. (a) Show that the induced connections, ∇ε, of a one-
parameter family of immersions Xε : Mn → Rn+1 satisfy

2
(

d
dε

∣∣∣∣
ε=0

∇ε

)
(U, V, W) (1.13)

= ∇ε
U S IIX(V, W) +∇ε

V S IIX(U, W)−∇ε
W S IIX(U, V)

+ S (∇ε
U IIX(V, W) +∇ε

V IIX(U, W)−∇ε
W IIX(U, V)) .

where X ≑ X0, S ≑ −
(

d
dε

∣∣∣
ε=0

Xε

)
·NX , and(

d
dε

∣∣∣∣
ε=0

∇ε

)
(U, V, W) ≑ dX

(
d
dε

∣∣∣∣
ε=0

∇ε

)
(U, V) · dXW.

(b) Deduce that, under mean curvature flow,

d∇Xt

dt
(U, V, W) (1.14)

= ∇Xt
U HXt IIXt(V, W) +∇Xt

V HXt IIXt(U, W)−∇Xt
W HXt IIXt(U, V)

+ HXt

(
∇Xt

U IIXt(V, W) +∇Xt
V IIXt(U, W)−∇Xt

W IIXt(U, V)
)

,

Exercise 1.4. Let X : Mn × I → Rn+1 be a time-dependent immersion.
Suppose that ∂tX ∈ Γ(N). Choosing a (local) unit normal vector field
N, write ∂tX = −F N. Show that

WN(∂t) = ∇F .

Hint: This an extension of the first Weingarten identity (for time-independent
immersions) to the extra time direction.

Exercise 1.5. Let X : Mn × I → Rn+1 be a time-dependent immersion.
Suppose that ∂tX ∈ Γ(N). Choosing a (local) unit normal vector field
N, write ∂tX = −F N. Show that

∇t II = ∇2F + F II2 .
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Hint: This is an extension of the Codazzi identity (for time-independent im-
mersions) to the extra time direction.

Exercise 1.6. Let X : Mn → Rn+1 be a hypersurface. Use the Gauss,
Codazzi and Weingarten equations to obtain Simons’ identity

∇(u∇v)II(w, z)−∇(w∇z)II(u, v)

= II(u, v)II2(w, z)− II(w, z)II2(u, v) , (1.15)

where the brackets indicate symmetrization.
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The groundwork

2.1 The maximum principle

The maximum principle is a fundamental tool in the analysis of partial
differential equations of parabolic type, and the mean curvature flow
is no exception.

2.1.1 Maximum principle for scalars

Proposition 2.1. Let X : Mn × [0, T) → Rn+1 be a mean curvature flow
on a compact manifold Mn. Suppose that u ∈ C∞(Mn × (0, T))∩C0(Mn ×
[0, T)) satisfies

(∂t − ∆ −∇b − c)u ≤ 0

for some time-dependent vector field b and some locally bounded function
c : Mn × [0, T) → R, where the Laplacian ∆ is taken with respect to the
induced time-dependent metric. If maxMn×{0} u ≤ 0, then

max
Mn×{t}

u ≤ 0 for all t ∈ [0, T] . (2.1)

If c ≡ 0, then
max

Mn×[0,T]
u = max

Mn×{0}
u . (2.2)

Proof. Given σ ∈ (0, T) and ε > 0, consider the modification uσ,ε(x, t) ≑
u(x, t)− εe(C+1)t, where C ≑ maxMn×[0,σ] c. We claim that uσ,ε < 0 in
Mn × [0, σ]. Suppose, to the contrary, that uσ,ε(x0, t0) ≥ 0 for some
point (x0, t0) ∈ Mn × [0, σ]. Since uσ,ε( · , 0) < 0, there exists a positive
earliest such time, which we take to be t0, in which case uσ,ε(x0, t0) = 0.
At the point (x0, t0),

0 ≤ (∂t − ∆ −∇b)uσ,ε ≤ cu − ε(C + 1)e(C+1)t

= εe(C+1)tc − ε(C + 1)e(C+1)t

≤ − εe(C+1)t

< 0,
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which is absurd. We conclude that uσ,ε < 0 in Mn × [0, σ]. But ε > 0
and σ ∈ (0, T) were arbitrary. Taking ε → 0 and then σ → T yields the
claim.

Of course, the same argument applies with the inequalities reversed,
leading to a minimum principle.

The following ode comparison principle is an immediate con-
sequence of the maximum principle.

Proposition 2.2 (ode comparison principle). Let X : Mn × [0, T) →
Rn+1 be a mean curvature flow on a compact manifold Mn. Suppose that
u ∈ C∞(Mn × (0, T)) ∩ C0(Mn × [0, T)) satisfies

(∂t − ∆ −∇b)u ≤ F (u) , (2.3)

for some time-dependent vector field b and some locally Lipschitz function
F : R → R, where the Laplacian ∆ and covariant derivative ∇ are taken
with respect to the induced time-dependent metric. If u ≤ ϕ0 at t = 0 for
some ϕ0 ∈ R, then u (x, t) ≤ ϕ (t) for all x ∈ Mn and 0 ≤ t < T, where ϕ

is the solution to the ode
dϕ

dt
= F (ϕ) in (0, T) ,

ϕ (0) = ϕ0 .
(2.4)

Proof. Fix s ∈ (0, T). Since F is locally Lipschitz, there exists some
L < ∞ such that

(∂t − ∆ −∇b)(u − ϕ) ≤ F(u)− F(ϕ)

≤ L|u − ϕ| = L sign(u − ϕ)(u − ϕ)

in Mn × (0, s], where sign(u − ϕ) is the sign of the expression u − ϕ.
The claim now follows, within Mn × [0, s], from Theorem 9.1. Taking
s → T completes the proof.

Again, one can reverse the inequalities to obtain the corresponding
ode comparison from below.

The strong maximum principle also passes to the geometric setting.

Proposition 2.3. Let X : Mn × (0, T) → Rn+1 be a mean curvature flow on
a connected manifold Mn. Suppose that u ∈ C∞(Mn × (0, T)) is nonpositive
and satisfies

(∂t − ∆ −∇b − c)u ≤ 0 (2.5)

for some time-dependent vector field b and some function c : Mn × (0, T) →
R, where the Laplacian ∆ and covariant derivative ∇ are taken with respect
to the induced time-dependent metric. If u(x0, t0) = 0 for some (x0, t0) ∈
Mn × (0, T), then u(x, t) = 0 for all (x, t) ∈ Mn × (0, t0].
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Proof. In local coordinates {xi}n
i=1 for a connected coordinate patch

U ⊂ Mn about x0, u satisfies

∂tu ≤ gijuij + (bk + gijΓij
k)uk + cu .

The classical strong maximum principle then implies that u ≡ 0 in
U × (0, t0]. Since Mn is connected, the claim follows from a standard
‘open-closed’ argument.

2.1.2 A maximum principle for symmetric bilinear forms

There is also an extremely useful incarnation of the maximum princi-
ple which applies to symmetric bilinear forms.

Proposition 2.4 (Tensor maximum principle). Let X : Mn × [0, T) →
Rn+1 be mean curvature flow on a compact manifold Mn. Suppose that
S ∈ Γ(T∗Mn ⊙ T∗Mn) satisfies

(∇t − ∆ −∇b)S(x,t)(v, v) ≥ F(x, t, S(x,t))(v, v) for all (x, t, v) ∈ TMn

for some time-dependent vector field b ∈ Γ(TM) and some time-dependent

vertical vector field—a (time-dependent) section F of π∗(T∗Mn ⊙
T∗Mn)—which is Lipschitz in the fibre and satisfies the null eigenvec-
tor condition:

F(x, t, T(x,t))(v, v) ≥ 0 whenever T(x,t) ≥ 0 and T(x,t)(v) = 0,

where ∇ and ∆ are the time-dependent connection and (spatial) Laplacian
induced by the time-dependent metric induced by X. If S(x,0) ≥ 0 for all
x ∈ Mn, then S(x,t) ≥ 0 for all (x, t) ∈ Mn × [0, T).

Proof. Fix σ ∈ (0, T) and ε > 0. Setting C ≑ max
(x,t)∈Mn×[0,σ]

LipF(x, t, ·),
we will show that the tensor

Sσ,ε ≑ S + εe(C+1)tg ,

is positive definite in Mn × [0, σ]. By hypothesis, Sσ,ε
(x,0) > 0 for all

x ∈ Mn. So suppose, contrary to the claim, that there exist x0 ∈ Mn,
t0 ∈ (0, σ] and V0 ∈ Tx0 Mn \ {0} such that Sσ,ε

(x,t) > 0 for each (x, t) ∈
Mn × [0, t0) but Sσ,ε

(x0,t0)
(V0, V0) = 0. Extend V0 locally in space by

solving
∇γ′V ≡ 0

along radial gt0 -geodesics γ emanating from x0 and then extend the
resulting local vector field in the time direction by solving

∇tV ≡ 0.

Then ∇V(x0, t0) = 0 and ∇tV(x0, t0) = 0. We claim that we also have
∆V(x0, t0) = 0. To see this, let {ei}n

i=1 be an orthonormal frame at
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x0 and parallel translate it along geodesics emanating from x0, all of
this respect to gt0 . We then may compute using ei = γ′

i along γi with
γ′

i(0) = ei that

∆V(x0, t0) =
n

∑
i=1

(
∇ei (∇ei V)−∇∇ei ei V

)
(x0, t0) = 0.

Now set
sσ,ε(x, t) ≑ Sσ,ε

(x,t)(V(x,t), V(x,t))

for (x, t) near (x0, t0). Then sσ,ε(x, t) ≥ 0 for (x, t) in a small parabolic
neighborhood Br(x0, t0) × (t0 − r2, t0] of (x0, t0) and sσ,ε(x0, t0) = 0,
and hence

0 ≥ (∂t − ∆ −∇b)sσ,ε|(x0,t0)

= (∇t − ∆ −∇b)Sσ,ε|(x0,t0)
(V0, V0)

≥ F(x0, t0, S(x0,t0)
)(V0, V0) + ε(C + 1)e(C+1)tg(x0,t0)

(V0, V0)

≥ F(x0, t0, Sσ,ε
(x0,t0)

)(V0, V0)− C
(
Sσ,ε
(x0,t0)

− S(x0,t0)

)
(V0, V0)

+ ε(C + 1)e(C+1)tg(x0,t0)
(V0, V0)

≥ εe(C+1)t0 g(x0,t0)
(V0, V0)

> 0,

which is absurd. So Sσ,ε indeed remains positive definite in [0, σ]. The
claim follows since σ ∈ (0, T) and ε > 0 are arbitrary.

2.2 Evolution of geometry under mean curvature flow

The mean curvature flow equation induces diffusion equations of vari-
ous types for the various geometric attributes of the evolving interface.

2.2.1 Displacement estimates

If X : Mn × I → R evolves by mean curvature flow, then, for any
basepoint (p0, t0) ∈ Rn+1 × R, a short calculation reveals that the
squared parabolic distance function |X − p0|2 + 2n(t − t0) satisfies the
heat equation induced by X:

(∂t − ∆)
(
|X − p0|2 + 2n(t − t0)

)
= 0.

When Mn is compact, the maximum principle then ensures that upper
and lower bounds for |X − p0|2 + 2n(t − t0) are preserved. In particu-
lar, we obtain the following extrinsic distance estimates.

Proposition 2.5. Let X : Mn × I → R be a mean curvature flow. If t0 ∈ I
and X(Mn, t0) is disjoint from the sphere ∂Br(p0), then X(Mn, t) is disjoint
from the sphere ∂B√r2−2n(t−t0)

(p0) for all t ∈ I ∩ [t0, ∞).
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In particular, if the initial hypersurface lies inside the ball Br(p0),
then1 the hypersurface X(Mn, t) must lie inside the ball B√

r2−2nt(p0). 1 By the Jordan–Schoenflies theorem, for
example.

What happens as t → r2

2n ? We can only conclude that the solution
simply does not exist long enough to find out.

Corollary 2.6. If Mn is compact and X : Mn × [0, T) → Rn+1 evolves by
mean curvature, then

T ≤ r2
0

2n ,

where r0 is the circumradius of X(Mn, 0).

Note that2 the boundary of the ball B√r2−2n(t−t0)
(p0) evolves by 2 Recall Example 1.

mean curvature; so Proposition 2.5 says that the mean curvature evo-
lution of a compact hypersurface and a sphere which is disjoint from
it must “avoid” each other in their common interval of existence. This
turns out to be true for any pair of proper mean curvature flows, so
long as at least one of them is compact.

Proposition 2.7 (The avoidance principle). Let Xj : Mn
j × [0, Tj) →

Rn+1, j = 1, 2, be a pair of proper mean curvature flows, with at least
one of the domains Mn

j compact. If X1(Mn
1 , 0) ∩ X2(Mn

2 , 0) = ∅, then
X1(Mn

1 , t)∩ X2(Mn
2 , t) = ∅ for all t ∈ [0, T1)∩ [0, T2). In fact, the distance

min(x,y)∈Mn
1×Mn

2
d(x, y, t) between the two solutions is nondecreasing.

Proof. Note first that the infimum inf(x,y)∈Mn
1×Mn

2
d(x, y, t) is indeed at-

tained at each time t (since one of the two spatial domains is compact
and the other flow is proper). Given ε > 0, consider the function
dε(x, y, t) ≑ eε(1+t)d(x, y, t). Note that dε(x, y, 0) > minMn

1×Mn
2

d(·, ·, 0).
Suppose then that, for some ε > 0, dε(x, y, t) does not remain strictly
greater than minMn

1×Mn
2

d(·, ·, 0). Then there must be some positive
time t0 and some pair of points (x0, y0) ∈ Mn

1 × Mn
2 such that dε(·, ·, t) >

d0 for t < t0 but dε(x0, y0, t0) = d0. At this point,

∂tdε ≤ 0, ∇dε = 0, and ∇2dε ≥ 0, (2.6)

where ∇ is the product connection on Mn
1 × Mn

2 induced by those on
Mn

1 and Mn
2

Given U, V ∈ Tx Mn
1

∼= (dX1)(x,t)(Tx Mn
1 ) and W, Y ∈ Ty Mn

2
∼=

(dX2)(x,t)(Ty Mn
2 ), we have

U(d) = − ⟨U, w⟩ (2.7)

and
W(d) = ⟨W, w⟩ , (2.8)

where

w (x, y, t) ≑
X2 (y, t)− X1 (x, t)

d (x, y, t)
. (2.9)
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Observe that

DVw = −1
d
(V − ⟨V, w⟩w) and DYw =

1
d
(Y − ⟨Y, w⟩w) .

Extending U, V to vector fields in a neighborhood of x and extending
W, Y to vector fields in a neighborhood of y, we compute

V (U(d)) = − ⟨DVU, w⟩ − ⟨U, DVw⟩

= − ⟨∇VU, w⟩+ II1 (V, U) ⟨N1, w⟩+
〈

U,
1
d
(V − ⟨V, w⟩w)

〉
since DVU = ∇VU − II1 (V, U)N1 for any vector field U tangent to
Mn

1 near x. Thus, for U, V ∈ Tx M1,(
∇2d

)
(V, U) = II1 (V, U) ⟨N1, w⟩+ 1

d
(⟨U, V⟩ − ⟨U, w⟩ ⟨V, w⟩) .

Taking the trace then yields

∆1d = H1 ⟨N1, w⟩+ 1
d

(
n −

∣∣∣w⊤1
∣∣∣2) , (2.10)

where w⊤1 denotes the projection of w onto (dX1)(x,t)Tx M1.
Similarly, for W, Y ∈ Ty M2,(
∇2d

)
(Y, W) = −II2 (Y, W) ⟨N2, w⟩+ 1

d
(⟨W, Y⟩ − ⟨W, w⟩ ⟨Y, w⟩) ,

and

∆2d = −H2 ⟨N2, w⟩+ 1
d

(
n −

∣∣∣w⊤2
∣∣∣2) , (2.11)

where w⊤2 denotes the projection of w onto (dX2)(y,t)Ty M2.
By (2.7) and (2.8), w⊤1 = 0 and w⊤2 = 0 at (x0, y0, t0). We may

choose the orientation of the normals at this point so that N1 = N2 = w,
which yields (at(x0, y0, t0))

∆1d = H1 +
n
d

and ∆2d = −H2 +
n
d

.

Next we compute, for U ∈ Tx M1 and W ∈ Ty M2, the “cross-term”(
∇2d

)
(U, W) = U (W(d)) (2.12)

= ⟨W, DUw⟩

= −1
d
⟨W, U − ⟨U, w⟩w⟩

= −1
d
(
⟨W, U⟩ − ⟨U, w⟩ ⟨W, w⟩

)
.

Since the tangent planes at X(x0, t0) and Y(y0, t0) are parallel, and or-
thogonal to w(x0, y0, t0), we can trace this with respect to an orthonor-
mal basis {ei}n

i=1 for the subspace (dX1)(x0,t0)
Tx0 M1 = w⊥(x0, y0, t0) =

(dX2)(y0,t0)
Ty0 M2 to obtain

n

∑
i=1

ei(eid) = −n
d

.
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We thus find, at the point (x0, y0, t0),

n

∑
i=1

(e1
i + e2

i )
(
(e1

i + e2
i )d
)
= ∆1d + ∆2d + 2

n

∑
i=1

e1
i

(
e2

i d
)

(2.13)

= H1 −H2 .

On the other hand,

∂td (x, y, t) =
1
d
⟨X1(x, t)− X2(y, t),−H1 N1 + H2 N2⟩ (2.14)

= ⟨w,−H1 N1 + H2 N2⟩ .

= H2 −H1 (2.15)

with the final inequality holding at the point (x0, y0, t0). We conclude
that

0 ≥ ∂t

(
eε(1+t)d

)
|(x0,y0,t0) (2.16)

= εeε(1+t0)d + eε(1+t0) ⟨w,−H1 N1 + H2 N2⟩

= εeε(1+t0)d + eε(1+t0) (H1 −H2)

≥ εd0

at the point (x0, y0, t0), which is absurd.

This argument can also be used to prevent a solitary mean curvature
flow from forming self-intersections through the coming together of
points at a large intrinsic distance, though an additional argument is
required to prevent cusps from appearing out of a single point.

Lemma 2.8. If X : Mn → Rn+1 is an immersion of a compact manifold Mn,
and maxMn |II| ≤ K, then

|X(y)− X(x)| ≥ 2
K

sin
(

Kℓ(x, y)
2

)
(2.17)

for all x, y with ℓ(x, y) ≤ π
K , where ℓ(x, y) is the intrinsic distance on Mn

from x to y.

Proof. Let x and y be two points of Mn, joined by a unit speed, min-
imizing geodesic segment γ : [−ℓ/2, ℓ/2] → Mn of intrinsic length
ℓ ≤ π

K , and let θ(s) denote the angle between (X ◦ γ)′(s) and T0 ≑
(X ◦ γ)′(0). Observe that∣∣∣∣ d

ds
(X ◦ γ)′(s) · T0

∣∣∣∣ = ∣∣∣IIγ(s)(γ
′(s), γ′(s))N(γ(s)) · T0

∣∣∣
≤ K

and hence,

|θ(s)| ≤ K|s| ≤ Kℓ
2

≤ Kπ

2
.
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Thus,

|X(x)− X(y)| ≥ (X(x)− X(y)) · T0

=

ˆ ℓ/2

−ℓ/2
(X ◦ γ)′(s) · T0 , ds

=

ˆ ℓ/2

−ℓ/2
cos(θ(s))ds

≥
ˆ ℓ/2

−ℓ/2
cos(Ks)ds

=
2
K

sin
(

Kℓ
2

)
.

Applying the argument of Proposition 2.7 outside neighbourhood
of the diagonal in which Lemma 2.8 applies, yields the following.

Proposition 2.9 (Embeddedness is preserved). Let X : Mn × [0, T) →
Rn+1 be a mean curvature flow on a compact domain Mn. If X( · , 0) is an
embedding, then so is X( · , t) for each t ∈ [0, T).

2.2.2 The first variation of area

Recall that, on any submanifold X : Mn → Rn+1, the area of any
compact subset K ⊂ Mn is defined by

area(K, X) ≑
ˆ

K
dµ ≑ ∑

α

ˆ
xα(Uα)

(x−1
α )∗

(
ρα

√
det gα

)
dx ,

where {(Uα, xα)}α is any locally finite covering of K, {ρα}α is any sub-
ordinate partition of unity, dx is the Lebesgue measure on Rn, and gα

is the component matrix of the induced metric g with respect to the
α-th coordinate chart. If {Xε}ε∈(−ε0,ε0)

is a one-parameter family of

immersions of Mn with X0 = X and d
dε

∣∣∣
ε=0

Xε = F⃗ ∈ Γ(NMn), then,
with respect to any coordinate chart,

d
dε

∣∣∣∣
ε=0

gε
ij =

d
dε

∣∣∣∣
ε=0

〈
∂iXε , ∂jXε

〉
= 2

〈
∇⊥

i F⃗ , ∂jX
〉
= −2

〈
F⃗ , I⃗Iij

〉
,

and hence

d
dε

∣∣∣∣
ε=0

√
det gε =

1
2

√
det g trg

(
d
dε

∣∣∣∣
ε=0

gε

)
= −

√
det g

〈
F⃗ , H⃗

〉
.

We thus obtain the first variation formula (for area):

d
dε

∣∣∣∣
ε=0

area(K, Xε) = −
ˆ

K

〈
F⃗ , H⃗

〉
dµ .

We conclude that,
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Proposition 2.10. along a mean curvature flow3 X : Mn × I → Rn+1, 3 We invite the reader to verify that this
formula holds in any codimension and
in any ambient space.d

dt
area(K, ·) = −

ˆ
K
|H⃗|2 dµ (2.18)

for any compact K ⊂ Mn, where area(K, t) ≑ area(K, Xt).

In particular, the area of a compact hypersurface is nonincreasing
under mean curvature flow.

2.2.3 Evolution of the normal

By Exercise 1.4,

Proposition 2.11. if X : Mn × I → Rn+1 evolves by mean curvature, then,
for any (local) choice of unit normal N,

Dt N = ∇H.

2.2.4 The first variation of volume

If our hypersurface is the boundary ∂Ω of a bounded open subset
Ω ⊂ Rn+1, then the divergence theorem ensures that

volume(Ω) =

ˆ
Ω

dL =
1

n + 1

ˆ
Ω

div XdL =
1

n + 1

ˆ
∂Ω

⟨X , N⟩ dµ ,

where L is the Lebesgue measure on Rn+1, X is the position vector-
field on Rn+1, and N is the outward unit normal field to ∂Ω. Thus,
if {∂Ωε}ε∈I are a one-parameter family of (bounded) boundaries with
Ω0 = Ω and normal variation field F⃗ = −F N, then (expressing the
integral with respect to a covering by coordinate charts dominating a
partition of unity) we find that

d
dε

∣∣∣∣
ε=0

volume(Ωε) =
1

n + 1
d
dε

∣∣∣∣
ε=0

ˆ
∂Ωε

⟨X , N⟩ dµ

= − 1
n + 1

ˆ
∂Ω

(F − ⟨X , ∇F⟩+ ⟨X , N⟩H F) dµ .

With the divergence theorem in mind, we rewrite

⟨X , ∇F⟩ =
〈

X⊤ , ∇F
〉

= div(FX⊤)− F div X⊤ .

Since

F div X⊤ = F trT∂Ω D(X − ⟨X , N⟩N)
= F(n − ⟨X , N⟩H) ,
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we arrive at the first variation formula (for enclosed vol-
ume):

d
dε

∣∣∣∣
ε=0

volume(Ωε) = −
ˆ

∂Ω
F dµ .

In particular,

Proposition 2.12. if K ⊂ Rn+1 is compact and {Ωt}t∈I are a family of open
sets for which the hypersurfaces {∂Ωt ∩K}t∈I evolve by mean curvature, then

d
dt

volume(Ωt ∩ K) = −
ˆ

∂Ωt∩K
H dµ . (2.19)

2.2.5 The Jacobi equation

An important equation related to the mean curvature flow is the linear
equation

(∂t − ∆)u = |II|2u . (2.20)

We will refer to (2.20) as the Jacobi equation (for mean curvature
flow). It arises as the equation satisfied by the normal variation of a
smooth family of solutions to mean curvature flow.

Lemma 2.13. Let X : Mn × I → Rn+1 be a mean curvature flow and
{Xε : M × I → Rn+1}ε∈(−ε0,ε0)

a one-parameter family of mean curvature
flows with X0 = X. The normal component,

v ≑
〈

d
dε

∣∣∣∣
ε=0

Xε , N
〉

,

of the variation field d
dε

∣∣∣
ε=0

Xε is a solution to the Jacobi equation (2.20).

2.2.6 Evolution of the mean curvature

Given a mean curvature flow X : Mn × I → Rn+1, consider the one-
parameter family of mean curvature flows {Xε : Mn × I → Rn+1}ε∈Iε

defined by Xε(x, t) ≑ X(x, t − ε). The normal component of the varia-
tion field is 〈

d
dε

∣∣∣∣
ε=0

Xε , N
〉

= H .

We thus obtain:

Proposition 2.14. If X : Mn × I → Rn+1 evolves by mean curvature, then

(∂t − ∆)H = |II|2 H . (2.21)

The maximum principle then immediately implies the following.

Corollary 2.15. Let X : Mn × [0, T) → Rn+1 be a mean curvature with
Mn compact. If H(·, 0) ≥ 0, then H ≥ 0. In fact, H(·, t) > 0 for all t > 0.4 4 Indeed, any connected (possibly non-

compact) mean curvature flow satisfying
H ≥ 0, must satisfy either H > 0 at inte-
rior times, or H ≡ 0.
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2.2.7 Evolution of the second fundamental form

By Exercise 1.5,
∇tII = ∇2 H+H II2 .

Tracing Simons’ commutation formula (1.15) yields

∇2 H = ∆II + |II|2II − II2 H .

We thus obtain the following evolution equation for the second funda-
mental form.

Proposition 2.16. If X : Mn × I → Rn+1 evolves by mean curvature, then

(∇t − ∆)II = |II|2II. (2.22)

2.3 Global-in-space Bernstein estimates and long-time existence

The evolution equation for II immediately yields5 an evolution equa- 5 The ease with which this equation is es-
tablished is a return on our investment
in constructing the time-dependent con-
nection. If you are skeptical, try Exercise
2.1.

tion for |II|2:

(∂t − ∆)|II|2 = 2g((∇t − ∆)II, II)− 2|∇II|2

= 2|II|4 − 2|∇II|2 .

In order to establish evolution equations for derivatives of II, we
shall need to commute the heat operator with the covariant differential.
Since only “rough” evolution equations will be required, the following
lemma will be sufficient.

Let us denote by S ∗ T any tensor which is a linear combination of
metric contractions of the tensor product of S and T (of the same type).

Lemma 2.17. Along a mean curvature flow X : Mn × I → Rn+1,

[∇t − ∆,∇]T = II ∗ II ∗ ∇T + II ∗ ∇II ∗ T .

From this, we find that

(∂t − ∆)|∇II|2 = 2g((∇t − ∆)∇II,∇II)− 2|∇2II|2

= 2g(∇(∇t − ∆)II + II ∗ II ∗ ∇II + II ∗ ∇II,∇II)

− 2|∇2II|2

= II ∗ II ∗ ∇II ∗ ∇II − 2|∇2II|2 .

If |II| remains bounded on the time interval [0, T], then we can estimate

(∂t − ∆)|∇II|2 ≤ C|∇II|2 ,

where C depends only on n and the bound for |II|. The ode compari-
son principle then implies that |∇II|2 grows at most exponentially on
[0, T]:

|∇II|2 ≤ max
t=0

|∇II|2eCT .
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This estimate takes a more natural form if we exploit its scale invari-
ance: since |II| scales (under parabolic rescaling of our mean curvature
flow) like the inverse square of distance, whereas t scales as distance
squared, the constant CT will be scale invariant. If we introduce the
scale parameter r =

√
T and assume that |II| ≤ Kr−1 for t ∈ [0, r2] (a

scale-invarant assumption), then the estimate becomes

|∇II|2 ≤ C1 max
t=0

|∇II|2 ,

where C1 depends only on K and n.
We can also obtain a time-interior version of this estimate: consider,

for some to-be-determined constant a, the combination

Q ≑ 2t|∇II|2 + a|II|2 .

Observe that

(∂t − ∆)Q = 2|∇II|2 + 2t(∂t − ∆)|∇II|2 + a(∂t − ∆)|II|2

≤ 2|∇II|2 + 2tC1|II|2|∇II|2 + a(C0|II|3 − 2|∇II|2)
= 2(1 + C1t|II|2 − a)|∇II|2 + aC0|II|4 .

If we know that |II| is bounded by Kr−2 on M × [0, r2], then

(∂t − ∆)Q ≤ 2(1 + C1K − a)|∇II|2 + aC0K3r−4

Thus, if we choose a = 1 + C1K, then the ode comparison principle
yields

t|∇II|2 ≤ Q ≤ max
t=0

Q + aC0K3r−4t ≤ aK2(1 + C0K)r−2 .

That is,

|∇II| ≤ Dr−1
√

t
,

where D2 ≑ aK2(1 + C0K). This is another manifestation of the diffu-
sive nature of the mean curvature flow: even if the curvature is arbi-
trarily rough at the initial time, it becomes much more regular only a
short-time later.

An inductive extension of this argument yields the following esti-
mates.

6 Ecker and Huisken, “Mean curvature
evolution of entire graphs”.

Proposition 2.18 ((Global-in-space) Bernstein estimates6). For every n ∈
N, K < ∞ and m ∈ N, there exists Cm < ∞ with the following property. Let
X : Mn × [0, T) → Rn+1 be a mean curvature flow on a compact manifold
Mn. If

|II(x,t)| ≤ Kr−1 for all (x, t) ∈ Mn × [0, r2] ,

then

|∇mII(x,t)| ≤ Cm max
M×{0}

|∇mII| for all (x, t) ∈ Mn × [0, r2]
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and

|∇mII(x,t)| ≤
Cmr−1

t
m
2

for all (x, t) ∈ Mn × [0, r2] .

A fundamental application of the global-in-space Bernstein esti-
mates is the following characterization of finite time singularities.

Theorem 2.19 (Long-time existence). Let X : Mn × [0, T) → Rn+1 be a
maximal

7 mean curvature flow on a compact manifold Mn. If T < ∞, then 7 I.e. there is no mean curvature flow X′ :
Mn × [0, T′) → Rn+1 with T′ > T such
that X′(x, t) = X(x, t) for all t < T.lim sup

t→T
max

M×{t}
|II| = ∞ .

Sketch of the proof. Let X : Mn × [0, T) → Rn+1 with T < ∞ be a max-
imal mean curvature flow on a compact manifold Mn and suppose,
contrary to the claim, that

|II| ≤ K on Mn × [0, T) .

By the Bernstein estimates, we also have bounds on Mn × [0, T) for
∇mII for all m. These geometric estimates can be converted, by an
inductive argument, to estimates in Ck for the immersions Xt in any
local coordinate chart. The only subtlety is the k = 0 and k = 1
cases; to control these terms, we observe that, for any x ∈ Mn and
any v ∈ Tx Mn,∣∣∣∣ d

dt
log
(

g(x,t)(v, v)
)∣∣∣∣ =

∣∣∣∣∣2HII(x,t)(v, v)
g(x,t)(v, v)

∣∣∣∣∣ ≤ C .

Integrating, we find that g(x,t) remains uniformly equivalent to g(x,0)
under the evolution. This gives a uniform estimate in C1 and also a
uniform lower bound for |dX|. A displacement estimate is obtained by
integrating the flow equation:

|X(x, t)− X(x, 0)| =
∣∣∣∣ˆ t

0
∂tX(x, τ) dτ

∣∣∣∣
=

∣∣∣∣ˆ t

0
H⃗(x, τ) dτ

∣∣∣∣
≤
ˆ t

0
|H(x, τ)| dτ

≤ Kt ≤ KT .

Now cover Mn by finitely many compact sets Kα which each lie to
the interior of some coordinate chart ϕα : Uα → Rn. Due to the uni-
form estimates in Ck for each k, the Arzelá–Ascoli theorem implies
that, for any sequence of times tj → T, we can find, for each com-
pact set Kα, a subsequence of times such that the restriction of X to the
domain of the chart ϕα converges uniformly on Kα in the smooth topol-
ogy to some limit. Taking appropriate subsequences, we can find limits
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along the same sequence of times which agree on overlaps. Due to the
uniform lower bound for dX, these limits thus define a global smooth
immersion of Mn into Rn+1, which we now evolve by the mean cur-
vature flow using our short-time existence theorem. The so extended
family of immersions is smooth at each time and it is also smooth in
time across the jump time T since time derivatives of X are related to
spatial derivatives via the mean curvature flow equation. But this is
impossible since our original mean curvature flow was assumed to be
maximal.

Proposition 2.20. Let X : Mn × [0, T) → Rn+1 be the maximal mean
curvature flow on a compact manifold Mn. If T < ∞, then

max
Mn×{t}

|II| ≥ C√
T − t

,

where C depends only on n.

Proof. Since lim supt↗T maxMn×{t} |II| = ∞ and

(∂t − ∆)|II|2 ≤ c(n)|II|4 ,

the claim follows from the ode comparison principle.

2.4 Local-in-space Bernstein estimates and the compactness the-
orem

By introducing spatial cutoff functions into the above argument, one
may derive the following local-in-space estimates.

8 Ecker and Huisken, “Interior estimates
for hypersurfaces moving by mean cur-
vature”.

Proposition 2.21 (Fully local Bernstein estimates8). For every n ∈ N,
K < ∞ and m ∈ N, there exists Cm < ∞ with the following property.
Let X : Mn × I → Rn+1 be a mean curvature flow on a manifold Mn. If
[t − r2, t] ⊂ I, Xs is proper with respect to the ambient ball Br(p) for each
s ∈ [t − r2, t], and supBr(p)×[t−r2,t] |II| ≤ Kr−2, then

|∇mII(x,t)| ≤ Cmr−m−1 .

Combining these estimates with the Cheeger–Gromov compactness
theorem for Riemannian manifolds with bounded geometry yields the
following compactness theorem for mean curvature flows under mod-
est geometric assumptions.

Theorem 2.22 (Compactness of the space of mean curvature flows with
bounded geometry). Let {(Xk : Mk × Ik → Rn+1, xk)}k∈N be a sequence
of pointed mean curvature flows and (o, t0) a point in spacetime Rn+1 × R.
Suppose that the following conditions hold for every k:
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1. Xk(xk, t0) = o, t0 ∈ I ≑ [α, ω] ⊂ Ik and Xk(·, t) is proper with respect
to the ambient ball Br(o).

2. maxBr(ok)×I |IIXk | ≤ C < ∞.

There exists a pointed mean curvature flow (X : Mn × I → Rn+1, x0) with
X(x, t0) = 0 such that, after passing to a subsequence, the mean curva-
ture flows flows

(
Xk|B r

2
(ok ,α)×Ik

: B r
2
(ok, α) × Ik → Rn+1, ok

)
converge

uniformly in the smooth sense to the mean curvature flow
(
X|B r

2
(o,0)×I :

B r
2
(o, 0)× I → Rn+1, o

)
. That is, there exists a sequence of diffeomorphisms

ϕk : B r
2
(o, 0) → Mk with ϕk(o) = ok such that ϕ∗

k Xk → X uniformly in the
smooth topology.9 9 This is an “intrinsic” notion of conver-

gence, as we only consider neighbour-
hoods of points in the domain space. It
has the advantage of providing informa-
tion even when the flows are only im-
mersed, or lose embeddedness in the
limit, but the disadvantage that it loses
extrinsic information (e.g. discarding
extrinsically nearby components). Un-
der additional conditions (anything suf-
ficient to ensure that the evolving hyper-
surfaces along the sequence bound re-
gions which do not degenerate in the
limit), a similar compactness statement
can be made with convergence holding
in the “extrinsic sense” (where neigh-
bourhoods of points in the target space
are considered).

By taking limits along diagonal subsequences, one can obtain a
complete limit under global bounds on the curvature. Note though
that the limit can lose or gain topology, and different subsequences
can take different limits. Compact limits are better behaved, however
(as in this case the convergence is necessarily uniform).

2.5 Estimates for the curvature

Theorems 9.15 and 9.18 provide estimates to all orders for as long as
the curvature remains bounded. In some situations, the curvature it-
self can be bounded in terms of lower order data. The following clever
argument, due to Chou,10 provides bounds for the mean curvature

10 Tso (Chou), “Deforming a hypersur-
face by its Gauss–Kronecker curvature”.under a uniform “starshapedness” condition.11

11 Cf. Ecker and Huisken, “Mean curva-
ture evolution of entire graphs”.Proposition 2.23. If a compact mean curvature flow X : Mn × [0, T] →

Rn+1 satisfies
ϑ ≤ (X − p) ·N ≤ Θ ,

then it also satisfies

|H| ≤ max
{

2ϑ−1Θ max
Mn×{0}

|H|, 8nϑ−2Θ
}

and

|H| ≤ max
{

Θ
2t

, 8nϑ−1
}

.

Proof. The key observation is that the reaction term in the evolution
equation

(∂t − ∆)(X − p) ·N = |II|2(X − p) ·N−2 H

can be used to absorb that in

(∂t − ∆)H = |II|2 H,
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with a fortuitously good term, −2H, to spare. Indeed, wherever v ≑
(X − p) ·N ≥ ϑ > 0, we have

(∂t − ∆)
H

v − ϑ
2

=
1

v − ϑ
2

(
(∂t − ∆)H− H

v − ϑ
2

(∂t − ∆)v

)

+ 2∇ H
v − ϑ

2

· ∇v
v − ϑ

2

=
H

v − ϑ
2

(
2

H
v − ϑ

2

− ϑ
2
|II|2

v − ϑ
2

)
+ 2∇ H

v − ϑ
2

· ∇v
v − ϑ

2

.

Estimating |II|2 ≥ 1
n H2, we find, at any positive interior maximum of

H
v− ϑ

2
, that

ϑ
2n

H2

v − ϑ
2

≤ 2
H

v − ϑ
2

(2.23)

and hence, at such a point,

H
v − ϑ

2

≤ 8nϑ−2 .

At a nonpositive interior minimum, we still obtain (2.23), which
now implies H ≥ 0.

On the other hand, if no new minima or maxima of |H|
v− ϑ

2
form, then

Θ−1|H| ≤ |H|
v − ϑ

2

≤ max
Mn×{0}

|H|
v − ϑ

2

≤ 2ϑ−1 max
Mn×{0}

|H| .

The first claim is proved.
To establish the second claim, we instead consider instead the func-

tion t H
v− ϑ

2
, which at a positive interior maximum satisfies

0 ≤ (∂t − ∆)
t H

v − ϑ
2

= t(∂t − ∆)
H

v − ϑ
2

+
H

v − ϑ
2

=
H

v − ϑ
2

(
2

t H
v − ϑ

2

− ϑ
2

t|II|2

v − ϑ
2

+ 1

)
and hence

ϑ

2n
t H2

v − ϑ
2

≤ 2
t H

v − ϑ
2

+ 1. (2.24)

If H ≥ 8nϑ−1, then we may conclude that

t H
v − ϑ

2

≤ 1
2

.

At a negative interior minimum, we still obtain the inequality (2.24),
which now yields

t H
v − ϑ

2

≥ −1
2

.

Since maxMn×{0}
t|H|
v− ϑ

2
= 0, the second claim is proved.
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Introducing a cut-off function yields the following local-in-space es-
timates, which we state in a streamlined and scale invariant form.12 12 Estimates which are stronger at large

scales were established by Lynch, “Con-
vexity and gradient estimates for fully
nonlinear curvature flows”, Theorem
4.3.

Proposition 2.24. Suppose that the mean curvature flow X : Mn × I →
Rn+1 is properly defined13 in BΛr(p)× (ω − Λ2K2r2, ω]. If

13 I.e. the map (X, t) : (x, t) 7→
(X(x, t), t) ∈ Rn+1 × R is proper with
respect to B2r(p)× (ω − 4K2r2, ω], in the
sense that (X, t)−1(K) ⋐ Mn × I for ev-
ery compact subset K ⊂ B2r(p) × (ω −
4K2r2, ω].

(X − p) ·N ≥ ϑr > 0 in BΛr(p)× (ω − Λ2K2r2, ω] ,

then
sup

Br(p)×(ω−K2r2,ω]

|H| ≤ C(n, ϑ, Λ, L)r−1 , (2.25)

where L ≑ supB2r(p)×{ω−4K2r2} |H|, and

sup
Br(p)×(ω−K2r2,ω]

|H| ≤ C(n, ϑ, Λ, K)r−1 . (2.26)

Proof. Without loss of generality, we may assume that r = 1, p = 0
and ω = 0. We introduce the cut-off function

η ≑ 1 − |X|2

and consider, in B1,

(∂t − ∆)
η H

v − ϑ
2

=
1

v − ϑ
2

(
η(∂t − ∆)H+H(∂t − ∆)η − η H

v − ϑ
2

(∂t − ∆)v

)

− 2
∇η · ∇H

v − ϑ
2

+ 2∇ ηH
v − ϑ

2

· ∇v
v − ϑ

2

.

At a positive interior maximum of η H
v− ϑ

2
, we find that

−∇η · ∇H
v − ϑ

2

=
η H

v − ϑ
2

(
∇η

η
− ∇v

v − ϑ
2

)
∇η

η

=
H

v − ϑ
2

n

∑
i=1

(
2 +

ηκi

v − ϑ
2

)
X2

i
η

≤ H
v − ϑ

2

(
2 +

η|II|
v − ϑ

2

)
|X|2

η
.

Since
(∂t − ∆)η = 2n ,

we deduce that

ϑ2

4
η2|II|2

(v − ϑ
2 )

2
≤ ϑ

2
η2|II|2

v − ϑ
2

≤ 2
η2 H
v − ϑ

2

+ 2nη + 2

(
2 +

η|II|
v − ϑ

2

)
|X|2

≤ 2
η H

v − ϑ
2

+ 2
η|II|

v − ϑ
2

+ 2(n + 2)
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at such a point. Rearranging, we obtain

η|II|
v − ϑ

2

(
ϑ2

4
η|II|

v − ϑ
2

− 2

)
≤ 2

η H
v − ϑ

2

+ 2(n + 2) . (2.27)

If, at this point, η H
v− ϑ

2
≥ 8

√
n(1 + 2

√
n)ϑ−2, then

4
η H

v − ϑ
2

≤ η|II|
v − ϑ

2

(
ϑ2

4
η|II|

v − ϑ
2

− 2

)

≤ 2
η H

v − ϑ
2

+ 2(n + 2)

and hence
η H

v − ϑ
2

≤ n + 2.

At a nonpositive interior minimum, we still obtain (2.27). If, at this
point, η H

v− ϑ
2
≤ −8

√
n(1 + 2

√
n)ϑ−2, then (2.27) implies that

η H
v − ϑ

2

≥ −(n + 2) .

The first claim is proved. To establish the second, apply the above
argument to the function tη H

v− ϑ
2

.

These estimates show that, along a mean curvature flow, uniform
starshapedness in some parabolic region implies a uniform bound for
its curvature in any smaller region. This is particularly useful when
the evolving hypersurfaces are convex14, since the conditions 14 We shall see in Chapter 3 that convex-

ity is preserved under the flow.
ϑ ≤ (X − p) ·N ≤ Θ

are automatically satisfied (at all times) whenever the ball Bϑ(p) is
enclosed by the final timeslice and the ball BΘ(p) encloses the initial
timeslice, respectively. We thus obtain, in particular, the following
rather remarkable estimate.

Proposition 2.25. Suppose that the boundaries {∂Ωt}t∈I of the convex re-
gions Ωt ⊂ Rn+1 are properly defined and evolve by mean curvature flow in
BΛr(p)× (ω − Λ2K2r2, ω]. If Bϑr(p) ⊂ Ωω, then

sup
Br(p)×(ω−K2r2,ω]

H ≤ C(n, ϑ, Λ, K)r−1 . (2.28)

Note that this estimate immediately yields regularity estimates to
all orders, via the Bernstein estimates, since the inequality |II|2 ≤ H2

holds whenever II ≥ 0. As a consequence, we find that any sequence of
convex mean curvature flows which are properly defined in B2r × (−4r2, 0]
and whose final timeslices pass through the origin and enclose a ball of uni-
form size has a subsequence which converges, in Br × (−r2, 0], uniformly in
the smooth topology.

In fact, an estimate of the form (2.28) also holds when the evolving
hypersurfaces are only almost convex.15 15 This estimate is not particularly use-

ful, however, as (nonzero) lower bounds
for the principal curvatures are not pre-
served by the flow. We will substantially
improve it in §5.5.1.
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Proposition 2.26. Suppose that the boundaries {∂Ωt}t∈I of the regions
Ωt ⊂ Rn+1 are properly defined and evolve by mean curvature flow in
BΛr(p)× (ω− 4Λ2K2r2, ω], and that the regions Ωt ∩ BΛr(p) are connected
for all t ∈ (ω − 4Λ2K2r2, ω]. If

κ1 ≥ −δr−1 in BΛr(p)× (ω − Λ2K2r2, ω] and Bϑr(p) ⊂ Ωω

for some ϑ < 1 < Λ and δ < 2ϑ
ϑ2+Λ2 , then

sup
Br(p)×(ω−K2r2,ω]

|H| ≤ C(n, ϑ, Λ, K)r−1 . (2.29)

Proof. We claim that the flow is uniformly starshaped in BΛr(p)× (ω−
Λ2K2r2, ω], with a (scale normalized) constant depending only on ϑ,
Λ and δ (in which case the claim follows from Proposition (2.24)). To
do this, we introduce the (standard) ε-trumpet

16 Tε(p, x, r), which is 16 The mouthpiece is located at the
point x and the bell bounds a disk of
radius r centred at p. The aperture of the
mouthpiece (equivalently, the outward
curvature) is determined by the parame-
ter ε.

the locus of points reached by a rigid circular arc that joins the point
x to the circle in p + (x − p)⊥ of radius r about p, and whose tangent
line at x intersects the radius of this circle at a distance εr from p.

Figure 2.1: An ε-trumpet, Tε(p, x, r).

Figure 2.2: Buisine player and religious
figure. Unknown Illustrator, Manuscript
of Saint-Esprit.

Note that the portion of the boundary ∂Ωt lying in BΛr(p) is star-
sphaped about the point p precisely when the segments Tε(p, x, 0)
are contained in Ωt for all x ∈ ∂Ωt ∩ BΛr(p). Now, if the trumpet
Tε(p, x, ϑr) happens to be contained in Ωt for some x ∈ ∂Ωt ∩ BΛr(p),
then, setting d ≑ |x − p|, we may estimate

N(x, t) · x − p
|x − p| ≥ NTε(p,x,ϑr)(x) · x − p

|x − p|

=
εϑr√

d2 + ε2ϑ2r2

≥ ε√
ϑ−2Λ2 + ε2

.

So such points are uniformly starshaped about p (relative to the scale
r) with constant εϑ√

ϑ−2Λ2+ε2 .
On the other hand, if some trumpet Tε(p, x, ϑr), x ∈ ∂Ωt ∩ BΛr(p), is

not contained in Ωt, then we can find17 some other trumpet Tε(p, y, ϑr),

17 See Lynch, “Convexity and gradient
estimates for fully nonlinear curvature
flows”, Lemma 4.6.

y ∈ ∂Ωt ∩ BΛr(p), which makes first order contact with ∂Ωt ∩ BΛr(p)
at some interior point x′, at which

κ1(x′, t) ≤ (κ1)Tε(p,y,ϑr)(x′, t)

= − 2ϑr
ϑ2r2 + d2

(1 − ε)d√
ε2ϑ2r2 + d2

≤ − 1
r

2ϑ

ϑ2 + Λ2
1 − ε√

1 + ε2ϑ2
.

This is in contradiction with our hypothesis if ε ≤ ε0 = ε0(ϑ, Λ, δ). We
conclude that Tε0(x, p, ϑr) ⊂ Ωt for all x ∈ ∂Ωt, as desired.
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2.6 Exercises

Exercise 2.1. Suppose that {Xt : Mn → Rn+1}t∈I evolves by mean
curvature. Given some coordinate chart {xi : U → R}n

i=1 for Mn,
consider the components

gij(·, t) =
〈
∂iXt , ∂jXt

〉
and IIij(·, t) = −

〈
∂2Xt

∂xi∂xj , NXt

〉
of the metric gXt and second fundamental form IIXt of Xt, where NXt

is a local choice of unit normal field, and the components gij(·, t) of
the dual metric.

(a) Show that

0 =

〈
NXt ,

d
dt

NXt

〉
and 0 =

〈
∂iXt ,

d
dt

NXt

〉
+
〈

D∂iXt H⃗Xt , NXt

〉
.

(b) Deduce that
d
dt

NXt = ∇H(·, t) ,

where H is defined by H⃗Xt = −H(·, t)NXt .

(c) Show that
∂t IIij = ∇i∇j H−H gkℓ IIik IIℓj .

(d) Deduce from Simons’ identity that

(∂t − ∆) IIij = |II|2 IIij −2 H gkℓ IIik IIℓj .

(e) Show that
∂tgij = −2 H IIij .

(f) Show that
∂tgij = 2 H gikgjℓ IIkℓ .

(g) Writing |II|2 = gikgjℓ IIij IIkℓ, deduce that

(∂t − ∆)|II|2 = 2|II|4 − 2|∇II|2 .

Exercise 2.2. Let X : Mn × I → Rn+1 be a mean curvature flow on a
manifold Mn. Suppose that Br(x0) × (t0 − r2, t0] ⋐ Mn × I and that
S ∈ Γ(T∗Mn ⊙ T∗Mn) satisfies

(∇t − ∆ −∇b)S(x,t)(v, v) ≥ F(x, t, S(x,t))(v, v) and S(x,t)(v, v) ≥ 0

for all (x, t) ∈ Br(x0)× (t0 − r2, t0] and v ∈ Tn
x Br(x0) for some time-

dependent vector field b ∈ Γ(TMn) and some time-dependent vertical
section F of π∗(T∗Mn ⊙ T∗Mn) which is Lipschitz in the fibre and sat-
isfies the null eigenvector condition. Prove that min|v|=1 S(x,t)(v, v) = 0
for all (x, t) ∈ Br(x0) × (t0 − r2, t0] if S(x0,t0)

(v0, v0) = 0 for some
nonzero v0 ∈ Tx0 Mn.
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Exercise 2.3. Show that the ode comparison principle does indeed
prove Proposition 2.20.

Exercise 2.4. Given any r > 0, p ̸= x ∈ Rn+1 and ε > 0, consider the
trumpet Tε(p, x, r).

(a) Show that the aperture of Tε(p, x, r) is given by

NTε(p,x,r)(x) · x − p
|x − p| =

εr√
|x − p|2 + ε2r2

.

(b) Show that the smallest principal curvature of Tε(p, x, r) is constant
and equal to

κ1 = − 2r
|x − p|2 + r2

(1 − ε)|x − p|√
ε2r2 + |x − p|2

.

Exercise 2.5. Show that the evolution {∂Ωt}t∈[0,T) by mean curvature
of a bounded, convex, locally uniformly convex hypersurface, ∂Ω, may
be continued (smoothly) until either

1. the smallest principal curvature of ∂Ωt tends to zero18, or 18 We shall see in Chapter 3 that this will
never occur.

2. the inradius of Ωt tends to zero.

Hint: Use Proposition 2.25.





3
Pinching and its consequences

We have seen that positivity of the mean curvature is preserved under
the mean curvature flow, by applying the (scalar) maximum principle
to the reaction-diffusion equation for the mean curvature. The reaction
terms in the evolution equation for the second fundamental form enjoy
a richer algebraic structure. Understanding this structure (in relation
to the tensor maximum principle) is a crucial step in understanding
the long term behaviour of the mean curvature flow. We will explore
this paradigm in this chapter.

3.1 Contraction of convex hypersurfaces to round points

The tensor maximum principle guarantees that positivity of the second
fundamental form is preserved.

Proposition 3.1. Let X : Mn × [0, T) → Rn+1 be a mean curvature flow
on a compact manifold Mn. If, for some α ≥ 0, II|t=0 ≥ αg, then II ≥ αg for
all t > 0

Proof. Recalling (2.22), we see that the tensor S ≑ II−αg satisfies

(∇t − ∆)S = |S + αg|2(S + αg) .

Since α ≥ 0, the reaction term F(·, T) ≑ |T + αg|2(T + αg) is clearly
nonnegative in the direction of any null eigenvector v of T. The tensor
maximum principle implies that II ≥ 0 at all points and times. Since
Mn is compact, no connected component can split off a line, and we
conclude from Proposition 3.2 and a straightforward covering argu-
ment that II > 0 at positive times.

The strong maximum principle provides a useful rigidity statement
for nonnegative curvature.

Proposition 3.2. Let X : Mn × I → Rn+1 be a mean curvature flow sat-
isfying II ≥ 0. If II(x0,t0)

(v0, v0) = 0 at some (x0, t0, v0) ∈ TMn, then



44

X splits off a flat factor: there exist r > 0, m ∈ {1, . . . , n}, an
m-dimensional linear subspace L ⊂ Rn+1, and a family of submanifolds
Σn−m

t ⊂ L⊥, t ∈ (t0 − r2, t0], such that

– dX(ker II(x,t)) = Lm for all (x, t) ∈ Br(x0, t0)× (t0 − r2, t0]

– Xt embeds (Br(x0, t0), gt) isometrically into Lm ×⊥ Σn−m
t for each t ∈

(t0 − r2, t0]

– the family {Σn−m
t }t∈(t0−r2,t0]

evolves by mean curvature flow.

Proof. The strong maximum principle implies1 that the smallest prin- 1 See Exercise 2.2.

cipal curvature κ1(x, t) ≑ min|v|=1 II(x,t)(v, v) vanishes identically in
Br(x0)× (t0 − r2, t0] whenever Br(x0)× (t0 − r2, t0] ⋐ Mn × I. In what
follows, we restrict attention to such a parabolic cylinder.

Consider the (time-dependent) subbundles ker II and (ker II)⊥ of
TMn. Given any V ∈ Γ(ker II) and W ∈ Γ(TMn),

0 ≡ ∇W(II(V)) = ∇W II(V) + II(∇WV) (3.1)

and hence, for any U ∈ Γ(ker II),

0 ≡ ∇W II(V, U) + II(∇WV, U) = ∇W II(V, U) .

By the Codazzi identity and the freedom to choose any W, we find
that

∇U II(V) ≡ 0

for all U, V ∈ Γ(ker II). Taking W = U in the gradient identity (3.1)
then yields

II(∇UV) ≡ 0.

That is, ∇UV ∈ Γ(ker II). Since ∇ is torsion free, we conclude that
[U, V] ∈ Γ(ker II). That is, ker II is involutive, and hence, by Frobenius’
theorem, integrable.

Next observe that, for any V ∈ Γ(ker II),

0 ≡ ∆ II(V) + 2 tr (∇· II(∇·V)) + II(∆V) .

Since ∇UV ∈ Γ(ker II) whenever U ∈ Γ(ker II) and ∇U II(W) = 0
whenever U, W ∈ Γ(ker II), the ker II components of the trace term
vanish.

So

0 ≡ ∇t(II(V)) = ∇t II(V)− II(∇tV)

= ∆ II(V)− II(∇tV)

= − 2 tr⊥ (∇· II(∇·V)) + II((∇t − ∆)V) ,
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where tr⊥ indicates the trace over (ker II)⊥. Contracting this iden-
tity against V and applying the Codazzi identity and the first identity
above yields

0 ≡ tr⊥ (∇· II(∇·V, V))

= tr⊥ g (∇· II(V),∇·V)

= − tr⊥ II (∇·V,∇·V)

for any V ∈ Γ(ker II). Since II > 0 on (ker II)⊥, we conclude from this
that ∇WV ∈ Γ(ker II) whenever W ∈ Γ((ker II)⊥). This means that
ker II is invariant under parallel translation in space at each time. We
also find, for any U ∈ Γ(ker II), W ∈ Γ((ker II)⊥) and Y ∈ Γ(TMn),
that

0 ≡ Yg(U, W) = g(∇YU, W) + g(U,∇YW) = g(U,∇YW)

and hence ∇YW ∈ (ker II)⊥. So (ker II)⊥ is also integrable (at each
time) and invariant under spatial parallel transport.

Returning to (3.1), we now conclude, for any V ∈ Γ(ker II), that

∇V II ≡ 0,

and hence
tr⊥ (∇· II(∇·V)) = 0.

Since ∆V ∈ Γ(ker II), we find that

0 ≡ ∇t(II(V)) = II(∇tV) .

So ker II is also parallel in the time direction. But then so is (ker II)⊥,
since

0 ≡ ∂tg(U, W) = g(∇tu, W) + g(U,∇tW)

for any U ∈ Γ(ker II) and W ∈ Γ((ker II)⊥).
We now convert this into information about the parametrizations.

First observe that dX(ker II) is parallel in space with respect to the
pullback connection XD. Indeed, given any V ∈ Γ(ker II) and any
U ∈ Γ(TMn),

XDU(dX(V)) = dX∇UV − II(U, V)N = dX∇UV ∈ dX(ker II) .

Since ∇VH = tr∇V II = 0 for any V ∈ Γ(ker II), we similarly find that
dX(ker II) is parallel in time with respect to the pullback connection
XD:

XDt(dX(V)) = ∇VHN+dX(∇tV) = dX(∇tV) ∈ dX(ker II) .

We conclude that dX(ker II) is a constant subspace of Rn+1 (after
canonically identifying the spaces TpRn+1 ∼= Rn+1). In particular, the
nullity m ∈ {1, . . . , n} of II is constant.
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Now consider any geodesic γ(−s0, s0) → Mn of the metric at time
t, with initial data (γ(0), γ′(0)) ∈ ker II(x,t). Since ker II is invariant
under parallel translation, γ′(s) ∈ ker II(γ(s),t) for all s, and hence

XDs(dX(γ′)) = dX(∇sγ′)− II(γ′, γ′)N = 0.

That is, X ◦ γ is geodesic in Rn+1.
By Sard’s theorem, we can find r′ > 0 (arbitrarily close to r) and x′0

(arbitrarily close to x0) such that the section Σn−m
t ≑ Xt(Br′(x0, t0)) ∩

Πn−m+1 is a smoothly embedded (n − m)-manifold for each t ∈ (t0 −
(r′)2, t0], where Πn−m+1 ≑ X(x′0, t0) + (dX(ker Π(x′0,t0)

))⊥. The re-
maining claims follow.

Since local convexity guarantees that |II|2 ≤ H2, the ode compari-
son principle yields the following growth estimates for the mean cur-
vature.

Proposition 3.3. Let X : Mn × [0, T) → Rn+1 be a maximal, compact2, 2 I.e. Mn is compact.

locally uniformly convex3 mean curvature flow. 3 I.e. the time-slices Xt : Mn → Rn+1 are
locally uniformly convex: II > 0.

min
M×{t}

1√
n H ≤ 1√

2(T − t)
≤ max

M×{t}
H.

Proof. Since II > 0, we may estimate |II|2 ≤ H2, and hence

1
n H3 ≤ (∂t − ∆)H ≤ H3 .

Since lim supt→T maxMn×{t} H = ∞, the ode comparison principle
yields the claims.

We next observe that any uniform lower pinching is preserved under
mean curvature flow.

Proposition 3.4 (Pinching is preserved). Let X : Mn × [0, T) → Rn+1 be
a compact, locally uniformly convex mean curvature flow. There exists α > 0
such that

II ≥ αHg > 0

at all times.

Proof. Since Mn is compact and II > 0, a constant α > 0 may be found
such that the inequality holds at the initial time. Given such a constant,
consider the tensor S ≑ II − αHg. Recalling (2.22) and (2.21), observe
that

(∇t − ∆)S = (∇t − ∆)II − α(∂t − ∆)Hg

= |II|2S .

So the claim follows from the tensor maximum principle.
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Consider now the ratio |I̊I|2/ H2, where I̊I = II− 1
n H g denotes the

trace-free part of II. Since I̊I vanishes precisely at umbilic points, this
ratio is a scale invariant pointwise measure of the “roundness” of our
hypersurface. We will show that this measure of roundness becomes
optimal in regions of very large curvature. Observe first that it does
not decay.

Proposition 3.5 (Roundness is preserved). Along any compact, locally
uniformly convex mean curvature flow X : Mn × [0, T) → Rn+1,

|I̊I|2

H2 ≤ max
Mn×{0}

|I̊I|2

H2 .

Proof. Since
|I̊I|2 = |II|2 − 1

n H2 ,

we find that

(∂t − ∆)
|I̊I|2

H2 = (∂t − ∆)
|II|2

H2

= 2g
(
(∇t − ∆)

II
H

,
II
H

)
− 2

∣∣∣∣∇ II
H

∣∣∣∣2
= 2g

(
(∇t − ∆)II

H
− (∂t − ∆)H

II
H2 + 2∇∇H

H

II
H

,
II
H

)
− 2

∣∣∣∣∇ II
H

∣∣∣∣2
= 2∇∇H

H

|II|2

H2 − 2
∣∣∣∣∇ II

H

∣∣∣∣2
= 2∇∇H

H

|I̊I|2

H2 − 2
∣∣∣∣∇ II

H

∣∣∣∣2
≤ 2∇∇H

H

|I̊I|2

H2 .

So the claim follows from the maximum principle.

We now show that roundness improves at the onset of a singularity.

Proposition 3.6 (Roundness improves). Let X : Mn × [0, T) → Rn+1 be
a compact, locally uniformly convex mean curvature flow. For every ε > 0,
there exists Cε < ∞ (which depends only on ε and the initial hypersurface)
such that

|I̊I|2 ≤ εH2 + Cε (3.2)

at all times.

Proof. Given σ and ε > 0, consider the function Hσ
(
|I̊I|2
H2 − ε

)
. We aim

to show that this function is bounded uniformly in time for some (very
small but positive) σ. The claim then follows from Young’s inequality.
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We compute

(∂t − ∆)

(
Hσ

[
|I̊I|2

H2 − ε

])

= Hσ(∂t − ∆)
|I̊I|2

H2 − 2g

(
∇Hσ,∇|I̊I|2

H2

)
+

(
|I̊I|2

H2 − ε

)
(∂t − ∆)Hσ

= Hσ(∂t − ∆)
|I̊I|2

H2 − 2σHσg

(
∇H
H

,∇|I̊I|2

H2

)

+ σHσ

(
|I̊I|2

H2 − ε

)[
(∂t − ∆)H

H
+ (1 − σ)

|∇H|2

H2

]

= Hσ

[
σ

(
|I̊I|2

H2 − ε

)
|II|2 + 2(1 − σ)∇∇H

H

|I̊I|2

H2 − 2
∣∣∣∣∇ II

H

∣∣∣∣2
+σ(1 − σ)

(
|I̊I|2

H2 − ε

)
|∇H|2

H2

]
.

Since

∇∇H
H

(
Hσ

[
|I̊I|2

H2 − ε

])
= σHσ

(
|I̊I|2

H2 − ε

)
|∇H|2

H2 + Hσ∇∇H
H

|I̊I|2

H2 ,

we arrive at

(∂t−∆)

(
Hσ

[
|I̊I|2

H2 − ε

])

= Hσ

[
σ

(
|I̊I|2

H2 − ε

)
|II|2 − 2

∣∣∣∣∇ II
H

∣∣∣∣2 − σ(1 − σ)

(
|I̊I|2

H2 − ε

)
|∇H|2

H2

]

+ 2(1 − σ)∇∇H
H

(
Hσ

[
|I̊I|2

H2 − ε

])
. (3.3)

Unfortunately, the reaction term, σHσ
(
|I̊I|2
H2 − ε

)
|II|2, is an obstruction

to applying the maximum principle (the other terms are either nega-
tive or gradient terms). Instead, we shall exploit the diffusion term to
obtain good integral estimates, which can be bootstrapped to an L∞

estimate. Before doing this, let us discard some junk that won’t be
needed. We first estimate∣∣∣∣∇ II

H

∣∣∣∣2 = H−2
∣∣∣∣∇II − II

H
⊗∇H

∣∣∣∣ ≥ γ
|∇II|2

H2

for some γ = γ(n, α) > 0, where α is any measure of the initial pinch-
ing. This is a consequence of the Codazzi identity and the following
purely algebraic statement.

Claim 3.7. Given α > 0 and n ≥ 2, there exists a constant γ = γ(n, α) > 0
such that ∣∣∣∣T − B

tr(B)
⊗ tr(T)

∣∣∣∣ ≥ γ|T|2
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for any symmetric B ∈ Rn ⊗Rn satisfying B ≥ α tr(B)I > 0 and any totally
symmetric T ∈ Rn ⊗ Rn ⊗ Rn.

Proof of Claim 3.7. It suffices to establish the inequality when |B| =

|T| = 1, due to homogeneity. In fact, since K ≑ {(B, T) : |B| = |T| =
1, B ≥ α tr(B)I} is compact, it suffices to show that

min
(B,T)∈K

∣∣∣∣T − B
tr(B)

⊗ tr(T)
∣∣∣∣ > 0.

Suppose, then, that this is not the case. Then we can find (B, T) ∈ K
such that

T =
B

tr(B)
⊗ tr(T) .

Tracing both sides appropriately, we find that tr(T) is an eigenvector
of B with eigenvalue tr(B). But this is impossible when n ≥ 2 as B is
positive definite.

Since |∇H|2 ≤ n|∇II|2 and |I̊I|2 ≤ H2, discarding the second nega-
tive term in (3.3) (whose coefficient σ(1 − σ) will prove too small to be
of use) and applying Young’s inequality to the final (gradient) term,
we may estimate, wherever |I̊I| > 0,

(∂t − ∆)

(
Hσ

[
|I̊I|2

H2 − ε

])
≤ Hσ

(
|I̊I|2

H2 − ε

)(
σ|II|2 − γ

|∇II|2

H2

)

+ γ−1

∣∣∣∇ (Hσ
[
|I̊I|2
H2 − ε

])∣∣∣2
Hσ
(
|I̊I|2
H2 − ε

) (3.4)

for some (smaller than before) γ = γ(n, α) > 0.
Consider now, for large p (at least 10, say), the function

v ≑

(
Hσ

[
|I̊I|2

H2 − ε

]) p
2

+

,

where f+ denotes the positive part, max{0, f }, of a function f . If p is
large enough, and σ small enough, we shall be able to establish an L2

estimate for v, which can be bootstrapped to the desired L∞ estimate
by Stampacchia iteration. To that end, observe that

|∇v|2
v2 =

p2

4

∣∣∣∇ (Hσ
[
|I̊I|2
H2 − ε

])∣∣∣2(
Hσ
[
|I̊I|2
H2 − ε

])2
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wherever v > 0. Applying (3.4), we may thus estimate

(∂t − ∆)v2

= pv2
(∂t − ∆)

(
Hσ
[
|I̊I|2
H2 − ε

])
Hσ
(
|I̊I|2
H2 − ε

) − p(p − 1)

∣∣∣∣∣∇
(

Hσ

[
|I̊I|2

H2 − ε

])∣∣∣∣∣
2

≤ v2
(

σp|II|2 − γp
|∇II|2

H2

)
− 2|∇v|2

for some γ = γ(n, α) > 0, so long as p ≥ L = L(n, α).
The divergence theorem then yields

d
dt

ˆ
v2 dµ =

ˆ
(∂tv2 − v2 H2) dµ

≤ σp
ˆ

|II|2v2 dµ −
ˆ (

γpv2 |∇II|2

H2 + 2|∇v|2 + v2 H2
)

dµ . (3.5)

Simons’ identity allows us to absorb the bad term.

Claim 3.8. There exists C = C(n, α) < ∞ with the following property. If
X : Mn → Rn+1 is a compact hypersurface satisfying II ≥ α H g, then any
sufficiently smooth, nonnegative function u : Mn → R satisfies

ˆ
|I̊I|2u2 dµ ≤ C

ˆ ( |∇II|2

H2 +
|∇II|

H
|∇u|

u

)
u2 dµ .

Proof of Claim 3.8. Recall Simons’ identity:

∇(i∇j) IIkℓ −∇(k∇ℓ) IIij =: Sijkℓ = Cijkℓ ≑ IIij II2
kℓ − IIkℓ II2

ij .

Observe that

|C|2 =
n

∑
i,k=1

κ2
i κ2

k(κi − κk)
2 ≥ C−1 H4 |I̊I|2

for some C = C(n, α) < ∞. Thus,

ˆ
|I̊I|2u2 dµ ≤ C

ˆ
g(S, C)H−4 u2 dµ = C

ˆ
∇2 II ∗ II3

H4 u2 dµ .

Integrating by parts and estimating crudely then yields the claim.

Since |I̊I|2 ≥ ε H2 ≥ ε|II|2 wherever v > 0, applying Claim 3.8 to
(3.5) and exploiting Young’s inequality yields

d
dt

ˆ
v2 dµ ≤ 0

and hence ˆ
v2 dµ ≤ Ω2 ≑

ˆ
v2 dµ

∣∣∣∣
t=0

(3.6)
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so long as p ≥ L and σp
1
2 ≤ ℓ for some constants L = L(n, α, ε) < ∞

and ℓ = ℓ(n, α, ε) > 0. This is our L2 estimate.
In order to extract an L∞ estimate, consider, for each k ≥ k0 ≑=

maxMn×{0} Hσ, the truncated function

v2
k ≑

(
Hσ

[
|I̊I|2

H2 − ε

]
− k

)p

+

and its support

Ak (t) ≑ {(x, t) Mn × [0, T) : vk (x, t) > 0} .

Set also
u(k) ≑

ˆˆ
v2

k dµ dt and a(k) ≑
ˆˆ

Ak

dµ dt .

We want to show that Ak has measure zero for a suitably large value
of k (depending only on ε and initial data). Observe that, for any
h ≥ k > 0,

(h − k)p a(h) ≤ u(k) . (3.7)

In order to estimate u(k), we observe first that the same arguments
which led to (3.5) yield

d
dt

ˆ
v2

k dµ +

ˆ (
|∇vk|2 + v2

k H2
)

dµ ≤ σp
ˆ

Ak

|II|2vp
0 dµ ,

so long as p ≥ L = L(n, α).
We next apply the Sobolev inequality of Michael and Simon4 in 4 On any submanifold Mn → Rn+k , ev-

ery u ∈ W1,1(Mn) satisfies(ˆ
|u|1∗ dµ

) 1
1∗

≤ C
ˆ (

|∇u|2 + |u||H⃗|
)

dµ,

where 1
1∗ = 1 − 1

n and C is a con-
stant which depends only on n, Michael
and L. M. Simon, “Sobolev and mean-
value inequalities on generalized sub-
manifolds of Rn”.

conjunction with Hölder’s inequality to estimate(ˆ
v2∗

k dµ

) 1
2∗

≤ C
(ˆ (

|∇vk|2 + v2
k H2

)
dµ

) 1
2

,

where 1
2∗ = 1

2 −
1
n and C = C(n) when n ≥ 3; when n = 2, we may take

2∗ to be any number greater than one half and C = C(n, 2∗)|Ak|
1

2∗ ≤
C(n, 2∗)µ(Mn)

1
2∗ ≤ C(n, 2∗)µ0(Mn)

1
2∗ = C(n, 2∗, X0). We thereby ob-

tain

d
dt

ˆ
v2

k dµ + C−1
(ˆ

v2∗
k dµ

) 2
2∗

≤ σp
ˆ

Ak

|II|2v2
0 dµ ,

where (upon fixing 2∗ ≥ 1
2 ) C depends at worst on n and the initial

data. Since |I̊I|2 ≤ |II|2 ≤ H2 and, without loss of generality, C ≥ 1,
integrating in time yields

sup
t∈[0,T)

ˆ
v2

k dµ +

ˆ T

0

(ˆ
v2∗

k dµ

) 2
2∗

≤ Cσp
ˆ T

0

ˆ
Ak

H2 vp
0 dµ (3.8)

for k ≥ k0.
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We now use the interpolation inequality for Lp spaces5 to estimate 5 I.e.

∥u∥ ϑ
p +

1−ϑ
q

≤ ∥u∥ϑ
p∥u∥1−ϑ

q

for any ϑ ∈ [0, 1] and p, q > 1.

ˆ
Ak

v2p∗

k dµ ≤
(ˆ

Ak

v2
kdµ

)p∗−1 (ˆ
Ak

v2∗
k dµ

) 2
2∗

where p∗ = 2 − 2
2∗ , which is equal to n+2

2 when n ≥ 3. We then
conclude, using Young’s inequality, that

(ˆ T

0

ˆ
Ak

v2p∗

k dµdt

) 1
p∗

≤
(

sup
t∈[0,T)

ˆ
Ak

v2p∗

k dµ

)1− 1
p∗
(ˆ (ˆ

Ak

v2∗
k dµ

) 2
2∗

dt

) 1
p∗

≤ sup
t∈[0,T)

ˆ
v2

k dµ +

ˆ T

0

(ˆ
v2∗

k dµ

) 2
2∗

dt . (3.9)

Returning to (3.8), we use Hölder’s inequality and the L2 estimate
(3.6) to estimate (for some r ≥ 1 to be chosen momentarily)

ˆ T

0

ˆ
Ak

H2 vp
0 dµ ≤ a(k)1− 1

r

(ˆ T

0

ˆ
Ak

H2r v2r
0 dµ

) 1
r

= a(k)1− 1
r

(ˆ T

0

ˆ
Ak

(
Hσ+ 2

p

[
|I̊I|2

H2 − ε

])pr

dµ

) 1
r

≤ Ca(k)1− 1
r (3.10)

so long as pr ≥ L and (σ + 2
p )p

1
2 ≤ ℓ, where C depends on n, the

initial data, σ, p and r.
Putting together the estimates (3.7)-(3.10), we arrive at the estimate

a(h) ≤ Ca(k)γ

(h − k)p

for any h > k > k0, where γ = 2 − 1
p∗ −

1
r , where C depends on n,

the initial data, σ, p and r. We may fix r in such a way that r > p∗
p∗−1 ,

guaranteeing that γ > 1. By a simple iteration argument, this rate of
decay actually ensures that a reaches zero after a (quantifiably) finite
number of steps.

6 Kinderlehrer and Stampacchia, An in-
troduction to variational inequalities and
their applications, Chapter II, Appendix B

Claim 3.9 (Stampacchia’s Lemma6). Let φ : [k0, ∞) → R be a nonnega-
tive, nonincreasing function. If

φ (h) ≤ C
(h − k)α φ (k)β (3.11)

when h > k > k0 for some constants C > 0, α > 0 and β > 1, then

φ (k0 + d) = 0,

where dα = C φ (k0)
β−1 2αβ/(β−1).
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Proof of Stampacchia’s Lemma. Consider the sequence of numbers kr pre-
scribed by

kr = k0 + d − d
2r , r = 0, 1, 2, . . . .

By assumption,

φ(kr+1) ≤ C
2(r+1)α

dα
φ(kr)

β for all r = 0, 1, . . . . (3.12)

We will prove by induction that

φ(kr) ≤ φ(k0)2−rµ (3.13)

for all r ∈ N, where µ ≑ α
β−1 > 0. Clearly (3.13) holds trivially for

r = 0. Supposing (3.13) holds up to some integer r, we find by (3.12)
and the definition of d that

φ(kr+1) ≤ C
2(r+1)α

dα
φ(k0)

β2−rµβ = φ(k0)2−(r+1)µ .

The claim (3.13) follows. Now, by the monotonicity assumption,

0 ≤ φ(k0 + d) ≤ φ(kr) for all r = 0, 1, . . . .

But, by (3.13), φ(kr) → 0 as r → ∞.

Applying Stampacchia’s Lemma, we conclude that

Hσ

(
|I̊I|2

H2 − ε

)
≤ C

for suitable p and σ (depending only on n, α and ε), which we now
fix, where, having fixed such p and σ, C depends only on n, initial
data, and ε. The proposition now follows from a simple application of
Young’s inequality.

Proposition 3.6 ensures, when n ≥ 2, that the evolving hypersurface
is becoming round at any point where the curvature is becoming large,
in the sense that the scale invariant ratio |I̊I|/H is becoming small. We
already know that max H ≥ 1√

2(T−t)
is blowing up at the final time;

we thus need to show that min H blows up at the same rate. So we
should try to control the gradient of II. In order to do this, we need
to compare |∇II|2 to some function (of curvature) whose evolution
equation can overcome the bad reaction terms II ∗ II ∗∇ II ∗∇ II in the
evolution equation for |∇II|2. We can exploit the estimate (3.2) in this
regard.

Proposition 3.10. Let X : Mn × [0, T) → Rn+1, n ≥ 2, be a compact,
locally uniformly convex mean curvature flow. For any ε > 0, there exists
Cε < ∞ (which depends only on ε and the initial data) such that

|∇II|2 ≤ εH4 + Cε .
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Proof. Recall that

(∂t − ∆)|∇II|2 ≤ c|II|2|∇II|2 − 2|∇2II|2 .

Given ε > 0, choose Cε (as permitted by Proposition 10.5) so that

|I̊I|2 ≤ εH2 + Cε

and consider, for suitable Cε < ∞, the function

Gε ≑ 2Cε + εH2 − |I̊I|2 ≥ Cε > 0.

Consider also, for suitable C0 < ∞,

G0 ≑ 2C0 +
3

n+2 H2 − |II|2 ≥ C0 +
n−1

n(n+2)H2 > 0.

The coefficient of H2 is chosen with Kato’s inequality in mind:

Claim 3.11. On any hypersurface Mn → Rn+1, |∇II|2 ≥ 3
n+2 |∇H|2.

Proof of Claim 3.11. Decomposing ∇II = E + F into its trace and trace-
free parts

Eijk ≑
1

n+2

(
∇i H gjk +∇j H gki +∇k H gij

)
and F ≑ ∇II − E, respectively, we find that

|∇II|2 = |E|2 + |F|2 ≥ |E|2 = 3
n+2 |∇H|2 .

Applying Claim 3.11, we find that

(∂t − ∆)G0 = 2(|∇II|2 − 3
n+2 |∇H|2) + 2( 3

n+2 H2 − |II|2)|II|2

≥ 2|II|2(G0 − 2C0)

≥ − 2|II|2G0 .

Similarly,

(∂t − ∆)Gε = 2
((

1
n + ε

)
|II|2H2 − |II|4

)
+ 2

(
|∇II|2 −

(
1
n + ε

)
|∇H|2

)
≥ 2|II|2(Gε − 2Cε) + 2

(
1 − n+2

3 ( 1
n + ε)

)
|∇II|2

≥ − 2|II|2Gε +
1
2 |∇II|2 ,

so long as ε ≤ 1
4(n+2) , say.

We aim to preserve upper bounds for the function |∇II|2
G0Gε

. So con-
sider

(∂t − ∆)
|∇II|2
G0Gε

=
(∂t − ∆)|∇II|2

G0Gε
− |∇II|2

G0Gε

(
(∂t − ∆)G0

G0
− (∂t − ∆)Gε

Gε

)
+2g

(
∇|∇II|2

G0Gε
,
∇(G0Gε)

G0Gε

)
+ 2

|∇II|2
G0Gε

g
(
∇G0

G0
,
∇Gε

Gε

)
.
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We estimate the terms on the first line as above. To control the terms
on the second line, observe that, at a new local maximum of |∇II|2

G0Gε
,

0 = ∇k
|∇II|2
G0Gε

= 2
g(∇k∇II,∇II)

G0Gε
− |∇II|2

G0Gε

(
∇kG0

G0
+

∇kGε

Gε

)
and hence

4
|∇II|2
G0Gε

g
(
∇G0

G0
,
∇Gε

Gε

)
≤ |∇II|2

G0Gε

∣∣∣∣∇G0

G0
+

∇Gε

Gε

∣∣∣∣2 ≤ 4
|∇2II|2
G0Gε

.

Thus, at such a point,

0 ≤ (∂t − ∆)
|∇II|2
G0Gε

≤ |∇II|2
Gε

(
(c + 4)

|II|2
G0

− 1
2
|∇II|2
G0Gε

)
and hence

|∇II|2
G0Gε

≤ 2(c + 4)
|II|2
G0

≤ 2 (c + 4) n(n+4)
n+1 .

We conclude that

|∇II|2
G0Gε

≤ C ≑ max
{

2 (c + 4) n(n+4)
n+1 , max

Mn×{0}

|∇II|2
G0Gε

}
and hence

|∇II|2 ≤ C(2C0 +
3

n+2 H2)(2Cε + ε H2) ,

at which point the claim is a straightforward application of Young’s
inequality.

We can exploit the gradient estimate in conjunction with Myers’
theorem to establish the desired blow-up rate for the mean curvature.

Proposition 3.12. Let X : Mn × [0, T) → Rn+1, n ≥ 2, be the maximal
mean curvature flow of a compact, locally uniformly convex initial hypersur-
face.

Hmax(t)
Hmin(t)

→ 1 and diam(Mn, g(·,t)) → 0 as t → T , (3.14)

where Hmax ≑ max
Mn

H and Hmin ≑ min
Mn

H.

Proof. By the gradient estimate (Proposition 3.10), for every η > 0
there is a constant Cη < ∞ such that

|∇H| ≤ 1
2 η2H2 + Cη .

Since Hmax(t) → ∞ as t → T, there is, for every η > 0, some point
(xη , tη) ∈ Mn × [0, T) such that

H2
η ≑ H2(xη , tη) = H2

max(tη) ≥ 2Cη/η2
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and hence

|∇H|(x, tη) ≤ η2H2(xη , tη)

for all x ∈ M. Now let γ be a unit speed g(·,tη)-geodesic through

γ(0) = xη . For each s ≤ L ≑ η−1H−1
η , the mean value theorem pro-

vides some s0 ∈ (0, s) such that

H(γ(s), tη) = Hη + s∇γ′(s0)
H(γ(s0), tη) ≥ Hη(1 − η) . (3.15)

Applying the preserved pinching estimate II ≥ αHg and the trace
Gauss equation Rc = H II− II2, we may estimate

Rc(γ′, γ′) ≥ (n − 1)α2H2 ≥ (1 − η)(n − 1)α2H2
η

for s ≤ L. If η < 1
2 , then

Rc(γ′, γ′) ≥ (n − 1)Kg ,

where K ≑ α2

2 H2
η . Choosing further η2 ≤ α2

2π , we obtain L ≥ πK− 1
2 .

Myers’ theorem then implies that every point of Mn is reached by a
g(·,tη)-geodesic of length at most L and we conclude from (3.15) that

Hmin(tη) ≥ (1 − η)Hmax(tη) .

Since Hmin is nondecreasing, we then have

H2
max(t) ≥ (1 − η)2H2

max(tη) ≥ 1
4 H2

η for all t ≥ tη ,

so that the above arguments hold for all t ≥ tη . We now conclude that,
given any η ≤ min{ α√

2π
, 1

2}, there is some time tη ∈ [0, T) such that

diam(M, g(·,t)) ≤
1

ηHmax(t)
and Hmin(t) ≥ (1 − η)Hmax(t)

for all t > tη . The proposition follows since Hmax(t) ≥ 1
2(T−t) .

It follows that the (extrinsic) diameters of the rescaled hypersurfaces
1√

2n(T−t)
Xt remain bounded, and their mean curvature converges uni-

formly to a constant as t → T. Bootstrapping arguments (cf. Theorem
2.19) then yield smooth convergence to a round sphere.

7 Huisken, “Flow by mean curvature of
convex surfaces into spheres”

Theorem 3.13 (Huisken’s theorem7). Let X : Mn × [0, T) → Rn+1,
n ≥ 2, be the maximal mean curvature flow starting from a smooth, compact,
locally uniformly convex hypersurface X0 : Mn → Rn+1. There exists p ∈
Rn+1 such that

X(·, t)− p√
2n(T − t)

→ X

uniformly in the smooth topology as t → T, where X : Mn → Rn+1 is an
embedding whose image is the unit sphere.
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3.2 Pinched hypersurfaces are compact

Huisken’s theorem shows that a compact hypersurface of Rn+1, n ≥ 2,
which is pinched, in the sense that II ≥ 0 and

κ1 ≥ ακn for some α > 0,

contracts to a round point under mean curvature flow. The follow-
ing theorem of Hamilton8 shows that the compactness hypothesis is 8 Richard S. Hamilton, “Convex hyper-

surfaces with pinched second funda-
mental form”.

superfluous, unless the hypersurface is a hyperplane.

Theorem 3.14. Any pinched, proper hypersurface of Rn+1 is either flat, or
compact.

In fact, it is possible to prove Theorem 3.14 using the mean curva-
ture flow, at least under the assmption sup |II| < ∞. Here is an outline:

Sketch of the proof of Theorem 3.14 (assuming sup |II| < ∞). Suppose, to
the contrary, that there exists a non-flat, pinched proper hypersur-
face (with bounded curvature) which is not compact. Evolve it by
mean curvature (one can take a limit of flows of compact hypersur-
faces which approximate the noncompact initial hypersurface). The
curvature bound ensures that the maximum principle may be applied
in order to preserve the pinching condition. It is possible to local-
ize Huisken’s “roundness improves” estimate by introducing suitable
cut-off functions. Thus, if the evolving hypersurface becomes singu-
lar in finite time, then we can perform a blow-up procedure to obtain
a shrinking sphere solution, violating the noncompactness. Else, the
flow exists for all time. In that case, it is possible to perform a blow-up
at time infinity to obtain a non-flat, pinched (translating or expanding)
soliton solution.9 But these may be ruled out by direct arguments. 9 This step makes use of the differential

Harnack inequality, which we will discuss
in Chapter 5.

3.3 Deforming locally convex hypersurfaces by curvature in
Riemannian ambient spaces and the quarter-pinched sphere
theorem

One immediate consequence of Huisken’s Theorem (Theorem 3.13)
is that compact, locally uniformly convex hypersurfaces in Rn+1 are
smooth spheres and bound smooth balls when n ≥ 2. But this is quite
easy to show without using the mean curvature flow since, by Sack-
steder’s theorem,10 such hypersurfaces are globally convex. On the 10 Sacksteder, “On hypersurfaces with no

negative sectional curvatures”.other hand, the relationship between local and global convexity for
hypersurfaces in general Riemannian ambient spaces is far more sub-
tle. Now, the mean curvature flow may also be employed to deform
hypersurfaces in general Riemannian ambient spaces; however, due
to the more complex evolution equation for the second fundamental
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form, local uniform convexity is no longer a preserved condition in
general. On the other hand, mean convexity (i.e. H > 0) is seen to be a
preserved condition due to the evolution equation

(∂t − ∆)H =
(
|II|2 + Rc(N,N)

)
H,

where Rc is the ambient Ricci curvature. Similar considerations hold
for normal deformations by other functions F = f (κ1, . . . , κn) of cur-
vature: while the evolution of the second fundamental form is quite
complicated, and does not generally lend itself to straightforward ten-
sor maximum principle arguments, the evolution of the speed F is
relatively simple: with respect to any orthonormal frame11, 11 A smooth function of the eigenvalues

of a matrix which is symmetric under
permutations induces a smooth function
of the matrix coefficients which is sym-
metric under conjugation by orthogonal
matrices, and vice versa. See Ball, “Differ-
entiability properties of symmetric and
isotropic functions”.

∂tF =
∂F

∂IIij

(
∇i∇jF +

[
II2

ij +Rm(N, ei N, ej)
]

F
)

; (3.16)

so the scalar maximum principle certainly ensures that positivity of
the speed is a preserved condition, so long as the coefficients ∂F

∂IIij
are

positive definite12. Andrews exploited this fact to construct a deforma- 12 This is also a requirement for the
short-time existence of solutions, since
these coefficients determine the parabol-
icity of the linearization of the flow.

tion which does indeed contract suitably locally convex hypersurfaces
to round points.

13 Andrews, “Contraction of convex hy-
persurfaces in Riemannian spaces”

Theorem 3.15 (Andrews13). Let (Nn+1, h) be a Riemannian manifold sat-
isfying supN |Rm| < ∞, supN |∇Rm| < ∞, and

sec ≥ −K , K ∈ [0, ∞).

Let X0 : Mn → Nn+1, n ≥ 2, be a compact hypersurface satisfying

II ≥
√

Kg .

There exists a unique maximal solution X : Mn × [0, T) → Nn+1 to the flow

∂tX = −
(

1
κ1 −

√
K
+ · · ·+ 1

κn −
√

K

)−1
N (3.17)

by the harmonic mean of the shifted principal curvatures κi −
√

K. The max-
imal time T is finite and there exists p ∈ Nn+1 such that Xt → p as t → T.
After rescaling an ambient neighbourhood of p by (2n(T − t))−

1
2 , the result-

ing rescaled hypersurfaces converge uniformly in the smooth topology to an
embedding of the unit sphere in Euclidean space. In particular, X0(Mn) is a
smooth n-sphere and bounds in Nn+1 a smooth (n + 1)-ball.

Sketch of the proof. Since the speed function

F ≑
(

1
κ1 −

√
K
+ · · ·+ 1

κn −
√

K

)−1

satisfies ∂F
∂IIij

> 0 on any hypersurface satisfying II >
√

Kg, an analo-
gous argument to that of Theorem 1.3 shows that any compact hyper-
surface satisfying II >

√
Kg may be evolved for a short time according
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to (3.17). These hypersurfaces necessarily satisfy II >
√

Kg. In fact,
since (

∂t −
∂F

∂IIij
∇i∇j

)
F =

∂F
∂IIij

(
II2

ij +Rm(N, ei N, ej)
)

F

=
∂F
∂κi

(
κ2

i + Rm(N, ei N, ei)
)

F

≥ ∂F
∂κi

(
κ2

i − K
)

F

≥ 0,

the maximum principle ensures that lower bounds for F are preserved.
Since κ1 −

√
K ≥ F, we find that an inequality of the form II−

√
Kg ≥

αg, α > 0, is preserved. In fact, estimating κi +
√

K ≥ F + 2
√

K ≥ F,
we may estimate(

∂t −
∂F

∂IIij
∇i∇j

)
F ≥ ∂F

∂κi

(
κ2

i − K
)

F

=
∂F
∂κi

(
κi −

√
K
) (

κi +
√

K
)

F

≥ ∂F
∂κi

(
κi −

√
K
)

F2

= F3

due to Euler’s theorem for homogeneous functions. The ode com-
parison principle then ensures that minMn×{t} F grows at least like

(C − t)−
1
2 , which also ensures that the existence time must be finite.

By a more involved calculation, the ratio Q ≑ |II−
√

Kg|
F can be seen

to satisfy (
∂t −

∂F
∂IIij

∇i∇j

)
Q ≤ 2g

(
∇F
F

,∇Q
)
+ C ,

where C depends only on the initial and ambient data (including
bounds for the ambient curvature and its derivative). So the ode com-

parison principle ensures that the maximum of |II−
√

Kg|
F grows at most

linearly in time, and hence remains bounded along the flow (as the
maximal time is finite). Since F ≤ κ1 −

√
K, this guarantees that the

shifted principal curvatures remain uniformly pinched during the evo-
lution. One consequence of this is that the coefficient matrix ∂F

∂IIij
re-

mains uniformly bounded from above and below (in the sense of bilin-
ear forms), which ensures that the flow remains uniformly parabolic.
Regularity estimates for fully nonlinear parabolic pde (applied to local
graph parametrizations) then guarantee that the second fundamental
form blows-up at the final time (cf. Theorem 2.19).
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To analyze what happens as the singularity forms, we perform a
blow-up procedure: consider a sequence of points xj and times tj

along which λj ≑ |II(xj ,tj)
| = maxMn×[0,tj ]

|II|. Translating time by tj,

rescaling the ambient metric by λ2
j and the translated time parameter

by λ−2
j , and mapping neighbourhoods of X(xj, tj) into TX(xj ,tj)

Nn+1

via the inverse of the exponential map, we obtain, by choosing a se-
quence of identifications TX(xj ,tj)

Nn+1 ∼= Rn+1, a sequence of time-

dependent immersions Xj : Uj × Ij → Rn+1 of neighbourhoods Uj × Ij

of (xj, 0) into Rn+1 which are properly defined in parabolic cylinders
BRj(0)× (−R2

j , 0] of radius Rj ∼ λ−1
j and satisfy Xj(xj, 0) = 0. Since

λj → ∞, Xj is eventually properly defined in any ambient parabolic
cylinder BR × (−R2, 0]. Since λj = supMn×[0,tj ]

|II| and the ambient
geometry is bounded, the curvature of Xj is maximized at the space-
time origin up to small error which tends to zero as j → ∞. Similarly,

since the ratio κ1−
√

K
κn−

√
K

is scale invariant, the sequence will eventually be
uniformly pinched (without shift), up to an error which tends to zero.
By the pde bootstrapping estimates employed above, bounds for Xj to
all orders follow, so we obtain a convergent subsequence (cf. Theorem
2.22) to a complete limit X : Mn

∞ × (−∞, 0] → Rn+1, which evolves
by the harmonic mean of the (unshifted) principal curvatures. By ap-
plying the Krylov–Safanov Harnack inequality to the scalar parabolic
pde satisfied by local graphical parametrizations, one also obtains a
uniform bound for the second fundamental form from below along
the rescaled sequence, which guarantees that the limit is not flat. Since
the limit will be uniformly pinched, it must then be compact by The-

orem 3.14. Since the maximum of the ratio Q = |II−
√

Kg|
F is bounded,

the limiting process forces it to be constant in time on the limit flow.
But then the strong maximum principle ensures that it is constant in
space as well, and an analysis of the gradient terms in its evolution
equation (which must vanish) then implies that the limit is a shrink-
ing round sphere (cf. the proof of Proposition 3.2). So the solution is
asymptotically round after rescaling, at least along some sequence of
times.

This information can now be pulled back to the original flow, and
bootstrapped to conclude that the hypersurfaces contract to round
points. See14 for further details. 14 Andrews, “Contraction of convex hy-

persurfaces in Euclidean space”, “Con-
traction of convex hypersurfaces in Rie-
mannian spaces”.Combining this with an idea of Gromov14 yields a simple proof
14 See Eschenburg, “Local convexity and
nonnegative curvature—Gromov’s proof
of the sphere theorem”.

of the classical quarter pinched sphere theorem of Rauch, Berger and
Klingenberg15. In fact, it yields something slightly stronger.

15 Berger, “Les variétés riemanniennes
(1/4)-pincées”; Klingenberg, “Über Rie-
mannsche Mannigfaltigkeiten mit pos-
itiver Krümmung”; Rauch, “A contri-
bution to differential geometry in the
large”.
16 Andrews, “Contraction of convex hy-
persurfaces in Riemannian spaces”.

Theorem 3.16 (Quarter-pinched “twisted” sphere theorem16). Let Nn,
n ≥ 3, be a compact, simply connected Riemannian manifold. If 1

4 < sec ≤ 1,
then Nn is diffeomorphic to a twisted sphere (a quotient of the union of
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two discs by a diffeomorphism of their boundaries).

Proof. Choose a point o ∈ Nn and denote by Sn−1 the unit sphere
in To Nn. Consider the family of “exponential spheres” X : Sn−1 ×
(0, ∞) → Nn defined by X(z, t) ≑ expo(tz). These spheres are dynam-
ically related through the equation

∂tX = N .

For small values of t, the maps Xt ≑ X(·, t) are smooth embeddings
and their images bound a disk. As t varies, the induced metric g and
second fundamental form II deform according to

∂tg = 2 II (3.18a)

∇t II = − II2 −Rm(·,N, ·,N) . (3.18b)

Using the bounds on the ambient curvature, (3.18b) yields

cot t ≤ κi <
1
2 cot( 1

2 t) . (3.19)

which by (3.18a) ensures that the spheres are nondegenerate for any
t < π. The strict inequality from above in (3.19) implies that there is
some distance t < π for which 0 > κi > −∞ for each i, which means
that the corresponding exponential sphere is strictly convex in the out-
ward direction. But then Theorem 3.15 guarantees that this sphere
bounds a disc in Nn. This gives an expression for Nn as a quotient of
the union of two discs along a diffeomorphism of their boundaries.

Since the second part of the proof Theorem 3.16 (application of The-
orem 3.15) does not require the pinching assumption, the argument
actually yields the following quantitative refinement.

17 ibid.Theorem 3.17 (Dented sphere theorem17). Let Nn, n ≥ 3, be a compact,
simply connected Riemannian manifold with sectional curvatures bounded
from below by −K for some K ≥ 0. Choose ε > 0 such that ε cot(επ) <

−
√

K, and ρ ∈ [π
2 , π) such that ε cot(ερ) = −

√
K. If there is a point

o ∈ Nn such that ε < sec ≤ 1 on the ball Bρ(o), then Nn is diffeomorphic to
a twisted sphere.

3.4 Contraction of quadratically pinched submanifolds to round
points

The notion of (local uniform) convexity does not generalize to higher
codimension (since the second fundamental form is vector valued).
Nonetheless, there have been attempts to find a satisfying generaliza-
tion of Huisken’s theorem. The following result is due to Andrews
and Baker.18 18 Andrews and Baker, “Mean curva-

ture flow of pinched submanifolds to
spheres”.
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Theorem 3.18. Let X : Mn × [0, T) → Rn+k, n ≥ 2, be the maximal
mean curvature flow starting from a smooth, compact immersed submanifold
X0 : Mn → Rn+k satisfying the inequalities

|H⃗| > 0 and |⃗II|2 ≤ cn|H⃗|2

at all points, where

cn ≑

{
4

3n if 2 ≤ n ≤ 4
1

n−1 if n ≥ 4.

There exists p ∈ Rn+k and an (n + 1)-dimensional subspace Ln+1 of Rn+k

such that
X(·, t)− p√

2n(T − t)
→ X

uniformly in the smooth topology as t → T, where X : Mn → Rn+1 is an
embedding whose image is the unit sphere in Ln+1.

Note that the pinching condition is sharp in dimensions n ≥ 4, in
the sense that, for any ε > 0, there exist, for each n ≥ 2 and k ≥ 2,
aspherical n-dimensional submanifolds of Rn+k which satisfy |⃗II|2 ≤
( 1

n−1 + ε)|H⃗|2 (consider products of round spheres).

Sketch of the proof of Theorem 3.18. The argument is similar, in princi-
ple, to that of Huisken’s theorem: one first shows that the pinching
condition is preserved, by applying the scalar maximum principle to

the evolution equation for19 |⃗II|2
|H⃗|2 . One then establishes an a bound for 19 In low dimensions, the suboptimal

pinching condition must be imposed
here in order to control terms involving
derivatives of curvature using the Kato
inequality |∇I⃗I|2 ≥ 3

n+2 |∇H⃗|2.

the trace free part of I⃗I by applying a Stampacchia iteration argument

to the function
(
|H⃗|σ

[
|⃗II|2
|H⃗|2 −

1
n − ε

])p
for suitable σ and p (cf. Propo-

sition 3.5). A bound for the derivative of I⃗I may then be established
using the maximum principle (cf. Proposition 3.10), and this provides
a uniform blow-up rate for the curvature by way of Myers’ theorem,
just as in Proposition 3.12. This is enough to establish convergence to a
sphere in the C0 topology. Bootstrapping arguments then give higher
order convergence.

A stronger result has been established by Baker and Nguyen20 when 20 Baker and Huy The Nguyen, “Codi-
mension two surfaces pinched by nor-
mal curvature evolving by mean curva-
ture flow”.

both the dimension and codimension are equal to two.

3.5 Exercises

Exercise 3.1. Provide details for the proof of Proposition 3.3.

Exercise 3.2. Theorem 3.13 asserts, in particular, the existence of a
point p such that Xt → p. Prove this by integrating the mean curvature
flow evolution equation and applying the estimate H ≤ C√

T−t
.
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Curve shortening flow

A key step in the proof of Huisken’s theorem on the convergence
of convex hypersurfaces to round points was the observation that
“roundness” improves as the curvature blows-up. No such estimate
is possible for evolving curves, as, in that case, the second fundamen-
tal form has only one component! Fortunately, the planar mean cur-
vature flow, more commonly referred to as the curve shortening

flow, enjoys some additional structure, which actually allows us to
prove something far stronger.

4.1 Special properties of mean curvature flow in one space di-
mension

In one space dimension, the mean curvature and second fundamental
form coincide, so the mean curvature flow takes the form

∂tX = κ⃗ , (4.1)

where κ⃗ is the curvature vector of the curve, which upon choos-
ing1 a (local) unit normal field N, may be expressed in terms of the 1 When a choice of convention is re-

quired, the unit tangent and normal vec-
tors T and N will satisfy N = −J T,
where J denotes counterclockwise rota-
tion by 90 degrees, and, whenever the
curve is understood as the boundary
of a region, N will agree with the out-
ward pointing unit normal. Unless ex-
plicitly stated otherwise, a closed, em-
bedded curve will be understood as the
boundary of the bounded region which
the Jordan–Schoenflies theorem guaran-
tees that it bounds (rather than the un-
bounded region); in other words, such a
curve will be traversed in a counterclock-
wise manner.

curvature κ as κ⃗ = −κ N. This equation is also the one-dimensional
special case of a number of other higher dimensional flows (e.g. the
Gauss curvature flow and the harmonic mean curvature flow). With
this in mind, it is perhaps not surprising that (4.1) displays properties
of these higher dimensional flows that are not necessarily shared by
the mean curvature flow in higher dimensions.

4.1.1 A simple formula for the enclosed area

By the theorem of turning tangents and the first variation of enclosed
area, 2.19, the area enclosed by a closed, embedded curve shortening
flow changes at a precise rate: −2π. Integrating this yields

area(M1, t) = area(M1, 0)− 2πt , (4.2)

a remarkably simple—and useful—formula.
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4.1.2 The turning angle parametrization

Recall that the turning angle of a planar curve γ : M1 → R2 is the
angle θ : M1 → R/2πZ that its unit tangent vector T ≑ γ′/|γ′| makes
with the x-axis. I.e.

T = (cos θ, sin θ) .

Differentiating this equation with respect to arclength yields

−κ N = (− sin θ, cos θ)θs = −θs N .

That is,
θs = κ . (4.3)

In particular, for a convex, locally uniformly convex curve Γ = ∂Ω,
θ : Γ → R/2πZ is a diffeomorphism onto the Gauss image

2, θ(Γ). 2 Note that θ(Γ) = R/2πZ if Ω is
bounded, while |θ(Γ)| < π if Ω is un-
bounded.

The diffeomorphism provides a convenient reparametrization of the
curve, γ ◦ θ−1 : R/2πZ → R2 (which we shall also simply denote by
γ), called the turning angle parametrization.

Now, if some family of convex, locally uniformly convex curves γ :
M1 × I → R2 evolves by curve shortening flow, then, differentiating the
equation

N = (sin θ,− cos θ)

with respect to t yields

∇κ = (cos θ, sin θ)θt ;

that is,
θt = κs . (4.4)

Combining (4.3) and (4.4), we find that, with respect to the turning
angle parametrization,

γt = κ⃗ − κ−1∇κ .

Similarly, the curvature (expressed in the turning angle parametriza-
tion) satisfies

κt = κ2(κθθ + κ) (4.5)

under locally uniformly convex curve shortening flow.
Now, by Equation (4.3), any locally uniformly convex curve can be

reconstructed from its curvature function via the formula

(x(θ), y(θ)) =

(
x0 +

ˆ θ

0

cos θ

κ
dθ, y0 +

ˆ θ

0

sin θ

κ
dθ

)
. (4.6)

This reduces (closed) convex, locally uniformly convex curve shorten-
ing flow to the equation (4.5) for the curvature function—a quasilinear,
strictly parabolic scalar partial differential equation in one space vari-
able (and periodic boundary condition).
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Recall next that the support function σ : R/2πZ → R of a
convex subset Ω ⊂ R2 is defined by

σ(θ) ≑ sup
x∈Ω

x · (sin θ,− cos θ) ,

which is just the distance3 from the origin to the boundary of the

3 Which could be infinite if Ω is un-
bounded.

supporting half-space whose outer unit normal is (sin θ,− cos θ).

Figure 4.1: For a smooth, strictly convex
region Ω, σ(z) = x · Nx , where x is the
unique point on ∂Ω satisfying Nx = z.

Observe that a convex, locally uniformly convex curve Γ = ∂Ω can
be reconstructed from its support function via the turning angle

parametrization
4 γ : θ(Γ) → R2, which is given by

4 See Exercise 4.1.

γ ≑ σN+σθ T ,

where N(θ) ≑ (sin θ,− cos θ) and T(θ) ≑ (cos θ, sin θ). Differentiating
this equation with respect to s yields

T = γs = (σθθ + σ)κ T ,

and hence
κ = (σθθ + σ)−1 . (4.7)

Now, if some family of convex, locally uniformly convex planar
curves {Γt = ∂Ωt}t∈I evolves by curve shortening flow, then, under the
(time-dependent) turning angle parametrization,

γt ·N = −κ ,

from which we find
σt = −(σθθ + σ)−1 . (4.8)

This reduces the study of (closed) locally uniformly convex curve short-
ening flow to a strictly parabolic scalar partial differential equation in
one space variable (with periodic boundary condition).5

5 These phenomena are not, strictly
speaking, specific to curve shortening
flow: on a locally uniformly convex
hypersurface, the unit normal vector
provides a local diffeomorphism into
the sphere, which is global if the hy-
persurface is convex; the inverse then
provides a nice parametrization (the
Gauss map parametrization), with
respect to which the curvature and sup-
port functions satisfy analogous scalar
parabolic partial differential equations
under mean curvature flow, albeit on
on Sn. The curve case does have some
unique advantages, however: first, S1 ∼=
R/2πZ, so the relevant partial differen-
tial equations can be interpreted classi-
cally; 2. due to (4.3), every smooth curve
can be decomposed into flat and locally
uniformly convex pieces, so the local de-
scription of a smooth curve by turning
angle is essentially general; and 3. in the
context of solitons, for example, the par-
tial differential equations for the curva-
ture and support function reduce to or-
dinary differential equations.

4.1.3 Entropy formulae

The Gage–Hamilton entropy
6 of a convex, locally uniformly con-

6 Compare this to the Nash entropy,
−
´

u log u, of a positive function u, in-
troduced by Nash, “Continuity of so-
lutions of parabolic and elliptic equa-
tions”.

vex planar curve Γ = ∂Ω is defined to be

E (Γ) ≑
(

area(Ω)

π

) 1
2

exp
(

1
2π

ˆ
Γ

κ log κ ds
)

. (4.9)

Proposition 4.1 (Monotonicity of the Gage–Hamilton entropy). If the
convex, locally uniformly convex curves {Γt = ∂Ωt}t∈I are bounded and
evolve by curve shortening, then

d
dt

E (Γt) ≤ 0

at all times, with strict inequality unless κt
κ is constant in θ.
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Proof. In the turning angle parametrization, γ : R/2πZ × I → R2,

κt = ∂t(σθθ + σ)−1

= − (σθθ + σ)−2(σtθθ + σt)

= κ2(κθθ + κ) ,

and
ds = κ dθ .

Thus,

d
dt

ˆ
Γt

κ log κ ds =
d
dt

ˆ
R/2πZ

log κ dθ

=

ˆ
R/2πZ

κt

κ
dθ .

Since

∂t
κt

κ
= ∂t

(
κ(κθθ + κ)

)
= κt(κθθ + κ) + κ(κtθθ + κt)

=
(κt

κ

)2
+ κ

(
κ

κt

κ

)
θθ
+ κ2 κt

κ

= 2
(κt

κ

)2
+ κ2

(κt

κ

)
θθ
+ 2κθ

(κt

κ

)
θ

(4.10)

= 2
(κt

κ

)2
+
(

κ2
(κt

κ

)
θ

)
θ

,

we find that

d2

dt2

ˆ
Γt

κ log κ ds =
ˆ

R/2πZ

[
2
(κt

κ

)2
+
(

κ2
(κt

κ

)
θ

)
θ

]
dθ

= 2
ˆ

R/2πZ

(κt

κ

)2
dθ .

Applying Hölder’s inequality and the theorem of turning tangents, we
arrive at

d2

dt2

ˆ
Γt

κ log κ ds ≥ 1
π

(
d
dt

ˆ
Γt

κ log κ ds
)2

. (4.11)

On the other hand, recalling (4.2), we see that the function

ϕ(t) ≑
2π2

area(Ωt)
=

π
area(Ω0)

2π − t

satisfies the corresponding ode

dϕ

dt
= 1

π ϕ2 .

Moreover, by Proposition 2.25 (see Exercise 2.5), the flow may be con-
tinued until the enclosed area tends to zero; i.e. (by (4.2)) until time
T ≑ area(Ω0)

2π . This means that

ϕ(t) → ∞ as t → T ,
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and we may thereby deduce, by ode comparison, that

d
dt

ˆ
Γt

κ log κ ds ≤ 2π2

area(Ωt)

= − π
d
dt

log area(Ωt) .

Rearranging, we conclude that

d
dt

log E (Γt) ≤ 0.

Now, if the inequality is saturated at some time t0, then we may
deduce from (4.11) that is saturated for all t ≤ t0. But this guaran-
tees that the Hölder inequality is saturated, which ensures that κt

κ is
constant with respect to θ for t ≤ t0.

The Firey entropy of a convex, locally uniformly convex planar
curve Γ = ∂Ω is defined to be

F (Γ) ≑
(

π

area(Ω)

) 1
2

exp
(

1
2π

ˆ
R/2πZ

log σ dθ

)
. (4.12)

Proposition 4.2 (Monotonicity of the Firey entropy). If the convex, lo-
cally uniformly convex curves {Γt = ∂Ωt}t∈I are bounded, enclose the ori-
gin, and evolve by curve shortening, then

d
dt

F (Γt) ≤ 0

at all times, with strict inequality unless κ
σ is constant with respect to θ.

Proof. Observe that

d
dt

log F (t) =
d
dt

1
2π

ˆ
R/2πZ

log σ dθ − 1
2

d
dt

log area(Ωt)

= − 1
2π

ˆ
R/2πZ

κ

σ
dθ +

π

area(Ωt)

=

´
R/2πZ

dθ´
R/2πZ σ dθ

−
´

R/2πZ
κ
σ dθ´

R/2πZ dθ

=

´
R/2πZ dθ

´
R/2πZ dθ −

´
R/2πZ σ dθ

´
R/2πZ

κ
σ dθ´

R/2πZ
σ dθ
´

R/2πZ
dθ

=

´
R/2πZ

´
R/2πZ (q(θ)− q(ω))

(
q−1(θ)− q−1(ω)

)
dθ dω´

R/2πZ
σ dθ
´

R/2πZ
dθ

,

where
q ≑

κ

σ
.

The claims follow, since the integrand in the numerator is manifestly
nonpositive, and vanishes only if κ

σ is constant with respect to θ.
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4.1.4 Zero counting

For parabolic equations in one space variable, the maximum principle
has the following powerful refinement (whose proof is nontrivial).

7 Sigurd B. Angenent, “The zero set of a
solution of a parabolic equation”

Theorem 4.3 (Sturmian Theorem7). Let u : [0, L] × [0, T] → R be a
non-constant solution to the equation

ut = auxx + bux + cu

satisfying either Dirichlet (u(ξ, t) = 0), Neumann (ux(ξ, t) = 0) or inho-
mogeneous (u(ξ, t) ̸= 0) boundary conditions on ∂[0, L] (possibly mixed), or
the periodic boundary condition (u(0, t) = u(L, t) and ux(0, t) = ux(L, t)).
Suppose that the coefficients (each a function of space and time) satisfy

a > 0 and a, a−1, at, ax, axx, b, bt, bx, c ∈ L∞ ;

in the case of Neumann conditions, assume also that a = 1 and b = 0.
If t ∈ (0, T], then the zero set {x ∈ [0, L] : u(x, t) = 0} is finite, and
its magnitude strictly decreases across any time t ∈ (0, T) at which u(·, t)
admits a degenerate zero x (i.e. u(x, t) = 0 and ux(x, t) = 0).

One application of this to curve shortening flow is the following
“de-intersection” principle, due to Angenent.8 8 Sigurd B. Angenent, “Nodal properties

of solutions of parabolic equations”.

Proposition 4.4. For j = 1, 2, let γj : M1
j × [0, Tj) → R2 be a pair of proper

curve shortening flows with M1
1
∼= S1. Set Γj

t ≑ γj(M1
j , t) for t ∈ [0, Tj).

Unless γ1|[0,T) ≡ γ2|[0,T), where T ≑ min{T1, T2}, the intersection points
Γ1

t ∩ Γ2
t are finite in number for t ∈ (0, T) and strictly decrease in number

at each time t ∈ (0, T) there is a degenerate intersection (i.e. a point of first
order contact).

Proof. If Γ1
0 = Γ2

0, then M1
2
∼= S1 and we may conclude that Γ1

t ≡ Γ2
t

for all t ∈ [0, T) by uniqueness of solutions to curve shortening flow
(on compact manifolds). Suppose that Γ1

0 ∩ Γ2
0 is nonempty and let

p ∈ Γ1
0 ∩ Γ2

0 be an intersection point such that Br(p) contains points
of non-intersection, q ∈ (Γ2

0 \ Γ1
0) ∪ (Γ1

0 \ Γ2
0), for all r > 0. Choose

x0 ∈ γ1(·, 0)−1(p) (there are finitely many) and set L ≑ dγ1(·, t)Tx0 S1.
By the implicit function theorem, we can find some δ > 0 and smooth
functions uj : L × [0, ∞) → R such that graph uj(·, t) ∩ Bδ(p) ⊂ Γj

t for
all t ∈ [0, δ) for each j, where graph uj(·, t) ≑ {p + uj(x, t)Nj(x0, 0) :
x ∈ L}. Since the curves evolve by curve shortening, the height func-
tions uj satisfy

(uj)t =
(uj)xx

1 + (uj)2
x

in a neighbourhood [−r, r] × [0, r2) of (0, 0). But then the difference,
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v ≑ u2 − u1, satisfies

vt =
(u2)xx

1 + (u2)2
x
− (u1)xx

1 + (u1)2
x

=

ˆ 1

0

d
ds

(su2 + (1 − s)u1)xx

1 + (su2 + (1 − s)u1)2
x

ds

= avxx + bvx ,

where

a ≑
ˆ 1

0

ds
1 + (su2 + (1 − s)u1)2

x

and

b ≑ −2
ˆ 1

0

(su2 + (1 − s)u1)xx(su2 + (1 − s)u1)
2
x

1 + (su2 + (1 − s)u1)2
x

ds .

Since, at least for some short time, v must satisfy either Dirichlet-
inhomogeneous or inhomogeneous-inhomogeneous boundary condi-
tions at the boundary of [−r, r], we conclude from Theorem 4.3 that the
zero set of v becomes finite in a neighbourhood of 0, and remains so,
at least for a short time. By compactness, we conclude that Γ2

t ∩ Γ1
t is a

finite set for small, positive times. The same localization, applied now
in a neighbourhood of a time-interior intersection point, then shows
that the number of intersection points is nonincreasing (and strictly
decreases each time there is a degenerate intersection).

Along a curve shortening flow γ : M1 × [0, T] → R2, M1 ∼= R/2πZ,
the evolution equation for the curvature, κ, may be expressed with
respect to a local (time-independent) coordinate x as

κt = aκxx + bκx + cκ ,

where

a ≑ |γx|−2 , b ≑ −|γx|−4γxx · γx , and c = κ2 .

Differentiating then yields

(κx)t = a(κx)xx + (ax + b)(κx)x + (bx + 3c)κx .

We thereby obtain the following nodal properties of the curvature (also
due to Angenent9). 9 Sigurd B. Angenent, “On the formation

of singularities in the curve shortening
flow”.Proposition 4.5. Let γ : M1 × [0, T) → R2 be a curve shortening flow on

M1 ∼= S1. Unless γ is a shrinking circle, the inflection points {x ∈ M1 :
κ(x, t) = 0} and vertices {x ∈ M1 : κs(x, t) = 0} are finite in number
for all t > 0. The number of inflection points is nonincreasing, and strictly
decreases each time γ(·, t) admits a degenerate inflection point.
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4.1.5 Monotonicity of the total curvature

Denote the total curvature of a planar curve γ : M1 → R2 by

K ≑
ˆ

M1
|κ| ds .

Altschuler established the following monotonicity formula for K un-
der curve shortening flow.10 10 S. J. Altschuler, “Singularities of the

curve shrinking flow for space curves”.
Lemma 4.6 (Total curvature monotonicity formula). On any curve short-
ening flow γ : M1 × I → R with M1 ∼= S1,

dK

dt
= −2 ∑

{p∈M1 :κ(p,·)=0}
|∇κ| , (4.13)

except possibly at finitely many times. In particular, K is nonincreasing
under curve shortening flow, and strictly decreases unless κ has a consistent
sign.

Proof. By Proposition 4.5, either the solution is a shrinking circle (in
which case the claim holds trivially), or the inflection points are finite
in number and nondegenerate, except possibly at a finite set of times
(at which their number strictly decreases). Away from these times, we
may split Γt = γ(M1, t) into a finite, locally constant number N = N(t)
of segments, {Γj

t}N
j=1, with boundaries {ai−1, ai}N

i=1, aN = a0, on which
κ is nonzero and alternates sign, so that, for an appropriate choice of
arclength parameter,

d
dt

ˆ
Γt

|κ| =
N

∑
j=1

(−1)j−1 d
dt

ˆ
Γj

t

κ ds

=
N

∑
i=1

(−1)j−1
ˆ

Γj
t

(κt − κ3) ds

=
N

∑
i=1

(−1)j−1
ˆ

Γj
t

κss ds

= − κs(a0) + 2
N−1

∑
j=1

(−1)j−1κs(aj) + (−1)N−1κs(aN)

= 2
N−1

∑
j=0

(−1)j−1κs(aj) .

The claim follows since (−1)iκs(ai) ≥ 0 for each i.

4.2 Self-similar solutions

Recall that a planar curve γ : M1 → R2 generates a self-similar curve
shortening flow if

κ⃗ + (γ∗V)⊥ = 0 (4.14)
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for some planar vector field V of the form

V(x) = λ
2 x + µJx − v (4.15)

for some parameters11 λ ∈ R, µ ∈ R and v ∈ R2.

11 The parameter λ generates dilations,
while µJ generates rotations and v gen-
erates translations.

Observe that, when µ = 0, we may express the soliton vector field
V as the gradient,

V = D f , (4.16)

of a potential function f : R2 → R, which is given (modulo an
additive constant) by

f (x) ≑ λ
4 |x|

2 − x · v . (4.17)

Observe that we may rewrite (4.14) as the scalar equation

κ = λ
2 γ ·N−µγ · T−v ·N . (4.18)

On a locally uniformly convex shrinker parametrized by turning angle,
this becomes

κ = λ
2 σ ,

from which we deduce that

Proposition 4.7. the monotonicity formula for the Firey entropy (Proposition
4.2) is saturated precisely on the bounded, convex, self-similarly shrinking
solutions.

We have already seen that the straight lines and Grim Reapers are
the only self-similarly translating (planar) curve shortening flows. This
is complemented by the following result for shrinkers.12 12 A complete classification of shrinkers

was given by Abresch and Langer, “The
normalized curve shortening flow and
homothetic solutions” and Epstein and
Weinstein, “A stable manifold theo-
rem for the curve shortening equation”
(cf. Andrews, “Classification of limit-
ing shapes for isotropic curve flows”).
The expanding case was treated by Ur-
bas, “Complete noncompact self-similar
solutions of Gauss curvature flows. II.
Negative powers”. The general case was
treated by Halldorsson, “Self-similar so-
lutions to the curve shortening flow”.

Theorem 4.8. The shrinking circles are the only bounded, convex, self-
similarly shrinking curve shortening flows.

Sketch of the proof. We may assume that v = 0 (this may be arranged
by a translation in space), in which case (4.18) becomes

(σθθ + σ)−1 = λ
2 σ (4.19)

subject to the periodic boundary condition θ ∈ R/2πZ.
Observe that[

1
2 (σ

2
θ + σ2)− log σ

2
λ

]
θ
= σθ

(
σθθ + σ − 2

λ σ−1
)

= 0.

That is,
e

1
2 (σ

2
θ +σ2) = Aσ

2
λ (4.20)

for some A > 0.
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In particular, at any critical point of σ,

e
1
2 σ2

= Aσ
2
λ . (4.21)

For fixed λ, this equation can have zero, one or two solutions in the
domain σ ∈ (0, ∞), depending on the value of A. Denote by A0 the
critical value of A (i.e. the value for which the equation admits one
solution). If A < A0, then (4.21) admits no solutions, which is impos-
sible since, by the four vertex theorem, σ = 2

λ κ admits at least four
critical points. If A = A0, then, since (4.21) admits only one solution,
the value of σ at all critical points (including its maximum and mini-
mum) must agree, which means that σ is constant and the solution is
a circle. In case A > A0, denote by σ− and σ+ the two solutions to
(4.21), with σ− < σ+. Since σθ is nonzero between σ− and σ+, we may
solve (4.20) for dθ

dσ in [θ−, θ+]. Integrating, we find that the difference
in the turning angle between these points is given by

Θ ≑
1√
2

ˆ σ+

σ−

dσ√
log A + log σ

2
λ − 1

2 σ2

=

ˆ r

1

dρ√
r2−1

log r2/λ log ρ
2
λ − (ρ2 − 1)

,

where r ≑ ( σ+
σ− )

2
λ . By a rotation of the plane, we may arrange that θ =

0 at ρ = 1. Now, since equation (4.19) is invariant under orientation
reversal, the portion of the curve for θ ∈ [Θ, 2Θ] is congruent to the
portion corresponding to θ ∈ [0, Θ], and so on. Since σ admits at
least four critical points, we require at least four of these pieces to
complete the curve. But Θ > π

2 when r > 1 (since Θ is monotone
decreasing with respect to r and tends to π

2 as r → ∞13), violating 2π 13 This may be established by performing
the coordinate transformation

ρβ =
rβ − 1

2
z +

rβ + 1
2

, β =
4
3

,

which expresses Θ as an integral in
z over a fixed domain; see Andrews,
“Classification of limiting shapes for
isotropic curve flows”, Section 5.

periodicity.

Differentiating (4.14), we find that

∇κ = κV⊤ − µT . (4.22)

Differentiating (4.22) and applying (4.14) and (4.22) then yields

−∆κ = −∇V⊤κ + κ3 − λ
2 κ . (4.23)

In fact, the converse is true.

Proposition 4.9. If a locally uniformly convex curve γ : M1 → R2 satisfies
(4.23) for some λ ∈ R, with V⊤ given by (4.22) for some µ ∈ R, then (4.14)
holds with V given by (4.15) for some v ∈ R2.

Proof. Consider the ambient vector field

U ≑ V⊤ − κ⃗ − λ
2 γ − µJγ .
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Differentiating U and applying (4.22) and (4.23) yields

∇sU = 0.

So U is constant along γ. That is,

κ⃗ + λ
2 γ + µJγ − V⊤ = γ∗v

for some v ∈ R2. This is just another way of writing

κ⃗ + (γ∗V)⊥ = 0,

where V = λ
2 x + µJx − v.

On a convex, locally uniformly convex solution to (4.14) which is
parametrized by turning angle, equations (4.22) and (4.23) become

κ(κθθ + κ) = λ
2 . (4.24)

In particular,

Proposition 4.10. the monotonicity formula for the Gage–Hamilton entropy
(Proposition 4.1) is saturated precisely on the bounded, convex, self-similarly
shrinking solutions.

Given a curve γ : M1 → R, consider the weighted area functional

G(γ) ≑
ˆ

M1
e−γ∗ f ds ,

where f : R2 → R is the gradient soliton potential (for some choice
of v ∈ R2 and λ ∈ R). The gradient soliton equation (4.14) (with
V = D f ) is the Euler–Lagrange equation for G.

Proposition 4.11. If M1 is compact and {γε : M1 → R}ε∈(−ε0,ε0)
is a

smooth variation of γ = γ0, then

d
dε

∣∣∣∣
ε=0

G(γε) = −
ˆ

M1
(⃗κ + γ∗D f ) · F⃗ e−γ∗ f ds ,

where F⃗ is the variation field. Thus, γ is a stationary point of G if and only if
it satisfies (4.14) with V = D f .

Proof. This as an easy consequence of the first variation formula for
the length element.

Consider now, for some shrinker γ : M1 → R2, the associated self-
similarly shrinking curve shortening flow

√
−tϕ∗

log
√
−tγ. This curve

shortening flow will satisfy

κ⃗γt +
λ(t)

2 γ⊥
t = 0,
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where λ(t) ≑ 1
−t . So the potential function (after adding a normalizing

constant) is given by

f (x, t) = λ(t) |x|
2

4 + log(4π) = |x|2
−4t + log(4π) .

Observe that the density function

h ≑ λe− f = 1
−4πt e−

|x|2
−4t

is then the fundamental solution to the planar conjugate heat equa-
tion

14 14 So named because a smooth function u
satisfies the heat equation in Ω× (a, b) ⊂
R2 × R if and only if

ˆ b

a

ˆ
Ω

u(∂t − ∆)∗φ dL dt = 0

for every smooth function φ which is
compactly supported in Ω × (a, b).

(∂t − ∆)∗v = 0

on R2, where
(∂t − ∆)∗ ≑ −(∂t + ∆)

is the conjugate heat operator.

4.3 The differential Harnack inequality

The classical heat equation exhibits a remarkable property, known as
the (matrix) differential Harnack inequality, which states that
any positive solution u : Rn × (0, ∞) → R must satisfy

∇2 log u +
I

2t
≥ 0. (4.25)

In fact, the inequality must be strict, unless u is a constant multiple of

the (self-similar) fundamental solution, ρ(x, t) ≑ (4πt)−
n
2 e−

|x−x0 |2
4t for

some x0. Integrating the trace of (4.25) along spacetime curves of the
form t 7→ (γ(t), t), with γ a geodesic joining points x1 and x2, yields
the classical Harnack inequality:

(4πt2)
n
2 u(x2, t2) ≥ (4πt1)

n
2 u(x1, t1) exp

(
−|x2 − x1|2

4(t2 − t1)

)
, (4.26)

for any x2, x1 and any t2 > t1.
For an ancient solution

15 u : Rn × (−∞, ∞) → R, performing a 15 I.e. a solution whose temporal domain
I has an infinite past: I = (−∞, ω), ω ≤
∞.

series of time-translations yields the stronger inequality

∇2 log u ≥ 0.

Again, we have strict inequality, except in the exceptional circumstance
that ∇2 log u = 0; that is, u is a constant multiple of the travelling wave
solution, u(x, t) = e(x+tv)·v for some v ∈ Rn.

Observe that, by (4.22) and (4.23), a locally uniformly convex, self-
similarly expanding curve shortening flow must satisfy

κt

κ
=

|∇κ|2
κ2 − 1

2t
,
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while a locally uniformly convex, self-similarly translating curve short-
ening flow must satisfy

κt

κ
=

|∇κ|2
κ2 .

16 Andrews, “Harnack inequalities for
evolving hypersurfaces”; Richard S.
Hamilton, “Harnack estimate for the
mean curvature flow”

Theorem 4.12 (Differential Harnack inequality16). Along any locally
uniformly convex curve shortening flow γ : M1 × [0, T) → R2 on a compact
one-manifold,

∂tκ

κ
− |∇κ|2

κ2 +
1
2t

≥ 0. (4.27)

Moreover, if (4.27) holds along a (not necessarily compact) proper, locally
uniformly convex curve shortening flow γ : M1 × [0, T) → R2, then it
holds with strict inequality, unless γ : M1 × [0, T) → R2 is a self-similarly
expanding solution.

Along any locally uniformly convex, ancient
17 curve shortening flow 17 I.e. one having an infinite past.

γ : M1 × (−∞, T) → R2 on a compact one-manifold,

∂tκ

κ
− |∇κ|2

κ2 ≥ 0. (4.28)

Moreover, if (4.28) holds along a (not necessarily compact) proper, locally
uniformly convex, ancient curve shortening flow γ : M1 × (−∞, T) → R2,
then it holds with strict inequality, unless γ : M1 × (−∞, T) → R2 is a
self-similarly translating solution.

Proof. Consider the functions

Q ≑ ∂t log κ − |∇ log κ|2 and P ≑ 2t(∂t log κ − |∇ log κ|2) + 1.

Note that P ≡ 0 if and only if γ : M1 × I → R2 is a self-similarly
expanding solution and Q ≡ 0 if and only if γ : M1 × I → R2 is a
self-similarly translating solution.

Observe that, with respect to the turning angle parametrization18, 18 Since θs = κ and θt = κs, the chain rule
implies that

∂t( f ◦ θ) = ft + fθκs = ft + fs
κs

κ
.

Q = ∂t log κ and P = 2t∂t log κ + 1.

Recalling the computation (4.10), we find that

∂tQ = κ2Qθθ + 2κκθQθ + 2Q2 ,

and hence
∂tP = κ2Pθθ + 2κκθ Pθ + 2QP .

Since P|t=0 = 1 > 0, the maximum principle implies that P ≥ 0 for
positive times, which yields (4.27). The rigidity case is a consequence
of the strong maximum principle (which implies P ≡ 0, i.e. ∂tκ =

∇∇ log κκ + 1
2t κ) and Proposition 4.9.

The inequality (4.28) now follows by time-translating (4.27) for a
sequence of times approaching minus infinity, and the rigidity case is
again a consequence of the strong maximum principle (which implies
Q ≡ 0, i.e. ∂tκ = ∇∇ log κκ) and Proposition 4.9.
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Note that, by continuity, smooth limits of curve shortening flows on
compact one-manifolds satisfy the differential Harnack inequality.

Corollary 4.13 ((Integral) Harnack inequality). Along any locally uni-
formly convex curve shortening flow γ : M1 × [0, T) → R2 on a compact
one-manifold,

√
t2κ(x2, t2) ≥

√
t1κ(x1, t1)exp

(
d2(x1, x2, t1)

−4(t2 − t1)

)
for any x1, x2 ∈ M2 and any 0 < t1 < t2 < T.

Proof. If γ : [t1, t2] → Mn is a minimizing gt1 -geodesic joining x1 =

γ(t1) to x2 = γ(t2), then |γ′| = d(x1,x2,t1)
t2−t1

, so the differential Harnack
inequality (4.27) and Young’s inequality yield

d
dt

log κ(γ(t), t) =
κt

κ
+

∇γ′κ

κ

≥ 1
2t

+
|∇κ|2

κ2 − |∇κ|
κ

d(x1, x2, t1)

t2 − t1

≥ 1
2t

− d2(x1, x2, t1)

4(t2 − t1)2 .

Integrating from time t1 to t2 yields the claim.

4.4 The monotonicity formula for Huisken’s functional

Given a planar curve shortening flow γ : M1 × I → R2, M1 ∼= S1, the
Huisken functional G is defined by

G (p0,t0)
(M1, t) ≑

1√
4π(t0 − t)

ˆ
M1

e
|γ(x,t)−p0 |2

4(t−t0) dst(x) . (4.29)

Observe that this is simply 1√
2(t0−t)

times the functional G from Propo-

sition 4.11 (in the shrinking case), evaluated along the curve shorten-
ing flow. Observe that G is invariant under parabolic rescaling about
(p0, t0), and is thus constant in time along a self-similarly shrinking
curve shortening flow which is centred at (p0, t0).

Define the density

Ψ(p0,t0)
(x, t) ≑

1√
4π(t0 − t)

e
|γ(x,t)−p0 |2

4(t−t0)

=
√

4π(t0 − t)Φ(p0,t0)
(γ(x, t), t) ,

where

Φ(p0,t0)
(p, t) ≑

1
4π(t0 − t)

e
|p−p0 |2
4(t−t0)

is the fundamental solution to the planar conjugate heat equation based
at (x0, t0).
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19 Huisken, “Asymptotic behavior for
singularities of the mean curvature
flow”

Proposition 4.14 (Monotonicity formula for Huisken’s functional19).
Given any (p0, t0) ∈ R2 × R and any planar curve shortening flow γ :
M1 × I → R2, M1 ∼= S1,

d
dt

G (p0,t0)
(M1, t) = −

ˆ
M1

∣∣∣∣∣κ⃗ +
(γ − p0)

⊥

2(t0 − t)

∣∣∣∣∣
2

Ψ(p0,t0)
ds (4.30)

for all t ∈ I ∩ (−∞, t0). In particular, G (p0,t0)
(M1, t) is nonincreasing

over I ∩ (−∞, t0), and strictly decreases unless γ is self-similarly shrinking
about20 (p0, t0).

20 I.e. the spacetime translated solu-
tion γ̃(x, t) ≑ γ(x, t + t0) − p0 is a self-
similarly shrinking solution.

Proof. Without loss of generality, we may take (p0, t0) = (0, 0). Set
Φ ≑ Φ(0,0), Ψ ≑ Ψ(0,0) and G ≑ G (0,0). Note that Φ satisfies the
conjugate planar heat equation

−(∂t + ∆R2)Φ = 0.

We claim that

−(∂t + ∆ − κ2)Ψ =

∣∣∣∣⃗κ +
γ⊥

−2t

∣∣∣∣2Ψ . (4.31)

Indeed,

Ψt =
−2π√
−4πt

Φ +
√
−4πt (Φt + DΦ · γt)

= 1
2t Φ +

√
−4πt (Φt − κDNΦ)

and

∆Ψ = Ψss

=
√
−4πt (DTΦ)s

=
√
−4πt

(
D2Φ(T,T)− κDNΦ

)
=

√
−4πt

(
∆R2 Φ − D2Φ(N,N)− κDNΦ

)
.

So
(∂t + ∆)Ψ = 1

2t Ψ −
√
−4πt

(
D2Φ(N,N) + 2κDNΦ

)
.

Since Φ satisfies

D2 log Φ =
I

2t
and DN log Φ =

γ ·N
2t

,

this becomes

(∂t + ∆)Ψ =
Ψ
2t

−
√
−4πt

(
Φ
2t

+
(DNΦ)2

Φ
+ 2κDNΦ

)
= − Ψ

(
(DNΦ)2

Φ2 + 2κ
DNΦ

Φ

)
= κ2Ψ − Ψ

∣∣∣∣⃗κ − (DΦ)⊥

Φ

∣∣∣∣2
= κ2Ψ − Ψ

∣∣∣∣⃗κ +
γ⊥

−2t

∣∣∣∣2 ,
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which is Equation (4.31). We conclude, using the divergence theorem
and the area evolution, that

d
dt

G (M1, t) =
ˆ

M1

(
Ψt − κ2Ψ

)
ds

=

ˆ
M1

(∂t + ∆ − κ2)Ψ ds

= −
ˆ

M1

∣∣∣∣∣κ⃗ +
γ⊥

−2t

∣∣∣∣∣
2

Ψ

as claimed.

4.5 Noncollapsing

Roughly speaking, a sequence of embedded curves Γj = ∂Ωj, Ωj ⊂
open

R2, is said to collapse if, modulo translation and scaling, their inte-
rior regions Ωj degenerate as j → ∞, with their curvature remaining
bounded. One precise way to quantify this is to ask for a sequence of
points xj ∈ Γj such that

rj(xj) sup
B2

jrj(xj)
(xj)

|κj| ≤ j−1 , (4.32)

Figure 4.2: On an Archimedean spiral,
r ∼ 1 but κ ∼ 1

d , where d is the dis-
tance to the origin. Thus, far from the
origin, rκ ∼ 0, and hence (4.32) holds, af-
ter passing to a subsequence, along any
sequence of points xj tending to infinity.

Figure 4.3: At the scale of the curvature
of a point very far from the origin, the in-
scribed radius is very small but the cur-
vature is ∼ 1 at distance ∼ 1 from the
origin.

where r(x) denotes the inscribed radius of ∂Ω at x ∈ ∂Ω—the ra-
dius of the largest disc contained in Ω whose boundary passes through
the boundary point x.

Note that rκ is scale invariant. Thus, if (4.32) holds, then, at the
scale of the curvature, the inscribed radius degenerates to zero. Since
κ ≤ r−1, with strict inequality only if the boundary of the disc B2

r (x −
r N(x)) meets ∂Ω at some other point y ∈ ∂Ω \ {x}, this means that two
(intrinsically distant) portions of the boundaries are coming together.
On the other hand, at the scale of the inscribed radius, the curvature is
tending towards zero in arbitrarily large regions, and at this scale the
regions converge to a strip of width two.

Example 5. Consider the constant sequence Γj = Γ, where

Γ = graph(x 7→ log sec x)

is the Grim Reaper curve. If (xj, yj = log sec xj) ∈ Γj is a sequence of
points with xj → ±π

2 , then, on the one hand, rj ≑ r(xj, yj) → π
2 as

j → ∞. On the other hand, since cos xj → 0 as j → ∞, we may pass to
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a subsequence so that cos(xj) = o(e−j π
2 ), and hence

sup
B2

jrj
(xj ,yj)

κ ≤ sup
B2

j π
2
(xj ,yj)

κ

≤ sup
[xj−j π

2 ,xj+j π
2 ]×[yj−j π

2 ,yj+j π
2 ]

κ

= κ(arccos(ej π
2 cos xj))

= ej π
2 cos xj

= o(1) as j → ∞ .

So the sequence is collapsing. ■

4.5.1 The inscribed and exscribed curvature estimates

Andrews proved that the inscribed radius is pointwise nondecreasing,
relative to the scale of the curvature, under curve shortening flow.

21 Andrews, “Noncollapsing in mean-
convex mean curvature flow”

Proposition 4.15 (Interior noncollapsing21). Along any convex, locally
uniformly convex curve shortening flow {Γt = ∂Ωt}t∈[0,T), Ωt ⊂

bounded, convex

R2, the inscribed curvature k ≑ r−1 satisfies

(∂t − ∆)k ≤ κ2k

in the viscosity sense
22. In particular, 22 This is a weak formulation of the dif-

ferential inequality (∂t − ∆)u ≤ κ2u
which applies to any continuous func-
tion. It asserts that, at any point
(x0, t0) ∈ M1 × (0, T), any smooth func-
tion φ : M1 × [0, T) → R which touches
k from above at (x0, t0), in the sense that
φ ≥ k on a backward spacetime neigh-
bourhood U × (t0 − δ, t0] of (x0, t0) with
equality at (x0, t0), satisfies

(∂t − ∆)φ ≤ κ2 φ at (x0, t0) .

k ≤ Kκ , where K ≑ max
Γ0

k
κ

.

Equivalently,
r ≥ δκ−1 , where δ ≑ min

Γ0
rκ .

Proof. According to the definition of the inscribed radius (of some
boundary Γ = ∂Ω) r, the value taken by the inscribed curvature k
at a point x ∈ ∂Ω is equal to the infimum of the curvatures of discs
which are contained in Ω and touch ∂Ω at x. Observe that this is
equivalent to the supremum over all points y ∈ Γ \ {x} of the curva-
ture of the unique disc which touches Γ at x and passes through y. A
short planar geometry exercise reveals this to be

Figure 4.4: Equating r2 = |x − r Nx −y|2

yields k(x, y) = r−1 = 2(x−y)·Nx
|x−y|2 .

k(x) = sup
y∈Γ\{x}

k(x, y) ,

where the function k is defined on Γ × Γ \ D, D ≑ {(x, x) : x ∈ Γ}, by

k(x, y) ≑
2(x − y) ·N(x)

|x − y|2 .
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Given a parametrization γ : M1 × [0, T) → R2 for our curve short-
ening flow, we define

k(x, y, t) ≑
2(γ(x, t)− γ(y, t)) ·N(x, t)

|γ(x, t)− γ(y, t)|2 ,

so that the inscribed curvature at a point γ(x, t) ∈ Γt is given by

k(x, t) ≑ sup
y∈M1\{x}

k(x, y, t) .

Note that (see Exercise 4.6)

k(x, t) ≥ lim
y→x

k(x, y, t) = κ(x, t) .

We claimed that k satisfies the differential inequality

(∂t − ∆)k ≤ κ2k (4.33)

in the viscosity sense. To see this, let φ : M1 × [0, T) → R be a smooth
function which touches k from above at a point (x0, t0) ∈ M1 × (0, T).
There are two cases to consider. Assume first that k(x0, t0) = κ(x0, t0).
In that case, φ touches κ from above at (x0, t0), and hence, at that point,

0 ≥ (∂t − ∆)(φ − κ) = (∂t − ∆)φ − κ3 ≥ (∂t − ∆)φ − κ2 φ

as claimed.
Suppose then that k(x0, t0) > κ(x0, t0). Then we can find y0 ∈

M1 such that k(x0, t0) = k(x0, y0, t0). It follows that the function
(x0, y0, t0) 7→ φ(x0, t0) touches k from above at (x0, y0, t0), and hence,
at that point,

0 ≥
(
∂t − (∂x + Λ∂y)

2)(φ − k) = (∂t − ∆)φ −
(
∂t − (∂x + Λ∂y)

2)k
for any choice of Λ ∈ R, where, for a smooth function u defined
on a neighbourhood in M1 × M1 × [0, T) of the point (x0, y0, t0), ∂x

and ∂y denote (counterclockwise oriented) arclength derivatives in the
corresponding variable.

Using the subscript x or y to denote projection onto the correspond-
ing factor, and setting d ≑ |γx − γy| and w ≑ (γx − γy)/d, consider

∂tk =
2
d2

(
(−κx Nx +κy Ny) · (Nx −kdw) +∇κx · (dw)

)
,

(∂x + Λ∂y)k =
2
d2

(
(Tx −ΛTy,Nx −kdw) + κx Tx ·(dw)

)
and

(∂x + Λ∂y)
2k =

2
d2

(
(−κx Nx +Λ2κy Ny) · (Nx −kdw)

+ (Tx −ΛTy) · (κx Tx −k(Tx −ΛTy))

+ (∇κx − κ2
x Nx) · (dw) + κx Tx ·(Tx −ΛTy)

− 2(Tx −ΛTy) · (dw)(∂x + Λ∂y)k
)

.
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Since k(x0, ·, t0) is maximized at y0,

0 = ∂yk = − 2
d2 Ty ·(Nx −kdw)

at (x0, y0, t0).
Since

|Nx − kdw|2 = 1 − 2k(dw) ·Nx +d2k2 = 1,

we find that Ny = ±(Nx −kdw) at (x0, y0, t0). We claim that

Ny = Nx −kdw .

Figure 4.5: If k(x) = k(x, y), then the
inscribed ball at x of radius k−1(x) also
makes first order contact with ∂Ω at y.

Indeed, at (x0, y0, t0), the ball of radius 1
k centred at x − 1

k Nx, which
touches Γ from the interior at x, also touches Γ from the interior at y
(see Figure 4.5), so that

y − k−1 Ny = x − k−1 Nx .

Rearranging yields the claim.
Observe also that the tangent line at y0 is the reflection of the tan-

gent line at x0 across the perpendicular bisector of the line Rw. Thus,

−Ty = Tx −2(Tx ·w)w ,

and hence
2(Tx ·w)(Ty ·w) = Tx ·Ty +1.

Recalling the gradient identities, we thus obtain, at (x0, y0, t0),

(∂t − ∆)φ ≤
(
∂t − (∂x + Λ∂y)

2)k
= κ2

xk − 2
(∂xk)2

k − κx

+
2
d2

(
κy − κx + k − κx + 2Λ(k − κx)− Λ2(k − κy)

)
.

Taking Λ = −1 then yields

(∂t − ∆)φ ≤ κ2 φ − 2
(∇φ)2

φ − κ

≤ κ2 φ

as claimed.
The Proposition now follows from the maximum principle (albeit in

the context of viscosity solutions): it suffices to prove that the inequal-
ity

k − Kκ − εe(Cσ+1)t ≤ 0

holds on M1 × [0, σ] for any ε > 0 and σ ∈ (0, T), where

K ≑ max
M1×{0}

k
κ
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and Cσ ≑ maxM1×[0,σ] κ2. Suppose then, to the contrary, that there
exist for some ε > 0 and σ ∈ (0, T) some (x0, t0) ∈ M1 × [0, σ] such
that

k(x0, t0)− Kκ(x0, t0)− εe(Cσ+1)t0 = 0.

Since the inequality is strict at the initial time, we may take t0 > 0 to
be the first time that equality is attained. But then the smooth function

φ ≑ Kκ + εe(Cσ+1)t

touches k from above at (x0, t0), and must therefore satisfy, at (x0, t0),

0 ≥ (∂t − ∆)φ − κ2 φ

= K(∂t − ∆)κ + ε(Cσ + 1)e(Cσ+1)t − κ2
(

Kκ + εe(Cσ+1)t
)

= ε(Cσ + 1)e(Cσ+1)t − εκ2e(Cσ+1)t

≥ εe(Cσ+1)t

> 0,

which is absurd. We conclude that

k ≤ Kκ ,

which is equivalent to the claim.

In fact, reversing the orientation of the curves in the preceding proof
yields a corresponding exterior noncollapsing estimate: if we define the
circumscribed radius r to be the radius of the smallest disc which
encloses23 Ω and touches ∂Ω at x, then we obtain the following. 23 Equivalently, the radius of the largest

disc-complement which lies in R2 \ Ω
and touches ∂Ω at x.
24 Andrews, “Noncollapsing in mean-
convex mean curvature flow”

Proposition 4.16 (Exterior noncollapsing24). Along any convex, locally
uniformly convex curve shortening flow, {Γt = ∂Ωt}t∈[0,T), Ωt ⊂

bounded, convex

R2, the exscribed curvature k ≑ r−1 satisfies

(∂t − ∆)k ≥ κ2k

in the viscosity sense. In particular,

k ≥ δκ , where δ ≑ min
Γ0

k
κ

.

Equivalently,
r ≤ Dκ−1 , where D ≑ max

Γ0
rκ .

4.5.2 The chord-arc estimate

Figure 4.6: On a round circle of radius r,
d
2 = r sin ϑ and ℓ

2 = rϑ.

Observe that, on any round circle of radius r, the chord-distance d and
arc-length ℓ are related by

d
2r

≡ sin
(

ℓ

2r

)
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or, equivalently,

sin
(

πℓ

L

)
≡ πd

L
, (4.34)

where L ≑ 2πr is the total length.
Define the chord-arc constant of a regular Jordan curve Γ =

∂Ω ⊂ R2 to be

C(Γ) ≑ sup
L

πd
sin
(

πℓ

L

)
,

where the supremum is taken over all “off-diagonal” pairs (x, y) ∈
Γ × Γ; i.e. x ̸= y.

Obviously, the chord-arc constant of a round circle is one. Moreover,
since

L
πd

sin
(

πℓ

L

)
→ 1 as ℓ → 0,

C(Γ) is always at least one. In fact, C(Γ) > 1 unless Γ is a round
circle.25 25 See, for example, Andrews, Chow, et

al., Extrinsic geometric flows, Lemma 3.9.Huisken proved that the chord-arc constant does not increase under
curve shortening flow.26 26 Huisken, “A distance comparison

principle for evolving curves”.

Proposition 4.17. Along any curve shortening flow γ : M1 × [0, T) → R2

of simple, closed, planar curves Γt = γ(M1, t),

d
dt

C(Γt) ≤ 0

in the viscosity sense27 whenever C(Γt) > 1. In particular, 27 This is a weak formulation of the dif-
ferential inequality du

dt ≤ 0 which ap-
plies to any continuous function. It as-
serts, for every t0 ∈ (0, T), that every
smooth function φ : [0, T) → R which
touches u from above at t0, in the sense
that u ≤ φ for t in a backward neigh-
bourhood (t0 − δ, t0] of t0 with equality
at t0, satisfies dφ

dt (t0) ≤ 0.

C(Γt) ≤ C(Γ0)

for all t ∈ [0, T).28

28 A sharp version of this estimate was
established by Andrews and Bryan,
“Curvature bound for curve shortening
flow via distance comparison and a di-
rect proof of Grayson’s theorem” by re-
placing the sine function in the defini-
tion of C with a certain modulus which
improves with time. The resulting esti-
mate is sharp enough to establish precise
control on the geometry of the evolv-
ing curves as the maximal time is ap-
proached.

Proof. Set L(t) ≑ length(Γt) and define a function Z : (M1 × M1) \
D → R, where D ≑ {(x, x) : x ∈ M1}, by

Z(x, y, t) ≑
L(t)

πd(x, y, t)
sin
(

πℓ(x, y, t)
L(t)

)
.

If C(Γt0) < 1, then we can find (x0, y0) ∈ (M1 × M1) \ D such that
C(Γt0) = Z(x0, y0, t0). Since ξ 7→ sin(ξ) is even about ξ = π

2 and Z
is symmetric in x and y, we may arrange that ℓ(x0, y0, t0) ≤ L(t0)

2 , and
that ∂xℓ = −1 and ∂yℓ = +1, where ∂x and ∂y denote counterclockwise
oriented arclength derivatives in the respective factors. Thus, if φ is an
upper barrier for C(Γt) at t0, then

φ ≥ C(Γt) ≥ Z
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for t ≤ t0 and (x, y) ∈ (M1 × M1) \ D, with equality at (x0, y0, t0), and
hence, at that point,

∂t φ ≤ ∂tZ

=
Lt

L

(
L

πd
sin
(

πℓ

L

)
− ℓ

d
cos

(
πℓ

L

))
− 1

d
Zw · (κx Nx −κy Ny)

+
ℓt

d
cos

(
πℓ

L

)
, (4.35)

where w ≑ 1
d (y − x). Since (x0, y0) is a critical point of Z(·, ·, t0), we

also have

0 = ∂xZ =
1
d

(
Z(w · Tx)− cos

(
πℓ

L

))
and

0 = ∂yZ = − 1
d

(
Z(w · Ty)− cos

(
πℓ

L

))
,

and hence

Z(w · Tx) = cos
(

πℓ

L

)
= Z(w · Ty) (4.36)

at (x0, y0, t0). It follows that, at this point, either Ty = Tx or the line in
the direction of w bisects the angle between Tx and Ty; i.e.

Ty = 2(w · Tx)w − Tx . (4.37)

Figure 4.7: If a pair of points with par-
allel tangent vectors can be found, then
their chord must intersect the curve in a
third point.

We claim that the latter must be the case. Indeed, if Tx = Ty at
(x0, y0, t0), then the curve Γt0 must intersect the chord joining γ(x0, t0)

and γ(y0, t0) in a third point, γ(u0, t0). But then, since Z(·, ·, t0) is
maximized at (x0, y0) and ξ 7→ sin(ξ) is even about ξ = π/2 and
strictly concave for ξ ∈ (−π

2 , π
2 ),

(dZ)(x0, y0, t0) = (d(x0, u0, t0) + d(u0, y0, t0)) Z(x0, y0, t0)

≥ (dZ)(x0, u0, t0) + (dZ)(u0, y0, t0)

=
π

L(t0)

[
sin
(

πℓ(x0, u0, t0)

L(t0)

)
+ sin

(
πℓ(u0, y0, t0)

L(t0)

)]
>

π

L(t0)
sin
(

π(ℓ(x0, u0, t0) + ℓ(u0, y0, t0))

L(t0)

)
=

π

L(t0)
sin
(

πℓ(x0, y0, t0)

L(t0)

)
= (dZ)(x0, y0, t0) ,

which is absurd. This establishes (4.37).
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Next, consider the second variation coefficients

∂2
xZ = − 1

d
Zw · (κx Nx)−

1
d2 Z

(
1 − (w · Tx)

2)− π

dL
sin
(

πℓ

L

)
,

∂x∂yZ =
1
d2 Z

(
Tx ·Ty −(w · Tx)(w · Ty)

)
+

π

dL
sin
(

πℓ

L

)
and

∂2
yZ =

1
d

Zw · (κy Ny)−
1
d2 Z

(
1 − (w · Ty)

2)− π

dL
sin
(

πℓ

L

)
.

Since (x0, y0) is a local maximum of29 Z(·, ·, t0),
29 Observe that the variation ∂x − ∂y
keeps the vector w (which bisects Tx and
Ty) constant, producing an optimal sec-
ond variation.

0 ≥ (∂x − ∂y)
2Z

= − 1
d

Zw · (κx Nx −κy Ny)−
4π2

dL
sin
(

πℓ

L

)
, (4.38)

due to some cancellation of terms upon applying (4.37). Putting (4.35)
and (4.38) together, we find that

∂t φ ≤ − 1
πd

(
sin
(

πℓ

L

)
− πℓ

L
cos

(
πℓ

L

)) ˆ
κ2 ds

+
4π

dL
sin
(

πℓ

L

)
− 1

d
cos

(
πℓ

L

) ˆ y

x
κ2 ds

Since ℓ ≤ L
2 , the trigonometric terms are all nonnegative and

sin
(

πℓ

L

)
≥ πℓ

L
cos

(
πℓ

L

)
.

Hölder’s theorem, in the form

4π2 =

(ˆ
1 · κ ds

)2
≤
ˆ

1 ds
ˆ

κ2 ds = L
ˆ

κ2 ds ,

then implies that

∂t φ ≤ 1
dℓ

(
4π2ℓ2

L2 − ℓ

ˆ y

x
κ2 ds

)
cos

(
πℓ

L

)
.

If we denote by ϑ the angle between Tx and Ty, then, since w bisects
Tx and Ty, (4.36) implies that

cos
(

πℓ

L

)
= Z cos

(
ϑ

2

)
at (x0, y0, t0). Since ξ 7→ cos ξ is monotone decreasing for ξ ∈ [0, π

2 ]

and, by hypothesis, Z(x0, y0, t0) < 1, we find that

ϑ >
2πℓ

L
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at (x0, y0, t0).
On the other hand, applying Hölder’s inequality similarly as above

we find that

ϑ2 =

(ˆ y

x
1 · κ ds

)2
≤
ˆ y

x
1 ds
ˆ y

x
κ2 ds = ℓ

ˆ y

x
κ2 ds .

We conclude that
d
dt

φ ≤ 0

at (x0, y0, t0), which establishes the first claim.
To prove the second claim, it suffices to establish that

C(Γt)− C(Γ0)− ε(1 + t) ≤ 0

for all t ∈ [0, T) for any ε > 0. Note that the inequality holds strictly
at time t = 0 for any positive ε. Suppose then that some ε > 0 and
t0 ∈ (0, T) can be found such that

C(Γt)− C(Γ0)− ε(1 + t) ≤ 0

for all t ≤ t0, but with equality at time t = t0. But then the function

φ(t) ≑ C(Γ0) + ε(1 + t)

is an upper support for C at time t = t0, and hence

0 ≥ d
dt

φ = ε > 0,

which is absurd.

4.5.3 The isoperimetric estimate

Define the relative isoperimetric constant of a regular30 Jordan 30 Of class at least C1.

curve Γ = ∂Ω, Ω ⊂
open

R2, to be

I(Γ) ≑ inf
Λ

relength(Λ) ,

where the infimum is taken over all separating arcs Λ—simple,
regular embeddings of [0, 1] into Ω with boundary on Γ = ∂Ω and
interior in Ω which separate Ω into two regions31, Ω1 and Ω2—and 31 Necessarily, by the Schoenflies theo-

rem.the relative length of a separating arc Λ is defined by

relength(Λ) =
length(Λ)

length(Λ)
,

where the comparison arc, Λ, is the (unique up to rigid motion)
shortest arc which separates the disc Ω of the same area as Ω into
regions Ω1 and Ω2 of the same areas as Ω1 and Ω2, respectively.



curve shortening flow 87

Obviously, the relative isoperimetric constant of a round circle is
one. Moreover, since

relength(Λ) → 1 as length(Λ) → 0,

relative isoperimetric constant cannot exceed one on any regular Jor-
dan curve Γ. In fact, I(Γ) < 1 unless Γ is a round circle.

Hamilton proved that the relative isoperimetric constant of a regular
Jordan curve does not decrease under curve shortening flow.32

32 Richard S. Hamilton, “Isoperimetric
estimates for the curve shrinking flow in
the plane”.

Figure 4.8: Given an arc, Λ, separating Ω
into regions, Ω1 and Ω2, the comparison
arc, Λ, is the shortest arc separating the
disc of the same area as Ω into regions
Ω1 and Ω2 of the same areas as Ω1 and
Ω2, respectively.

Proposition 4.18. Along any curve shortening flow γ : M1 × [0, T) → R2

of simple, closed, planar curves Γt = γ(M1, t),

d
dt

I(Γt) ≥ 0

in the viscosity sense33 whenever I(Γt) < 1. In particular, 33 This is a weak formulation of the dif-
ferential inequality du

dt ≥ 0 which ap-
plies to any continuous function. It as-
serts, for every t0 ∈ (0, T), that every
smooth function φ : [0, T) → R which
touches u from below at t0, in the sense
that u ≤ φ for t in a backward neigh-
bourhood (t0 − δ, t0] of t0 with equality
at t0, satisfies dφ

dt (t0) ≥ 0.

I(Γt) ≥ I(Γ0)

for all t ∈ [0, T).34

34 A sharp version of this estimate was
established by Andrews and Bryan, “A
comparison theorem for the isoperimet-
ric profile under curve-shortening flow”,
sharp enough indeed to establish di-
rect control and on the geometry of the
evolving curves as the maximal time is
approached.

Sketch of the proof. First note that, given any separating arc Λ for a do-
main Ω, the first variation formula for the length of a separating arc in
the comparison domain Ω, subject to the area constraint, guarantees
that any comparison arc Λ has constant curvature and meets the circle
∂Ω orthogonally.

Now, if I(Γ) < 1, then (since relength(Λ) → 1 as length(Λ) →
0) a minimizing sequence of separating arcs Λj (i.e. relength(Λj) →
I(Γ)) will have lengths bounded uniformly from below. It is then
possible to extract a suitable weak limit arc, Λ. Though this limiting
arc may not be smooth a priori, the vanishing of the first variation of
the relative length at Λ ensures that Λ has constant curvature and
meets the boundary Γ = ∂Ω orthogonally in the corresponding weak
sense, which guarantees that it is smooth (and connected, else a better
constant is given by one of the components).

Vanishing of the first variation of relength at Λ also yields

k
L
=

k
L

,
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where k and k are the (constant) curvatures of Λ and Λ, respectively,
and L and L are the lengths of Λ and Λ, respectively.

The nonnegativity of the second variation of the relative length at
the minimizing arc guarantees that

λ ≤ λ and
K
k
≤ K

k
,

where λ and λ are the total turning angles of Λ and Λ, respectively,
and K and K are the respective averages of the curvatures of the bound-
aries ∂Ω and ∂Ω at the boundary points of Λ and Λ.

Now suppose that the boundaries {Γt = ∂Ωt}t∈[0,T) evolve by curve
shortening. Given t0 ∈ (0, T), if I(Γt0) < 1, then we can find some
minimizing arc, Λt0 , as above. Given any variation {Λt}t∈(t0−δ,t0]

of
Λt0 , the inequality relength(Λt) ≥ I(Γt) holds for t ∈ (t0 − δ, t0], with
equality at time t0. Thus, if φ is a lower support for I(Γt) at time t0,
then φ(t) ≤ relength(Λt) with equality at time t0, and hence, at time
t0,

d
dt

φ ≥ d
dt

relength(Λt) .

If we construct the variation so that35 35 This boundary value problem is
known as the free boundary curve

shortening flow. Note that we only
require it to hold at time t = t0, however.
(So we do not need to solve a backwards
heat equation to arrange it!)

{
∂tγΛt = − κΛt NΛt in the interior of Λt

NΛt ·NΓt = 0 at ∂Λt

at time t = t0, then it can be shown that

d
dt

log relength(Λt) =
d
dt length(Λt)

length(Λt)
−

d
dt length(Λt)

length(Λt)

= − 2

(
K + kλ

L
− K + kλ

L

)

= − 2

[
k
L

(
K
k
+ λ

)
− k

L

(
K
k
+ λ

)]
at t = t0, which is nonpositive due to the second variation inequalities
for the relative length described above. This establishes the first claim.

To prove the second claim, it suffices to establish that

I(Γt)− I(Γ0) + ε(1 + t) ≥ 0

for all t ∈ [0, T) for any ε > 0. Note that the inequality holds strictly
at time t = 0 for any positive ε. Suppose then that some ε > 0 and
t0 ∈ (0, T) can be found such that

I(Γt)− I(Γ0) + ε(1 + t) ≥ 0

for all t ≤ t0, but with equality at time t = t0. But then the function

φ(t) ≑ I(Γ0)− ε(1 + t)
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is a lower support for I at time t = t0, and hence

0 ≤ d
dt

φ = −ε < 0,

which is absurd.

4.6 Uniformization of Jordan curves by curve shortening flow

We now have in place all of the ingredients needed to prove that
regular Jordan curves shrink to round points under curve shortening
flow.36 36 In fact, the tools we have established

provide a great many routes to this the-
orem; here, we outline just one.

4.6.1 Deforming convex curves to round points

We consider first the case of convex initial curves.37 37 It suffices to consider smooth, locally
uniformly convex initial data, as the es-
timate of Proposition 2.25 guarantees,
by an approximation argument, that the
boundary of any bounded, convex set
can be evolved continuously by curve
shortening flow, becoming immediately
smooth and locally uniformly convex at
positive times.
38 Gage and R. S. Hamilton, “The heat
equation shrinking convex plane curves”

Theorem 4.19 (Gage–Hamilton38). Given any convex, locally uniformly
convex curve γ0 : M1 → R2, M1 ∼= S1, the maximal curve shortening flow
γ : M1 × [0, T) → R2 starting at γ0 deforms γ0 through a family of convex
curves, γt : M1 → R2, which converge to a point p ∈ R2 after a finite time
T, with

γt − p√
2(T − t)

→ γ as t → T

uniformly in the smooth topology, where γ is an embedding whose image is
the unit circle.39 39 Observe that, in contrast to the proof

of Huisken’s theorem (Theorem 3.13),
the argument presented here does not
provide a rate of convergence of the
rescaled curves to the shrinking circle.
This may be remedied by a stability ar-
gument; see Exercise 4.8.

Sketch of the proof. We have already seen that convexity is preserved40

40 This may be viewed as a consequence
of Proposition 2.9 and Corollary 2.15. It
is also a consequence of uniqueness of
solutions and the continued existence of
a solution to the pde (4.8) for the support
function whilever |κ| < ∞.

and that T < ∞ (Proposition 2.6), so that (by Theorem 2.19)

lim sup
t→T

max
M1×{t}

|κ| = ∞ .

We shall perform a “blow-up” at the final time to establish the claims.
To that end, choose a sequence of times tj → T and points xj ∈ M1

such that
κ(xj, tj) = max

M1×[0,tj ]
κ

and consider the rescaled curve shortening flows γj : M1 × Ij → R2

defined by

γj(x, t) ≑ r−1
j
(
γ(x, r2

j t + tj)− γ(xj, tj)
)

, Ij ≑ [−r−2
j tj, r−2

j (T − tj)) ,

where r−1
j ≑ κ(xj, tj). Passing to a subsequence, we may arrange that

r−2
j (T − tj) → ω ∈ [0, ∞] as j → ∞. In fact, ω > 0 since (by ap-

plying the ode comparison principle to the evolution equation for
κ) maxM1×{t} κ ≥ 1√

2(T−t)
. By construction, the curvature κj of the
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rescaled flow is bounded by 1 for times t ≤ 0, with equality at the
origin at time zero. Since this ensures, by the exterior noncollaps-
ing estimate (Proposition 4.16) and the scale invariance of rκ, that the
exscribed radius at the spacetime origin is bounded, we can now de-
duce from the Bernstein estimates (Proposition 2.18) and the Arzelà–
Ascoli Theorem that some subsequence of these rescaled flows con-
verges uniformly in the smooth sense to a limit ancient curve shorten-
ing flow, γ∞ : M1 × (−∞, 0] → R2.

Next, we observe that the Firey entropy41, F , is constant on the 41 Alternatively, we could invoke the
Gage–Hamilton entropy and Proposition
4.1 here.

limit flow. Indeed, since F is nonincreasing on the original flow, it
must take a limit as t → T. Now, since F is scale invariant, we have,
for any a < b ∈ (−∞, 0],

F j(b)−F j(a) = F (r2
j b + tj)−F (r2

j a + tj)

for all j sufficiently large. But both r2
j a + tj and r2

j a + tj tend to T as
j → ∞, so the right hand side tends to zero, and we conclude that F

is indeed constant on the limit flow.
It follows from Proposition 4.2 that the limit is a self-similarly shrink-

ing solution, which must be the shrinking circle by Theorem 4.8. We
conclude that the flow does indeed approach a shrinking circle af-
ter rescaling by the maximum of the curvature, at least along some
sequence of times tj → T (and after performing some sequence of
translations). Note that we must then have κ ∼ 1/

√
2(T − t) since

min κ ≤ 1/
√

2(T − t) ≤ max κ. At this point, the full statement of
the theorem may be established via a series of bootstrapping argu-
ments.

Corollary 4.20. The shrinking spheres and the static lines are the only con-
vex ancient curve shortening flows which are noncollapsing.

Sketch of the proof. Let {Γt}t∈(−∞,ω), Γt = ∂Ωt, (without loss of gen-
erality, ω ∈ {0, ∞}) be a noncollapsing convex ancient curve short-
ening flow and consider the rescaled flows {Γλ

t }t∈(−∞,0) defined by
Γλ

t ≑ λΓλ−2t. By the local curvature estimate of Proposition 2.25 and
the interior noncollapsing hypothesis, the rescaled flows converge to
a limit ancient flow {Γ∞

t }t∈(−∞,0), Γ∞
t = ∂Ω∞

t , along some sequence
of scales λj ↘ 0. By Huisken’s monotonicity formula42 and the fact 42 It is not obvious that Huisken’s mono-

tonicity formula can be legitimately ap-
plied when the flow is noncompact; but
it can (at least when the flow is convex).

that the Gaussian length is uniformly bounded on the space of con-
vex curves, the Huisken functional is constant on {Γ∞

t }t∈(−∞,0), which
must therefore be a self-similarly shrinking solution (by the rigidity
case of Huisken’s monotonicity formula) and hence either a static line
or the shrinking circle, by Theorem 4.8. Now, if {Γ∞

t }t∈(−∞,0) is a
static line, then the Huisken functional must be constant. Indeed, tak-
ing the limit as λ → ∞ of {λ(Γλ−2t+t0

− p0)}t∈(−∞,0] for any t0 < ω

and p0 ∈ Γt0 yields a static line. The claim follows since the Huisken
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functional is monotone and invariant under spacetime translation and
parabolic scaling.

We conclude that {Γt}t∈(−∞,ω) is a self-similarly shrinking solution,
and hence a static line. Similarly, if {Γ∞

t }t∈(−∞,0) is a shrinking cirlce,
then {Γt}t∈(−∞,ω) must also be a shrinking circle, since by the Gage–
Hamilton theorem we obtain the shrinking circle after blowing up at
the final time.

4.6.2 Deforming regular Jordan curves to round points

Using the Gage–Hamilton theorem (via Corollary 4.20), we may now
prove convergence to a round point for the curve shortening flow of
any (sufficiently regular) simple closed curve.

43 Grayson, “The heat equation shrinks
embedded plane curves to round
points.”

Theorem 4.21 (Grayson43). Given any simple, closed curve γ0 : M1 → R2,
the maximal curve shortening flow γ : M1 × [0, T) → R2 starting at γ0

deforms γ0 through a family of simple closed curves, γt : M1 → R2, which
converge to a point, p ∈ R2, after a finite time T, with

γt − p√
2(T − t)

→ γ as t → T

uniformly in the smooth topology, where γ is an embedding whose image is
the unit circle.

Sketch of the proof. We have already seen that embeddedness is pre-
served (Proposition 2.9) and that T < ∞ (Proposition 2.6), so that (by
Theorem 2.19)

lim sup
t→T

max
M1×{t}

|κ| = ∞ .

We shall perform a “blow-up” at the final time to establish the claims.
Recall that (by the ode comparison principle) maxM1×{t} |κ| ≥ 1√

2(T−t)
.

Assume first that maxM1×{t} |κ| ≤ C√
2(T−t)

(the expected rate of

blow-up). Given any sequence of times tj ↗ T, choose points xj ∈ M1

such that

r−1
j ≑ max

M1×{tj}
|κ| = |κ(xj, tj)|

and consider the rescaled curve shortening flows γj : M1 × Ij → R2

defined by

γj(x, t) ≑ r−1
j
(
γ(x, r2

j t + tj)− γ(xj, tj)
)

, Ij ≑ [−r−2
j tj, r−2

j (T − tj)) .

Passing to a subsequence, we may arrange that r−2
j (T − tj) → ω ∈

(0, ∞) as j → ∞. Observe that the curvature κj of the rescaled flow
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satisfies

|κj(x, t)| = |rjκ(x, r2
j t + tj)|

≤
Crj√

T − tj − r2
j t

=
C√

r−2
j (T − tj)− t

→ C√
ω − t

as j → ∞ .

Thus, by Theorem 2.22, some subsequence of these rescaled flows con-
verges locally uniformly in the smooth sense to an ancient limit curve
shortening flow, γ∞ : M1

∞ × (−∞, 1) → R2.
We claim that the limit flow is convex. To see this, observe that

the total curvature K (t) is constant in the limit. Indeed, since K

is positive and nonincreasing, it must take a limit as t → T (on the
original flow). But then, since K is scale invariant,

K j(b)−K j(a) = K (r2
j b + tj)−K (r2

j a + tj)

for any a, b ∈ (−∞, ω) on the rescaled flows (for j sufficiently large).
But both r2

j a + tj and r2
j b + tj tend to T as j → ∞. So the right hand

side tends to zero, and we conclude that K is indeed constant. But
then Lemma 4.6 implies that the limit flow has nonnegative curvature,
and hence strictly positive curvature by the strong maximum principle.
Since the turning angle is equal to 2π, we conclude that the limit flow
is indeed convex.

Since Proposition 4.17
44 ensures that the limit flow is noncollapsing, 44 Or, alternatively, Proposition 4.18.

we may now conclude from Corollary 4.20 that it is the shrinking circle.
It follows that the flow does indeed approach a shrinking circle after
rescaling by r(t) ≑

√
T − t, at least along some sequence of times

tj → T (and after performing some sequence of translations). At this
point, the full statement of the theorem may be established via a series
of bootstrapping arguments.

We have not yet proved that that |κ|
√

T − t remains bounded. Sup-
pose then that, to the contrary,

lim sup
t↗T

max
M1×{t}

|κ|
√

T − t = ∞ .

For each j, choose (xj, tj) ∈ M1 × [0, T) so that

(T − j−1 − tj)|κ|(xj, tj) = max
M1×[0,T−j−1]

(T − j−1 − t)|κ|

and set r−2
j ≑ |κ|(xj, tj). Consider the rescaled flows γj : M1 × [αj, ωj) →
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R2 defined by

γj(x, t) ≑ r−1
j
(
γ(x, r2

j t + tj)− γ(xj, tj)
)

,

[αj, ωj) ≑
[
− r−2

j tj, r−2
j (T − j−1 − tj)

)
.

Figure 4.9: Flip the pages to test
Grayson’s theorem! (Code by Anthony
Carapetis, Curve shortening demo. Ex-
plore further at a.carapetis.com/csf.)

Observe in this case that

αj → −∞, ωj → ∞ ,

and

|κj(x, t)|2 = |r1
j κ(x, r2

j t + tj)|2 ≤
T − j−1 − tj

T − j−1 − r2
j t + tj

=
ωj

ωj − t
,

which is uniformly bounded on any compact time interval for j suffi-
ciently large. Thus, by Theorem 2.22, some subsequence of the pointed,
rescaled flows γj : M1 × [αj, ωj) → R2 must converge to an eternal
limit flow γ∞ : M1

∞ × (−∞, ∞) → R2. The above argument implies
that this limit is convex. Since it has bounded curvature on compact
time intervals, it satisfies the differential Harnack inequality. But, by
construction,

κ ≤ lim sup
j→∞

ωj

ωj − t
= 1 = κ(x∞, 0) .

Thus, at (x∞, 0), ∂tκ = 0 and ∇κ = 0, so the rigidity case of the differ-
ential Harnack inequality implies that the limit flow is a self-similarly
translating solution, which must therefore be the Grim Reaper by The-
orem 1.1 and the curvature normalization at (x∞, 0). But the Grim
Reaper violates the (scale invariant) lower bound for the relative isoperi-
metric constant45 (which passes to the limit as it is scale invariant and 45 Or, alternatively, the chord-arc con-

stant.lower semi-continuous under local uniform convergence). This com-
pletes the proof.

4.7 Exercises

Exercise 4.1. Let γ : θ(M1) → R2 be the turning angle parametrization
for a convex, locally uniformly convex planar curve Γ = ∂Ω.

(a) Show that γ ·N = σ.

(b) Deduce that γ · T = σθ .

(c) Conclude that γ = σN+σθ T.

Exercise 4.2. Let γ : M1 → R2 be a shrinker; i.e.

κ⃗ = 1
2 γ⊥ .

Suppose that κ⃗ = 0 at some point x0 ∈ M1; set p ≑ γ(x0) and v ≑
T(x0).

http://a.carapetis.com/csf
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(a) Show that the curve β : R → R2 defined by

β(y) ≑ p0 + (y − y0)v

satisfies |β′| ≡ 1 and{
κ⃗ = 1

2 β⊥

(β(y0), β′(y0)) = (p, v) .

(b) Deduce that γ(M1) ⊂ β(R). In particular, if M1 is connected and
γ is proper, then β is an arclength parametrization of γ.

(c) Conclude that every proper connected shrinker is either a straight
line through the origin or locally uniformly convex.

(d) Prove that the same claim is true for expanders.

Exercise 4.3. Let γ : M1 → R2 be an expander; i.e.

κ⃗ = − 1
2 γ⊥ .

Suppose that M1 is connected and γ is proper.

(a) Show that M1 ∼= R.

(b) Show that γ is an embedding.

Hint: both parts may be established using the first variation of enclosed area
under curve shortening flow.

Exercise 4.4. Let γ(M1) = Γ = ∂Ω be an embedded self-similar curve.

(a) Show that {
div V = λ in Ω

V ·N = κ on ∂Ω .
(4.39)

or, in the gradient case,{
∆ f = λ in Ω

DN f = κ on ∂Ω .
(4.40)

(b) In case Ω is bounded, deduce that λ = 2π
area(Ω)

.

Exercise 4.5. Given a gradient self-similar curve γ : M1 → R2, with
potential function f , set φ ≑ γ∗ f . Prove the following identities.

(a) V⊤ = ∇φ.

(b) ∇κ = κ∇φ.

(c) ∆φ = λ
2 − κ2 (and hence λ

2 length(γ) =
´

M1 κ2 ds if M1 is compact).
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(d) 1
2∇
(
κ2 + |∇φ|2 − λφ

)
= 0.

Deduce that, on the corresponding self-similar solution to curve short-
ening flow,

(e) ∂t φ = |∇φ|2.

(f) (∂t + ∆)φ + κ2 = |∇φ|2 + 1
−2t .

(g) (∂t + ∆ − κ2)ψ = 0, where ψ ≑ 1√
−2t

e−φ.

Exercise 4.6. Show that, for any embedded curve Γ,

lim
y→x

2(x − y) ·N(x)
|x − y|2 = κ(x) .

Exercise 4.7. Deduce from Propositions 4.15 and 4.16 that, along any
convex curve shortening flow γ : M1 × [0, T) → R2, M1 ∼= S1,

ρ±(t) ∼
√

2(T − t) and κ ∼ 1√
2(T − t)

as t → T, where ρ−(t) resp. ρ+(t) is the inradius resp. circumradius of
Γt = γ(M1, t) (the radius of the largest disc enclosed by resp. smallest
disc enclosing Γt).46 46 This gives a slightly different route

to the Gage–Hamilton theorem than the
one we presented.Exercise 4.8. Let {Γ̃t̃}t̃∈[0,T) be a maximal curve shortening flow of

simple, closed, planar curves Γ̃t̃ = ∂Ω̃t̃. According to Theorem 4.21, Γ̃t̃
becomes convex after some time t̃0 ∈ [0, T), and shrinks to a point p0 ∈
R2 as t̃ → T with circular asymptotic shape. Consider the rescaled

flow {Γt = ∂Ωt}t∈[− 1
2 log(2T),∞) defined by

Γt = et(Γt̃ − p0
)

, e−2t = 2(T − t̃) .

(a) (i) Show that, for t ≥ t0 ≑ − 1
2 log(2(T − t̃0)), the support func-

tion σ of the rescaled flow satisfies

∂tσ = F(σ) ≑ σ − (σθθ + σ)−1 .

(ii) Show that the linearization of F about the unit circle is given
by

DF|1v = vθθ + 2v .

(iii) Deduce that

d
dt

ˆ 2π

0
(σ − 1)2 dθ ≤ 2

ˆ 2π

0
(σ − 1)

(
(σ − 1)θθ + 2(σ − 1)

)
dθ

+ C|σ − 1|L2 |σ − 1|2C2 .

(iv) “Solve” the linearized equation

∂tv = vθθ + 2v .

with 2π-periodic boundary condition by separating variables.
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(b) (i) Show that enclosed area is constant under the rescaled flow.

(ii) Show that the enclosed area is given by

area(Ωt) = area(σ) ≑
ˆ 2π

0
σ(σθθ + σ)dθ .

(iii) Show that the linearization of area about the unit circle is
given by

D area |1v = 2
ˆ 2π

0
vdθ .

(iv) Deduce that
ˆ 2π

0
(σ − 1)dθ ≤ C|σ − 1|2C2 .

(c) (i) Show that the centre of mass, q(Ωt) ≑
´

Ωt
X dX, is always

located at the origin under the rescaled flow.

(ii) Show that q is given by

q(Ωt) = q(σ) ≑
1
3

ˆ 2π

0
(σ sin θ,−σ cos θ)θσ(σθθ + σ)dθ .

(iii) Show that the linearization of q about the unit circle is given
by

Dq|1v =
1
3

ˆ 2π

0
v(cos θ, sin θ)dθ .

(iv) Deduce that∣∣∣∣∣
ˆ 2π

0
(cos θ, sin θ)(σ − 1)dθ

∣∣∣∣∣ ≤ C|σ − 1|2C2 .

(d) Writing σ− 1 = 1
2 A0(t)+∑∞

j=1
(

Aj(t) cos(jθ) + Bj(t) sin(jθ)
)
, show

that
ˆ 2π

0
(σ− 1)

[
(σ− 1)θθ + 2(σ− 1)

]
dθ ≤ C

(
A2

0 + A2
1 + B2

1

)
− 2|σ− 1|2L2 .

(e) Deduce that

d
dt
|σ − 1|2L2 ≤ C|σ − 1|4C2 − 2|σ − 1|2L2 .

(f) Using interpolation, estimate

|σ − 1|4C2 ≤ Cδ|σ − 1|4−δ
L2

for some δ ∈ (0, 2).

(g) Conclude that |σ − 1|2L2 decays exponentially once it becomes suf-
ficiently small.
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Singularities and their analysis

We have seen that finite time singularities will necessarily occur under Time is sick
Critical density
Contraction
Singularity
Everything and nothing
Life and death
– King Gizzard & The Lizard
Wizard, “Murder of the Uni-
verse”

mean curvature flow on a compact hypersurface. In one space dimen-
sion, or in higher dimensions when the initial hypersurface is convex,
we were able to deal with finite time singularities by “blowing up”
and classifying the possible blow-up limits. As a result, we saw that
the mean curvature flow deforms any simple closed curve, or any con-
vex hypersurface, to a round point. One could therefore be forgiven
for hoping that mean curvature flow might deform any (not necessar-
ily convex) embedding of a sphere to a round point. This turns out to
be a little optimistic, however.

1 Such examples appear to have first
been described by Hamilton.

Figure 5.1: A “barbell” configuration. If
the “bar” is sufficiently thin compared
to the “bells”, then it will “pinch off”
before the enclosed spheres contract to
points.

Example 6 (A “neckpinch” singularity1). Consider an embedding of
S2 into R3 which looks like two large, disjoint round spheres which
are far apart but smoothly connected by a long, thin “neck” (as in Fig-
ure 5.1, say). This is a very flexible configuration, and it can certainly
be arranged that the neck passes through the “hole” in Angenent’s
doughnut (see Example 4) while the spherical components each en-
close very large spheres on each side (of radius 100, say). Since An-
genent’s doughnut contracts to the origin under mean curvature flow
after time one, while the radii of the enclosed spheres remain positive
at this time under the flow, the hypersurface must become singular at
some earlier time, in accordance with the avoidance principle. ■

Figure 5.2: An asymmetric barbell con-
figuration. If one of the bells is suffi-
ciently small, it will “pass through” the
bar before it pinches off. There is a
critical configuration at which the bar
pinches off just as the smaller bell is
passing through it.

Example 7 (A “degenerate neckpinch” singularity). In the above exam-
ple, we could imagine a continuous deformation of the initial surface
which shrinks one of the spherical components down to a radius com-
parable to the neck radius (as in Figure 5.2, say). In this configuration,
the small enclosed sphere is no longer a barrier, and it is not unreason-
able to expect that the small spherical component of the initial surface
is able to contract quickly enough to slip through the neck before the
shrinking doughnut pinches it, the solution thereafter becoming con-
vex and shrinking to a round point according to Huisken’s theorem.
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But then there must be a critical stage in the deformation such that
for smaller deformations a neckpinch forms, while for larger defor-
mations there is no neckpinch. Somehow, at the critical deformation,
the smaller spherical component attempts a run through the neck, but
gets caught just as it is about to emerge from the other side. (A rigor-
ous construction of such solutions was undertaken by Angenent and
Velázquez.2) ■ 2 S. B. Angenent and Velázquez, “De-

generate neckpinches in mean curvature
flow”.
3 S. Altschuler, Sigurd B. Angenent, and
Giga, “Mean curvature flow through sin-
gularities for surfaces of rotation”.

Example 8 (A “doubly degenerate neckpinch” singularity3). Imagine
now performing this deformation in a symmetric manner, so that both
bells get caught in the neck as it collapses. In this configuration, the
hypersurface does indeed shrink to a point at the singular time, T, but
its asymptotic shape cannot be that of a round sphere: for at each time
t < T, the hypersurface is nonconvex, so the pinching ratio inf κ1/κn

can be no better than zero at the singular time. ■

These examples demonstrate that singularities can potentially be
quite complicated in dimensions n ≥ 2, even in the absence of topol-
ogy. On the other hand, at a neckpinch singularity, most of the hyper-
surface remains “non-singular” and the flow appears to be performing
the opposite of a connected sum. This begs the question, “Can the flow
be continued after a singularity, while keeping track of any topologi-
cal changes at singular times?” Rather than attempting a comprehen-
sive answer to this (very difficult) question, we shall merely present
some basic results and tools which suggest that singularities are in-
deed somewhat “tamable”, at least in certain special settings.

We begin by noting the following immediate corollary of Theorem
9.19, which demonstrates the importance of ancient

4 mean curvature 4 I.e. having an infinite past.

flows in the analysis of singularities.

Lemma 5.1. Let X : Mn × [0, T) → Rn+1 be a mean curvature flow with
T < ∞ and {(xk, tk)}k∈N a sequence of spacetime points (xk, tk) ∈ Mn ×
[0, T) with tk → T. Suppose that

1. r−2
k ≑ |II(xk ,tk)

| → ∞ as k → ∞; and

2. for every A < ∞ some C < ∞ can be found such that X is properly defined
in Bn+1

Ark
(xk, tk)× (tk − A2r2

k , tk], and

sup
Bn+1

Ark
(xk ,tk)×(tk−A2r2

k ,tk ]

|II| ≤ Cr−2
k

for every k.

For each k, define the rescaled mean curvature flow Xk : Mn × Ik → Rn+1

by

Xk(x, t) ≑ r−1
k

(
X(x, r2

k t + tk)− X(xk, tk)
)

, Ik ≑ [−r−2
k tk, r−2

k (T− tk)) .
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There exists a complete ancient pointed mean curvature flow X∞ : Mn
∞ ×

(−∞, ω) → Rn+1, x∞ ∈ Mn
∞ such that, after passing to a subsequence, the

pointed rescaled mean curvature flows (Xk, xk) converge locally uniformly
in the smooth topology to (X∞, x∞). That is, there exists an exhaustion
{Uk}k∈N of M∞ by precompact open sets Uk satisfying Uk ⊂ Uk+1 and a
sequence of diffeomorphisms ϕk : Uk → M with ϕk(x∞) = xk such that
ϕ∗

k Xk → X∞ uniformly in the smooth topology on any compact subset of
M∞ × (−∞, 0].

5.1 Curvature pinching improves

We have seen that curvature pinching improves at the onset of sin-
gularities under mean curvature flow of convex hypersurfaces.5 This 5 Recall Proposition 3.6.

turns out to be a special case of a more general phenomenon.

5.1.1 Convexity estimate

Recall (from Corollary 2.15) that, in accordance with the maximum
principle, mean convexity, H ≥ 0, is preserved under mean curva-
ture flow on a compact hypersurface (with strict inequality at interior
times). We also proved, using the tensor maximum principle, that the
tensor inequality II ≥ α H g is preserved when α > 0 (Proposition 3.4).
By exactly the same argument, this inequality is also preserved for
negative pinching constants.

Proposition 5.2 (Scale invariant lower bounds for the curvature are
preserved). Let X : Mn × [0, T) → Rn+1 be a compact, strictly mean
convex mean curvature flow. There exists α ∈ R such that

II ≥ αHg

at all times.

We will show that this inequality actually improves at the onset of
singularities (cf. the “improvement of roundness” of Proposition 3.6).

6 Huisken and Sinestrari, “Mean curva-
ture flow singularities for mean convex
surfaces”

Proposition 5.3 (Convexity improves6). Let X : Mn × [0, T) → Rn+1 be
a compact, strictly mean convex mean curvature flow. Given any ε > 0, there
exists Cε = C(n, X0, ε) < ∞ such that

κ1 ≥ −ε H−Cε

at all times.

This “improvement of convexity” ensures that singularities in mean
convex mean curvature flow of compact hypersurfaces are weakly con-
vex, at least in the sense that, along any sequence of points (xj, tj) at
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which H(xj, tj) → ∞,

κ1

H
(xj, tj) ≥ −ε − Cε

H(xj, tj)
for any ε > 0,

and hence lim infj→∞
κ1
H (xj, tj) ≥ 0.

Sketch of the proof of Proposition 5.3. The proof follows the framework
of Huisken’s improvement of roundness estimate (Proposition 3.6).
The first step is to establish an evolution equation for a suitable “pinch-
ing function”. We consider first the smallest principal curvature, which—
even though it is not necessarily smooth—satisfies

(∂t − ∆)κ1 ≥ |II|2κ1 (5.1)

in the distributional sense.7,8 7 This is a weak formulation of the dif-
ferential inequality (∂t − ∆)u ≥ |II|2u
which applies to functions which are in-
tegrable in space and locally Lipschitz in
time. It asserts, for every nonnegative
φ ∈ C∞(M2 × (0, T)), that

d
dt

ˆ
uφ dµ

≤
ˆ [

|II|2uφ + u(∂t + ∆ − H2)φ
]
dµ

at almost every time.
8 The inequality (5.1) also holds in the
viscosity sense.

Next consider, for any ε ∈ (0, 1), the function

fε ≑ max {−κ1 − ε(2L H−|II|), 0} ,

where L is chosen so that |II| ≤ L H (which can be arranged with L de-
pending only on the initial condition since upper bounds for |II|2/ H2

are preserved). The purpose of using the term L H−|II| (instead of
simply H, say) is to get our hands on the good quadratic gradient of
curvature term in the inequality

(∂t − ∆) fε ≤ fε

(
|II|2 − γ

|∇II|2

H2

)
(5.2)

in the distributional sense, for some γ = γ(n, α, ε).
Our goal is now to bound the function

fε,σ ≑
fε

H
Hσ

for some σ ∈ (0, 1). To that end, we apply (5.2) and Young’s inequality
to estimate

(∂t − ∆) fε,σ ≤ fε,σ

(
σ|II|2 − γ

|∇II|2

H2 + γ−1 |∇ fε,σ|2

f 2
ε,σ

)
in the distributional sense9 for some γ = γ(n, α, ε) > 0 wherever fε > 9 Note that this is exactly the inequality

(3.4) we had for our pinching function in
the proof of the improvement of round-
ness estimate!

0. It follows that, for p ≥ p0(n, α, ε), the function v2 ≑ ( fε,σ)
p
+ satisfies

(∂t − ∆)v2 ≤ v2
(

σp|II|2 − γp
|∇II|2

H2

)
− 2|∇v|2 ,

from which we obtain10 10 This is exactly the form of (3.5).

d
dt

ˆ
v2 dµ +

ˆ
v2 H2 dµ ≤ σp

ˆ
v2|II| dµ

−
ˆ (

γpv2 |∇II|2

H2 + 2|∇v|2
)

dµ ,
(5.3)
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Integrating Simons’ identity by parts, similarly as in the proof of Claim
3.8, we may estimate

ˆ
|II|2v2 dµ ≤ δ

ˆ
|∇v|2 dµ + Cδ

ˆ
v2 |∇II|2

H2 dµ

for any δ > 0, where Cδ = Cδ(n, α, ε, δ), and thereby conclude that

d
dt

ˆ
v2 dµ ≤ 0,

so long as p ≥ p0(n, α, ε) and σp
1
2 ≤ σ0(n, α, ε).

Integrating this yields an L2 estimate for v, which can be boot-
strapped to an L∞ estimate (for some ultimately decided upon p < ∞
and σ > 0) via Huisken–Stampacchia iteration, more or less exactly as
in the proof of the improvement of roundness estimate.

The claim then follows by way of Young’s inequality.

5.1.2 Cylindrical estimates

There is also an interesting family of preserved local convexity con-
ditions which interpolate between local uniform convexity and mean
convexity. Given any m ∈ {1, . . . , n}, a hypersurface is said to be m-
convex if

κ1 + · · ·+ κm ≥ 0

at all points.

Proposition 5.4 (Intermediate local convexity is preserved). Let X :
Mn × [0, T) → Rn+1 be a mean curvature flow on a compact manifold Mn.
If the inequality κ1 + · · ·+ κm > 0 holds at time t = 0, then it holds for all
t ∈ [0, T).

Sketch of the proof. Since the sum, f ≑ κ1 + · · ·+ κm, of the smallest m
principal curvatures is a concave function of the principal curvatures,
it can be shown that

(∂t − ∆) f ≥ |II|2 f

in the viscosity sense. The claim is then a consequence of the maxi-
mum principle.

The tensor maximum guarantees that scale invariant upper bounds
for the second fundamental form are preserved.

Proposition 5.5 (Scale invariant upper bounds for the curvature are
preserved). Let X : Mn × [0, T) → Rn+1 be a compact, strictly mean
convex mean curvature flow. There exists C ∈ R such that

II ≤ CHg

at all times.
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Proof. This is a straightforward application of the tensor maximum
principle (cf. Proposition 3.4).

This inequality also improves at the onset of singularities.

11 Huisken and Sinestrari, “Mean curva-
ture flow with surgeries of two-convex
hypersurfaces”

Proposition 5.6 (Cylindrical estimates11). Let X : Mn × [0, T) → Rn+1

be a compact, strictly (m + 1)-convex mean convex mean curvature flow.
Given any ε > 0, there exists Cε = C(n, X0, ε) < ∞ such that

κn − 1
n−m H ≤ ε H+Cε

at all times.12 12 A natural question that might arise
from the statement of Proposition 5.6 is:
“Why the constant 1

n−m ?”. The inequal-
ity κn ≤ 1

n−m H describes the small-
est convex cone of principal curvatures
which contains the “cylindrical ray”,

Cm ≑
{
(0, . . . , 0︸ ︷︷ ︸

m-times

, r−1, . . . , r−1) : r > 0
}

.

This ray represents the principal curva-
ture n-tuple of a shrinking cylinder with
m flat factors, which provide an obstruc-
tion to the improvement of upper cur-
vature pinching (the pinching is constant
on these examples).

At the analytical level, the presence of
cylindrical points in the support of a
function u are an obstruction to estab-
lishing the Poincaré-like inequality
ˆ

u2|II|2 dµ

≤
ˆ (

δ|∇u|2 + Cδu2 |∇II|2

H2

)
dµ ,

which is a key element of the L2 estimate
for the modified pinching function.

On the other hand, the inequality κ1 +
· · ·+ κm+1 > 0 describes the largest con-
vex cone of principal curvatures which
does not contain the cylindrical ray Cm+1.
So Propositions 3.6, 5.3, and 5.6 suggest
that the shrinking cylinders (including
the shrinking sphere) are the obstruction
to improving curvature pinching.

Given m ∈ {0, . . . , n − 1}, the cylindrical estimate implies that sin-
gularities in (m + 1)-convex mean curvature flow of compact hyper-
surfaces are, in an asymptotic sense, either strictly m-convex, or “m-
cylindrical”. Indeed, the m-convexity estimate may be rewritten as

n

∑
j=m+1

(κn − κj)−
m

∑
j=1

κj ≤ ε H+Cε for any ε > 0.

Thus, along any sequence of points (xj, tj) at which H(xj, tj) → ∞,

n

∑
i=m+1

κn − κi
H

(xj, tj) ≤
m

∑
i=1

κi
H
(xj, tj) + o(1) as j → ∞ .

Since the left hand side is nonnegative, we find, in the limit13, that

13 We do not assume that the limiting
values of the ratios κi

H correspond to such
ratios of some limiting hypersurface.

∑m
i=1

κi
H ≥ 0 with strict inequality unless κm+1

H = · · · = κn
H and (by

improvement of convexity) 0 = κ1
H = · · · = κm

H .

Sketch of the proof of Proposition 5.6. Starting with the (distributional) in-
equality14

14 The inequality (5.4) also holds in the
viscosity sense.

(∂t − ∆)κn ≤ |II|2κn , (5.4)

the proof follows the framework of Propositions 3.6 and 5.3.

5.2 Self-similar solutions

Recall that a hypersurface X : Mn → Rn+1 generates a self-similar
mean curvature flow if

H⃗ + (X∗V)⊥ = 0 (5.5)

for some ambient vector field V of the form

V(x) = λ
2 x + Ax − v (5.6)

for some parameters15 λ ∈ R, A ∈ so(n + 1) and v ∈ Rn+1. 15 The parameter λ generates dilations,
while A generates rotations and v gen-
erates translations.

Observe that, when A = 0, we may express the soliton vector field
V as the gradient,

V = D f , (5.7)
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of a potential function f : Rn+1 → R, which is given (modulo an
additive constant) by

f (x) ≑ λ
4 |x|

2 − x · v . (5.8)

Taking the normal component, we may rewrite (5.5) as the scalar
equation

H = λ
2 X ·N+AX ·N−v ·N . (5.9)

Differentiating (5.5), we find that

∇H = II(V⊤)− AN . (5.10)

Differentiating (5.10) and applying (5.5) and (5.10) then yields

−∇2 H = −∇V⊤ II+H II2 − λ
2 II . (5.11)

In fact, the following converse holds.

Proposition 5.7. If a strictly mean convex convex hypersurface X : Mn →
Rn+1 satisfies (5.11) for some λ ∈ R, with V⊤ given by (5.10), then (5.5)
holds with V given by (5.6).

Proof. Consider the ambient vector field

U ≑ V⊤ − H⃗ − λ
2 X − AX .

Differentiating U and applying (5.10) and (5.13) yields

∇U = 0.

So U is constant along X, which implies the claim.

Applying Simons’ identity to (5.11), we obtain

−∆ II = −∇V⊤ II+|II|2 II− λ
2 II . (5.12)

Tracing either (5.11) or (5.12), yields

−∆ H = −∇V⊤ H+|II|2 H− λ
2 H . (5.13)

16 Huisken, “Asymptotic behavior for
singularities of the mean curvature
flow”
17 The conclusion of the theorem also
holds when the compactness hypothesis
is replaced by polynomial volume growth;
see Tobias H. Colding and Minicozzi,
“Generic mean curvature flow I: generic
singularities”, Theorem 10.1.

Theorem 5.8 (Huisken16; Colding–Minicozzi17). The shrinking spheres
are the only compact, embedded, mean convex, self-similarly shrinking mean
curvature flows.

Proof. We only need to consider the n ≥ 2 case, due to Theorem 4.8.
By applying the strong maximum principle to (5.13), we may assume
that H > 0. To that end, observe (cf. Proposition 3.5) that

−eX∗ f div
(

e−X∗ f∇|II|2

H2

)
= (∇V⊤ − ∆)

|II|2

H2

= ∇∇H
H

|II|2

H2 − 2
∣∣∣∣∇ II

H

∣∣∣∣2
≤ ∇∇H

H

|II|2

H2 .
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So the maximum principle implies that |II|2
H2 is constant, and hence (by

the above calculation)

0 ≡ ∇ II
H

=
1

H2 (H∇II −∇H ⊗ II) .

That is,
H∇II = ∇H ⊗ II (5.14a)

Tracing this, we find that

H∇H = II(∇H) . (5.14b)

Suppose first that there exists some point x at which ∇H(x) ̸= 0. By
(5.14b), ∇H is an eigenvector of II at x with eigenvalue H(x). The
Codazzi identity and (5.14a) then imply that

|∇H|2 II(u) = H∇∇HII(u) = H∇uII(∇H) = H∇uH∇H = 0

at x for any u ⊥ ∇H(x). So κi(x) = 0 for i = 1, . . . , n − 1 and κn(x) =

H(x). It follows that |II|2
H2 ≡ 1. Recalling the identity

div X⊤ = n − HX ·N ,

integrating (5.13) yields

0 = −
ˆ

∆ H dµ

= −
ˆ

∇ λ
2 X⊤H dµ +

ˆ (
H3 − λ

2 H
)

dµ

= λ
2

ˆ
div

(
X⊤)H dµ +

ˆ (
H3 − λ

2 H
)

dµ

= (n − 1) λ
2

ˆ
H dµ

> 0,

which is absurd.
We conclude that ∇H ≡ 0. The identity (5.13) then implies that

H2 ≡ λ
2 . We conclude from the Alexandrov theorem (or directly from

(5.14a)) that the shrinker is the round sphere of radius
√

2
λ .

Given a hypersurface X : Mn → Rn+1, consider the weighted area
functional

G(X) ≑
ˆ

Mn
e−X∗ f dµX , (5.15)

where f : Rn+1 → R is the gradient soliton potential (for some choice
of v ∈ R2 and λ ∈ R). The gradient soliton equation (5.5) (with
V = D f ) is the Euler–Lagrange equation for G.
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Proposition 5.9. If Mn is compact and {Xε : Mn → R}ε∈(−ε0,ε0)
is a

smooth variation of X = X0, then

d
dε

∣∣∣∣
ε=0

G(Xε) = −
ˆ

Mn
(H⃗ + X∗D f ) · F⃗ e−X∗ f dµX ,

where F⃗ is the variation field. Thus, X is a stationary point of G if and only
if it satisfies (5.5) with V = D f .

Proof. This as an easy consequence of the first variation formula for
the area element.

Consider now, for some shrinker X : Mn → Rn+1, the associ-
ated self-similarly shrinking mean curvature flow

√
−tϕ∗

log
√
−tX. This

mean curvature flow will satisfy

H⃗Xt +
λ(t)

2 X⊥
t = 0,

where λ(t) ≑ 1
−t . So the potential function (after adding a normalizing

constant) is given by

f (x, t) = λ(t) |x|
2

4 + n+1
2 log(4π) = |x|2

−4t +
n+1

2 log(4π) .

Observe that the density function

h ≑ λ
n+1

2 e− f = (−4πt)−
n+1

2 e−
|x|2
−4t

is then the fundamental solution to the ambient conjugate heat

equation
18 18 So named because a smooth function u

satisfies the heat equation in Ω× (a, b) ⊂
Rn+1 × R if and only if

ˆ b

a

ˆ
Ω

u(∂t − ∆)∗φ dL dt = 0

for every smooth function φ which is
compactly supported in Ω × (a, b).

(∂t − ∆)∗h = 0

on Rn+1, where
(∂t − ∆)∗ ≑ −(∂t + ∆)

is the conjugate heat operator.

5.3 The differential Harnack inequality

Observe that, by (5.10) and (5.13), a locally uniformly convex, self-
similarly expanding mean curvature flow must satisfy

∂tH
H

=
|∇H|2

H2 − 1
2t

,

while a locally uniformly convex, self-similarly translating mean cur-
vature flow must satisfy

∂tH
H

=
|∇H|2

H2 .
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19 Andrews, “Harnack inequalities for
evolving hypersurfaces”; Richard S.
Hamilton, “Harnack estimate for the
mean curvature flow”

Theorem 5.10 (Differential Harnack inequality19). Along any locally
uniformly convex mean curvature flow X : Mn × [0, T) → Rn+1, Mn com-
pact,

∂tH
H

− |∇H|2

H2 +
1
2t

≥ 0. (5.16)

Moreover, if (5.16) holds along a (not necessarily compact) proper, locally
uniformly convex mean curvature flow X : Mn × [0, T) → Rn+1, then
it holds with strict inequality, unless X : Mn × [0, T) → Rn+1 is a self-
similarly expanding solution.

Along any locally uniformly convex, ancient mean curvature flow X :
Mn × (−∞, T) → Rn+1, Mn compact,

∂tH
H

− |∇H|2

H2 ≥ 0. (5.17)

Moreover, if (5.17) holds along a (not necessarily compact) proper, locally uni-
formly convex, ancient mean curvature flow X : Mn × (−∞, T) → Rn+1,
then it holds with strict inequality, unless X : Mn × (−∞, T) → Rn+1 is a
self-similarly translating solution.

Sketch of the proof. Consider the functions

Q ≑ ∂t log H − |∇ log H|2 and P ≑ 2t(∂t log H − |∇ log H|2) + 1.

Note that P ≡ 0 if and only if X : Mn × I → Rn+1 is a self-similarly
expanding solution and Q ≡ 0 if and only if X : Mn × I → Rn+1 is a
self-similarly translating solution.

With respect to the Gauss map parametrization, these functions take a
simpler form:

Q = ∂t log H and P = 2t∂t log H + 1.

Using the identities
II−1 = ∇2σ + σI

(as a tensor on Sn of type (1, 1)) and

∂tσ = −H,

where σ : Sn × I → R is the support function of the solution, and ∇
and ∆ are the covariant derivative and Laplacian with respect to the
round metric, g, it is not difficult to derive the identities

∂tQ = ∆Q + 2g
(
∇ log H,∇Q

)
+ 2Q2 ,

and
∂tP = ∆P + 2g

(
∇ log H,∇P

)
+ 2QP .

Since P|t=0 = 1 > 0, the maximum principle implies that P ≥ 0
for positive times, which yields the first claim. The strong maximum
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principle then yields the second. The third and fourth follow by time-
translating the estimates for a sequence of times approaching minus
infinity.

Note that, by continuity, smooth (noncompact) limits of mean cur-
vature flows on compact manifolds satisfy the differential Harnack in-
equality. Hamilton’s argument also applies directly in the noncompact
case, so long as the solution has bounded curvature on compact time
intervals. As such,

Corollary 5.11. any eternal convex mean curvature flow which attains its
(spacetime) curvature maximum evolves by translation.

Corollary 5.12 ((Integral) Harnack inequality). Along any locally uni-
formly convex mean curvature flow X : Mn × [0, T) → Rn+1, Mn compact,

√
t2 H(x2, t2) ≥

√
t1 H(x1, t1)exp

(
d2(x1, x2, t1)

−4(t2 − t1)

)
for any x1, x2 ∈ Mn and any 0 < t1 < t2 < T.

Proof. Integrate the differential Harnack inequality (5.16) along space-
time geodesics (as in Corollary 4.13).

5.4 The monotonicity formula for Huisken’s functional

Given a mean curvature flow X : Mn × I → Rn+1, Mn compact, the
Huisken functional G is defined by

G (p0,t0)
(Mn, t) ≑

(
4π(t0 − t)

)− n
2

ˆ
Mn

e
|X(x,t)−p0 |2

4(t−t0) dµt(x) . (5.18)

Observe that this is simply (4π(t0 − t))−
n
2 times functional G from

Proposition 5.9 (in the shrinking case), evaluated along the mean cur-
vature flow. Observe that G is invariant under parabolic rescaling
about (p0, t0), and is thus constant in time along a self-similarly shrink-
ing mean curvature flow which is centred at (p0, t0).

Define the density

Ψ(p0,t0)
(x, t) ≑

(
4π(t0 − t)

)− n
2 e

|X(x,t)−p0 |2
4(t−t0)

=
√

4π(t0 − t)Φ(p0,t0)
(X(x, t), t) ,

where

Φ(p0,t0)
(p, t) ≑

(
4π(t0 − t)

)− n+1
2 e

|p−p0 |2
4(t−t0)

is the fundamental solution to the ambient conjugate heat equation
based at (x0, t0).
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20 Huisken, “Asymptotic behavior for
singularities of the mean curvature
flow”

Proposition 5.13 (Monotonicity formula for Huisken’s functional20).
Given any (p0, t0) ∈ R2 × R and any mean curvature flow X : Mn × I →
Rn+1, Mn compact21

21 By introducing suitable cut-off func-
tions, the compactness hypothesis on
Mn can be removed, so long as the
evolving immersions are proper, and
G (p0 ,t0)

(Mn, t) is finite for all t ∈ I; see
Ecker, Regularity theory for mean curva-
ture flow, Theorem 4.11. One impor-
tant situation in which these hypotheses
are guaranteed to hold arises when the
evolving hypereurfaces are convex; see
Bourni, Langford, and Tinaglia, “Con-
vex ancient solutions to mean curvature
flow”, Claim 2.2.2. A local version of the
monotonicity formula was established
by Ecker, “A local monotonicity formula
for mean curvature flow”.

d
dt

G (p0,t0)
(Mn, t) = −

ˆ
Mn

∣∣∣∣∣H⃗ +
(X − p0)

⊥

2(t0 − t)

∣∣∣∣∣
2

Ψ(p0,t0)
dµ (5.19)

for all t ∈ I ∩ (−∞, t0). In particular, G (p0,t0)
(Mn, t) is nonincreasing

over I ∩ (−∞, t0), and strictly decreases unless X is self-similarly shrinking
about22 (p0, t0).

22 I.e. the spacetime translated solution
X̃(x, t) ≑ X(x, t + t0) − p0 is a self-
similarly shrinking solution.

Proof. As in the two dimensional case (Proposition 4.14), the claim
follows from the pointwise identity

(∂t + ∆ − H2)Ψ(p0,t0)
= −

∣∣∣∣∣H⃗ +
(X − p0)

⊥

2(t0 − t)

∣∣∣∣∣
2

Ψ(p0,t0)
.

5.4.1 The local regularity theorem

Given (p, t) ∈ Rn+1 × R and r > 0 such that t − r2 ∈ I, the Gaußian

area ratio Θr(p, t) of a solution to mean curvature flow X : Mn ×
I → Rn+1 is defined by

Θr(p, t) ≑ G (p,t)(t − r2) =
(

4πr2
)− n

2
ˆ

Mn
e−

|X−p|2
4r2 dµt−r2 . (5.20)

By Huisken’s monotonicity formula (Proposition 5.13), Θr(p, t) is non-
decreasing in r when Mn is compact.

A simple calculation reveals that Θr(p, t) ≡ 1 on a stationary hy-
perplane solution passing through p. Conversely, the asymptotic

Gaußian area ratio

Θ(∞) ≑ lim
r→∞

Θr(0, 0)

of a proper ancient mean curvature flow is always at least one, with
equality only on a stationary hyperplane.23 23 White, “A local regularity theorem for

mean curvature flow”, Proposition 2.10.
24 ibid.Theorem 5.14 (Local regularity theorem24). Given n ∈ N, there exist

constants ε > 0 and C < ∞ with the following property: Let X : Mn × I →
Rn+1 be a smooth mean curvature flow of embedded hypersurfaces which is
properly defined in the spacetime cylinder Pr(p0, t0) ≑ Br(p0)× (t0 − r2, t0].
If

sup
(p,t)∈Pr(p0,t0)

Θr(p, t) < 1 + ε ,

where Θ is the Gaußian area ratio of X, then

sup
Pr/2(p0,t0)

|II| ≤ Cr−1 . (5.21)
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Proof. Observe that, by parabolically rescaling and translating in space
and time, it suffices to establish the claim when r = 1 and (p0, t0) =

(0, 0). Suppose then that the conclusion fails in this case for all ε > 0
and C < ∞. Then for each j ∈ N there must exist some smooth
mean curvature flow Xj : Mn

j × Ij → Rn+1 of embedded hypersurfaces
which is properly defined in P1(0, 0) and satisfies

sup
(p,t)∈P1(0,0)

(ΘXj)1(p, t) < 1 + j−1 ,

but admits a point (pj, tj) ∈ P1/2(0, 0) at which

|IIXj |(pj, tj) > j .

Following Haslhofer and Kleiner,25 we seek points (qj, sj) ∈ P3/4(0, 0) 25 Haslhofer and Kleiner, “Mean cur-
vature flow of mean convex hypersur-
faces”.

such that

λj ≑ |IIXj |(qj, sj) > j and sup
Pj/10λj

(qj ,sj)

|IIXj | ≤ 2λj . (5.22)

Now, if (q0
j , s0

j ) ≑ (pj, tj) already satisfies (5.22), then it is the point

we seek. Otherwise, there is a point (q1
j , s1

j ) ∈ Pj/10λ0
j
(q0

j , s0
j ) such that

λ1
j ≑ |IIXj |(q1

j , s1
j ) > 2λj. If (q1

j , s1
j ) satisfies (5.22), then it is the point

we seek. Otherwise, there is a point (q2
j , s2

j ) ∈ Pj/10λ1
j
(q1

j , s1
j ) such that

λ2
j ≑ |IIXj |(q1

j , s1
j ) > 2λ1

j , etc. Note that

1
2 + j

10λ0
j

(
1 + 1

2 + 1
4 + · · ·

)
< 3

4 .

Thus, since |IIXj | is finite in P1(0, 0), the iteration must terminate after
a finite number of steps and the final point of the iteration will lie in
P3/4(0, 0) (and satisfy (5.22)).

With our new sequence of points (qj, sj) in hand, consider the flows
X̂j : Mn

j × Îj → Rn+1 obtained by shifting qj to the origin and parabol-
ically rescaling by λj. This new sequence satisfies |IIX̂j

|(0, 0) = 1 and

supPj/10(0,0) |IIX̂j
| ≤ 2. Thus, by Theorem 2.22, we can pass smoothly to

a proper ancient limit flow satisfying

|II|(0, 0) = 1 and Θ1(0, 0) = 1.

But the latter property implies that the limit is a stationary hyperplane,
contradicting the former.

5.5 Noncollapsing

Roughly speaking, a sequence of embedded hypersurfaces Mj = ∂Ωj,
Ωj ⊂

open
Rn+1, is said to collapse if, modulo translation and scaling,
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their interior regions Ωj degenerate as j → ∞, with their curvature
remaining bounded. One precise way to quantify this is to ask for a
sequence of points xj ∈ Γj such that

rj(xj) sup
Bn+1

jrj(xj)
(xj)

|IIj| ≤ j−1 , (5.23)

where r(x) denotes the inscribed radius of ∂Ω at x ∈ ∂Ω—the ra-
dius of the largest ball contained in Ω whose boundary passes through
the boundary point x.

Note that rκ is scale invariant. Thus, if (5.23) holds, then, at the
scale of the curvature, the inscribed radius degenerates to zero. Since
max|v|=0 II(v, v) ≤ r−1, with strict inequality only if the boundary of
the ball Bn+1

r (x − r N(x)) meets ∂Ω at some other point y ∈ ∂Ω \ {x},
this means that two (intrinsically distant) portions of the boundaries
are coming together. On the other hand, at the scale of the inscribed ra-
dius, the curvature is tending towards zero in arbitrarily large regions,
and at this scale the regions converge to a slab of width two.

Andrews proved that the inscribed radius is pointwise nondecreas-
ing, relative to the scale of the mean curvature, under embedded, mean
convex mean curvature flow.

26 Andrews, “Noncollapsing in mean-
convex mean curvature flow”

Proposition 5.15 (Interior noncollapsing26). Along any embedded27, mean

27 In fact, it suffices here, and in the fol-
lowin g theorem, for the evolving hy-
persurfaces to be Alexandrov immersed;
see Lambert and Mäder-Baumdicker, “A
note on Alexandrov immersed mean
curvature flow”.

convex mean curvature flow {Mt = ∂Ωt}t∈[0,T), Ωt ⊂ Rn+1 bounded, the
inscribed curvature k ≑ r−1 satisfies

(∂t − ∆)k ≤ |II|2k

in the viscosity sense
28. In particular,

28 This is a weak formulation of the dif-
ferential inequality (∂t − ∆)u ≤ |II|2u
which applies to any continuous func-
tion. It asserts that, at any point
(x0, t0) ∈ Mn × (0, T), any smooth func-
tion φ : Mn × [0, T) → R which touches
k from above at (x0, t0), in the sense that
φ ≥ k on a backward spacetime neigh-
bourhood U × (t0 − δ, t0] of (x0, t0) with
equality at (x0, t0), satisfies

(∂t − ∆)φ ≤ |II|2 φ at (x0, t0) .

k ≤ K H, where K ≑ max
M0

k
H

.

Equivalently,

r ≥ δH−1 , where δ ≑ min
M0

r H .

Sketch of the proof. Using the inequality (5.4) to treat the diagonal case,
the argument proceeds much as in the one-dimensional case (Proposi-
tion 4.15).

In fact, reversing the orientation of the hypersurfaces yields a corre-
sponding exterior noncollapsing estimate: if we define the exscribed

curvature k at x ∈ ∂Ω to be the radius of the largest generalized

ball (oriented region with constant extrinsic curvature29) which en- 29 I.e. a ball (constant positive curva-
ture), a halfspace (constant zero curva-
ture) or a ball-compliment (constant neg-
ative curvature).

closes Ω and touches ∂Ω at x, then we obtain the following.

30 Andrews, “Noncollapsing in mean-
convex mean curvature flow”
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Proposition 5.16 (Exterior noncollapsing30). Along any embedded, mean
convex mean curvature flow, {Mt = ∂Ωt}t∈[0,T), Ωt ⊂ Rn+1 bounded, the
exscribed curvature satisfies

(∂t − ∆)k ≥ |II|2k

in the viscosity sense. In particular,

k ≥ K H, where K ≑ min
M0

k
H

.

b
b

b

b

x1

y1

x2

y2

Figure 5.3: The inscribed curvature at
x1 is positive and given by k(x1) =
k(x1, y1). The exscribed curvature at x1
is negative and given by k(x1) = κ1(x1).
The inscribed curvature at x2 is posi-
tive and given by k(x2) = κn(x2). The
exscribed curvature at x2 is positive and
given by k(x2) = k(x2, y2).

Thus,

– if K > 0, then the circumscribed radius r (at each x ∈ ∂Ωt, the
radius of the smallest ball which encloses Ωt and touches ∂Ωt at x) satisfies

r ≤ D H, where D ≑ K−1 ;

– if K ≤ 0, then the exscribed radius (at each x ∈ ∂Ωt, the radius of
the largest ball which lies in Rn \ Ωt and touches ∂Ωt at x) satisfies

r ≥ δ H, where δ ≑ −K−1 .

5.5.1 An estimate for the curvature

Exploiting the interior noncollapsing estimate (Proposition 5.15) in
conjunction with the improvement-of-convexity estimate (Proposition
5.3), we shall establish that a compact, mean convex, embedded mean
curvature flow is uniformly starshaped about any given point, at the
scale of the curvature at that point. This yields the following local
curvature estimate (cf. §2.5).

31 We present the argument of Lynch,
“Convexity and gradient estimates for
fully nonlinear curvature flows”, §4-
5, which extends ideas of Brendle and
Huisken, “A fully nonlinear flow for
two-convex hypersurfaces in Rieman-
nian manifolds”. There is also a quite
different (earlier) argument, due to Hasl-
hofer and Kleiner, “Mean curvature flow
of mean convex hypersurfaces”, which
makes use of two-sided noncollapsing
and the local regularity theorem.

Proposition 5.17 (An estimate for the curvature31). Given any Λ > 0,
and any compact, mean convex, embedded mean curvature flow {∂Ωt}t∈[0,T),
there exist K = K(n, Λ, Ω0) < ∞ and C = C(n, Λ, Ω0) < ∞ such that

r−1 ≑ H(x, t) ≥ K =⇒ sup
BΛr(x)×(t−Λ2r2,t]

H ≤ Cr−1 .

Sketch of the proof. By the interior noncollapsing estimate (Proposition
5.15), we can find some δ = δ(Ω0) > 0 such that, for any t ∈ [0, T)
and any x ∈ ∂Ωt, the ball of radius δ H−1(x, t) centred at the point
x − H−1(x, t)N(x, t) is enclosed by ∂Ωt (and hence also by ∂Ωs for all
s < t, since the flow is monotone). By Proposition 2.24, it therefore
suffices to show that, whenever r−1 = H(x, t) is sufficiently large, the
trumpet T1

2
(x̂, p, δr) about the point x̂ ≑ x − r N(x, t) is contained in

U10Λr(x, s), the connected component of Ωs ∩ B10Λr(x) which contains
Bδr(x̂), for all p ∈ U1−Λr(x, s) and all s ∈ (t − 100Λ2r2, t] ⋐ [0, T) (cf.
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Proposition 2.26). Let us denote by Q(δ, 10Λ) the set of pairs (x, t)
which do satisfy this property.

Suppose then that, contrary to the claim, there is a sequence of
spacetime points (xj, tj) with r−1

j ≑ H(xj, tj) → ∞ such that (xj, tj) /∈
Q(δ, Λ). By a “point-picking” argument (cf. (5.22) above), we can
choose our sequence so that if t ≤ tj and H(x, t) ≥ 4 H(xj, tj), then
(x, t) ∈ Q(δ, Λ). Now, by assumption, we can find some time sj ∈ (tj −
100Λ2r2, tj] and some point pj ∈ U10Λr(xj, sj) such that the trumpet
T1

2
(x̂j, pj, δrj) intersects ∂Ωsj somewhere in the connected component

of Ωsj ∩ B10Λr(x) which contains Bδr(x̂). But then, by “moving” the
mouthpiece of this trumpet, we can find another trumpet T1

2
(x̂j, p̃j, δrj)

which does lie in the connected component of Ωsj ∩ B10Λr(x) which
contains Bδr(x̂) but makes contact with ∂Ωsj at some point, yj say. At
this point, we find that

κ1(yj, sj) ≤ − δ

δ + 100Λ2
2√

4 + δ2
r−1

j ≑ −γr−1
j .

On the other hand, by mean convexity and preservation of pinching,
there is some C = C(Ω0) < ∞ such that

κ1(yj, sj) ≥ −C H(yj, sj) ,

and hence
H(yj, sj) ≥ γC−1r−1

j .

Since r−1
j = H(xj, tj) tends to infinity, this ensures that H(yj, sj) tends

to infinity as well, and the improvement-of-convexity estimate then
ensures that

H(xj, tj)

H(yj, sj)
≤ −γ−1 κ1(yj, sj)

H(yj, sj)
→ 0 as j → ∞ .

I.e. H(yj, sj) tends to infinity faster than H(xj, tj). In particular, we
eventually have H(yj, sj) ≥ 4H(xj, tj), and hence, after passing to a
subsequence, (yj, sj) ∈ Q(δ, Λ) for all j. Thus (by Proposition 2.24

and the Bernstein estimates), if we rescale by δH−1(yj, sj) about the
spacetime points (yj, sj) and rotate so that the normal at the spacetime
origin is en+1, we can (after passing to a subsequence) take a smooth
limit in the spacetime cylinder Bδ−1Λ(−e1)× (−δ−2Λ2, 0].

This limit flow will have nonnegative principal curvatures (by the
improvement-of-convexity estimate) and positive mean curvature (by
the strong maximum principle, since it is nonnegative by construction
and positive at the spacetime origin). Moreover, since its smallest prin-
cipal curvature will vanish at the spacetime origin, it must split off a
line (in accordance with Proposition 3.2).

Since the mean curvature at (yj, sj) dominates the mean curvature
at (xj, tj), it can be shown that the rescaled trumpets which touch the
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rescaled solutions from the inside at the spacetime origin converge
(after passing to a further subsequence) to a limit hypersurface, Σ,
which is either a round cone of positive aperture (in case the distance
from the origin to the vertex of the rescaled trumpet remains bounded)
or a hyperplane (in case the distance from the origin to the vertex of
the rescaled trumpet does not remain bounded), and touches the limit
flow from the inside at the spacetime origin. Note that the ray of
the cone through the origin must be a splitting direction for the limit
flow.32 32 In case the vertex of the limit cone is

the origin, the tangent hyperplane to the
limit solution at the spacetime origin still
contains one of the rays of the limit cone.

So the (locally convex, strictly mean convex) limit solution both
splits off a line and touches a cone/hyperplane Σ from the outside
at the spacetime origin. This is clearly impossible in case Σ is a hy-
perplane, but is not immediately a contradiction in case Σ is a cone
(since a small piece of a cylinder can touch a cone from the outside);
but the convergence may actually be extended along the whole ray. In-
deed, since the cross sections in the limit lie outside of corresponding
sections of the cone, Proposition 2.24 can be exploited to estimate the
curvature in a neighbourhood of the ray (in terms of the inradius of
the corresponding conic section). This results in the anticipated con-
tradiction.

5.6 Exercises

Exercise 5.1. Let X : Mn → Rn+1, n ≥ 2, be a compact, mean convex,
self-similarly shrinking mean curvature flow.

(a) Show, using improvement of convexity (Proposition 5.3), that X :
Mn → Rn+1 satisfies κ1 ≥ 0.

(b) Deduce, using the splitting theorem (Proposition 3.2), that X :
Mn → Rn+1 satisfies κ1 > 0.

(c) Conclude, using improvement of roundness (Proposition 3.6), that
X : Mn → Rn+1 is umbilic, and hence the shrinking sphere.

Exercise 5.2. Prove that a curve in the halfplane Σ ≑ {(x, r) : r > 0}
generates an axially symmetric shrinker in Rn+1 (via rotation about
the x-axis) if and only if it is a critical point of the length functional in
the metric

σ ≑ r2(n−1)e−
x2+r2

4 (dx2 + dr2) .

Exercise 5.3. Let {∂Ωt}t∈[α,ω] be a compact, convex and locally uni-
formly convex mean curvature flow.

(a) (i) Show (using (5.16)) that

∂t

(√
2(t − α)H

)
≥ 0 (5.24)
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with respect to the Gauss map parametrization.

(ii) Deduce, or show using (5.17), that

∂t H ≥ 0 (5.25)

(with respect to the Gauss map parametrization) if {∂Ωt}t∈[α,ω]

extends to an ancient solution.

(b) Denote the support function of Ωt by σ(·, t).

(i) Show, using (5.24), that33 33 Compare this with Tso’s estimate
(Proposition 2.23).

H(·, t) ≤ σ(·, t)− σ(·, ω)

2(ω − t)

(
1 +

√
ω − α

t − α

)
.

(ii) Deduce, or show using (5.25), that

H(·, t) ≤ σ(·, t)− σ(·, ω)

ω − t

if {∂Ωt}t∈[α,ω] extends to an ancient solution.

(c) Conclude that

max{
z∈S2 :σ(z,t)−σ(z,ω)≤C

√
ω−t
}H(·, t) ≤ 2C√

ω − t
, (5.26)

so long as t ≥ ω − ω−α
2 , say.
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Towards a classification of ancient solutions

Let X : Mn × [0, T) → Rn+1 be a maximal mean curvature flow on
a compact manifold Mn. By Theorem 2.19, we know that T < ∞
and lim supt↗T maxMn×{t} |II| → ∞. If we choose (xj, tj) so that λj ≑
|II(xj ,tj)

| = maxMn×[0,T−j−1] |II|, then the mean curvature flows Xj :

Mn × Ij → Rn+1 defined by

Xj(x, t) ≑ λj

(
X(x, λ−2

j t + tj)− X(xj, tj)
)

, Ij ≑ [−λ2
j tj, 0]

will satisfy |II| ≤ 1 and |II(xj ,tj)
| = 1. By the compactness theorem

(Theorem 2.22), we can then find a complete ancient (subsequential)
limit flow X∞ : Mn

∞ × (−∞, 0] → Rn+1, on which

1. |II| ≤ K < ∞.

If the original flow is mean convex, then we will also have

2. II ≥ 0 and H > 0

due to Proposition 5.3 (and the fact that |II| = 1 at the spacetime
origin). But then the differential Harnack inequality1 1 Hamilton showed that the argument

sketched in Theorem 5.10 may still be
applied when Mn is noncompact, so
long as the flow has bounded curvature
on compact time intervals. See Richard
S. Hamilton, “Harnack estimate for the
mean curvature flow”.

2. ∂tH − |∇H|2
H ≥ 0

will also hold.
If the original flow is is mean convex and embedded, then (due to

Theorem 5.15) we can also arrange that the evolving regions bounded
by the flows converge to a limit satisfying

4. r ≥ δ H−1, δ > 0.

A good understanding of such solutions will thus provide a good
understanding of singularity formation in mean convex (embedded)
mean curvature flow. Confidence that this is genuine progress to-
wards an understanding of singularity formation can be taken from
the following classical theorem of Hirschman.2

2 This is the caloric counterpart of Liou-
ville’s theorem for harmonic functions.
As for Liouville’s theorem, the hypothe-
ses are necessary—consider the solu-
tions ex1+t and |x|2 + 2nt, for exam-
ple. Note that Widder’s theorem guar-
antees that a positive solution to the heat
equation on Rn × [α, ω) can be extended
uniquely (amongst positive solutions) to
Rn × [α, ∞). See Widder, “Positive solu-
tions of the heat equation”.
3 Appell, “Sur l’équation ∂2z

∂x2 − ∂z
∂y = 0

et la Théorie de la chaleur”; Hirschman,
“A note on the heat equation”

Theorem 6.1 (Appell’s theorem3). Any positive ancient solution u to the
heat equation on Rn satisfying u(x, 0) = eo(|x|) must be constant.
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We will present an overview of the landscape and structure of con-
vex ancient solutions to mean curvature flow. The proofs of many of
these results are highly technical. In such cases, we either only sketch
the arguments, or omit the proof entirely.

6.1 Ancient solutions in one space dimension

So far, the only ancient mean curvature flows we have seen in one di-
mension are solitons. Namely, the static/shrinking line, the shrinking
sphere, and the Grim Reaper. There is a further (non-soliton) exam-
ple4. 4 Discovered by Sigurd B. Angenent,

“Shrinking doughnuts”, and rediscov-
ered by Lukyanov, Vitchev, and A. B.
Zamolodchikov, “Integrable model of
boundary interaction: the paperclip”
and by Nakayama, Iizuka, and Wadati,
“Curve lengthening equation and its so-
lutions”.

Example 9 (The ancient paperclip). The family γ : R/2πZ× (−∞, 0) →
R2 defined by

γ(θ, t) ≑

(ˆ θ

0

cos ω

κ(ω, t)
dω,
ˆ θ

π
2

sin ω

κ(ω, t)
dω

)
,

where

κ(θ, t) ≑
√

cos2 θ +
1

e−2t − 1
, (6.1)

is parametrized by turning angle and evolves by curve shortening flow.
Indeed, since γ is parametrized by turning angle by construction (so
that its curvature is given by κ), we only need to check that

κt = κ2(κθθ + κ) ,

which is a straightforward exercise. Since the curvature function is
always positive and the turning number is always one, the curves Γt ≑
γ(R/2πZ, t) bound bounded convex regions Ωt. Note also that κ

is increasing in t for fixed θ (as it must, by the differential Harnack
inequality in the form (5.25)).

Figure 6.1: The ancient paperclip along-
side its asymptotic Grim Reapers.

Setting a2(t) ≑ 1
e−2t−1 , observe that

x(θ, t) ≑
ˆ θ

0

cos ω

κ(ω, t)
dω = arctan

(
sin θ√

cos2 θ + a2(t)

)
(6.2a)

y(θ, t) ≑
ˆ θ

π
2

sin ω

κ(ω, t)
dω = −t + log

(√
cos2 θ + a2(t)− cos θ√

1 + a2(t)

)
. (6.2b)

In particular,
cos x = et cosh y . (6.3)

We may read off a number of properties of the solution from these
formulae.

– First, Γt is symmetric under reflection across both the x- and y-axes;
it has exactly four vertices—the points of intersection with the axes
(corresponding to θ = 0, π

2 , π, 3π
2 ).
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– Second, as t → −∞, the enclosed regions approach Π, the vertical
strip of width two, in the sense that Ωt are decreasing in t and
∪t<0Ωt = Π. In fact, the curves ∂Ωt approach the boundary of ∂Π
locally uniformly in the smooth topology as t → −∞. (This can be
checked directly using (6.1) and its derivatives, but we only need
to check that κ → 0 in any compact subset of the plane, due to the
Bernstein estimates and interpolation.)

– Third, the rescaled curves (−t)−
1
2 Γt converge to the unit circle (lo-

cally uniformly in the smooth topology) as t → 0.

– Fourth, the spacetime translated flows {Γt+s − y(π
2 ± π

2 , s)}t∈(−∞,−s)
converge as s → −∞ (locally uniformly in the smooth topology) to
the Grim Reaper {G±

t ≑ graph y±(·, t)}t∈(−∞,∞), where y±(x, t) ≑
±(log cos x − t + log 2).

One plausible way to “derive” the ancient paperclip solution is as
follows: any convex curve shortening flow {∂Ωt}t∈I may be exhibited
as a family of level sets of a function u : Ω → R via

Ωt = {(x, y) ∈ R2 : u(x, y) ≥ t} .

By Exercise 1.2, the function u must satisfy the level set flow equation
(1.12), which in two dimensions may be rewritten as

uxxu2
y + uyyu2

x + u2
x + u2

y = 2uxyuxuy . (6.4)

Observe that, under the Ansatz

∇u(x, y) = (F(x), G(y)) , (6.5)

the equation (6.4) separates: the terms on the right hand side vanish,
and rearranging yields

Fx + 1
F2 +

Gy + 1
G2 = 0.

So, up to interchanging x and y, there must be some constant λ ≥ 0
such that

Gy + 1
G2 = λ2 = − Fx + 1

F2 .

These equations admit the solution

F(x) = −λ−1 tan(λ(x − x0)) and G(y) = −λ−1 tanh(λ(y − y0)) .

Integrating then yields

u(x, y)− u0 = λ−2 log
(

cos(λ(x − x0))

cosh(λ(y − y0))

)
.

Fixing λ = 1, (x0, y0) = (0, 0), and u0 = 0 yields the paperclip solution
(in level set form). The parameter u0 corresponds to time-translations,
while (x0, y0) corresponds to spatial translations and λ to parabolic
dilations. ■
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The ancient paperclip example completes the list of convex ancient
curve shortening flows!

5 Bourni, Langford, and Tinaglia, “Con-
vex ancient solutions to curve shorten-
ing flow”; Daskalopoulos, R. Hamilton,
and Sesum, “Classification of compact
ancient solutions to the curve shortening
flow”

Theorem 6.2 (Classification of convex ancient curve shortening flows5).
Every maximal, convex ancient curve shortening flow {∂Ωt}t∈(−∞,ω) is ei-
ther

– a shrinking round circle,

– a static halfplane or strip,

– a Grim Reaper, or

– an ancient paperclip.

Sketch of the proof. By the strong maximum principle, our convex an-
cient curve shortening flow {∂Ωt}t∈(−∞,ω) has positive curvature ev-
erywhere unless it is flat, and hence the boundary of a static half-plane
or a strip. We may therefore assume that the curvature is everywhere
positive.

Next, we claim that {∂Ωt}t∈(−∞,ω) satisfies the differential Harnack
inequality (4.28). We only proved this (in Proposition 4.12) in case M1

is compact, but the argument can also be applied in the noncompact
case (in all dimensions) if the solution has bounded curvature on com-
pact time intervals.6,7 To prove this, fix any t0 < ω and consider any 6 Richard S. Hamilton, “Harnack esti-

mate for the mean curvature flow”.
7 In fact, a more sophisticated argument
removes even this hypothesis—the idea
is to approximate any convex mean cur-
vature flow by compact mean curva-
ture flows; see Bourni, Langford, and
Lynch, “Collapsing and noncollapsing in
convex ancient mean curvature flow”;
Daskalopoulos and Saez, “Uniqueness
of entire graphs evolving by mean cur-
vature flow”; X.-J. Wang, “Convex solu-
tions to the mean curvature flow”.

sequence of points xj ∈ ∂Ωt0 such that |xj| → ∞ as j → ∞. Observe
that, by convexity of Ωt0 , the sequence of translates Ωt0 − xj subcon-
verges in the Hausdorff sense to a limit convex set which contains a
line, and hence splits off a line. This limit can only be a halfplane or a
strip. If it is a strip, then, by a straightforward application of convexity,
the strip must have half-width at least equal to the inradius r of Ωt0 .
But then Proposition 2.25 can be applied to bound the curvature of
∂Ωt by ∼ r−1 on a backwards time interval from t0 of length ∼ r2. (In
fact, the Bernstein estimates and the theorem of turning tangents now
imply that the curvature tends to zero at infinity.)

By (5.26), the curvature grows at most like 1√
−t

in origin centred

balls of radius ∼
√
−t as t → −∞. It follows that the rescaled flows

λ∂Ωλ−2t have uniformly bounded curvature in any compact subset of
Rn+1 × (−∞, 0) for λ > 0 sufficiently small. If the enclosed regions do
not degenerate, then the compactness theorem (Theorem 2.22) ensures
that we can find a sequence λj → 0 and a convex ancient curve short-
ening flow {∂Ω∞

t }t∈(−∞,0) (called a blow-down of {∂Ωt}t∈(−∞,ω))
such that {λj∂Ωλ−2

j t}t∈(−∞,λ2
j ω)∩(−∞,0) tends to {∂Ω∞

t }t∈(−∞,0) locally

uniformly in the smooth topology as j → ∞.
Now, it can be shown that the Gaussian area functional is bounded

by a dimensional constant on the space of convex subsets of Rn+1,
and this guarantees that Huisken’s functional G (being monotone by
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Proposition 5.13) takes a limit along {∂Ωt}t∈(−∞,ω) as t → −∞. By
invariance under parabolic rescaling, we can then establish that G is
constant on the limit flow (cf. the proofs of Theorems 4.19 and 4.21).
The rigidity case of the monotonicity formula then guarantees that the
limit is a self-similarly shrinking solution. If it has compact timeslices,
then it must be the shrinking circle by Theorem 4.8. In that case, the
original flow must also have compact timeslices, so that ω < ∞ and
the rescaled flows {λ∂Ωλ−2t+ω}t∈(−∞,ω) converge to the shrinking cir-
cle as λ → ∞, in accordance with the Gage–Hamilton theorem (The-
orem 4.19). Since G is also invariant under time translation, we may
now conclude that G is constant on the ancient solution {∂Ωt}t∈(−∞,ω),
which must then be the shrinking circle. If, instead, the blow-down is
noncompact, then it must be a stationary line (since the support func-
tion, equal to twice the curvature by the shrinker equation, tends to
zero at infinity). We now proceed as in the compact case: since we
can blow-up at any interior time to obtain a line, we again find that G

is constant, and thereby conclude from the rigidity case of the mono-
tonicity formula that {∂Ωt}t∈(−∞,ω) is a stationary line.

We still need to consider the situation in which the interiors of the
rescaled flows {λ∂Ωλ−2t}t∈(−∞,λ2ω) degenerate as λ → 0. In that case,
a technical argument of X.-J. Wang (which we shall sketch in §6.2 be-
low) shows that {∂Ωt}t∈(−∞,ω) must actually (remarkably!) be con-
fined to a static strip region. Up to a rotation and a parabolic rescal-
ing, we may arrange that the smallest strip enclosing {∂Ωt}t∈(−∞,ω) is
Π ≑ {(x, y) ∈ R2 : −π

2 < x < π
2 }.

Let t 7→ p(t) ∈ Ωt be a continuous choice of “tip” for {∂Ωt}t∈(−∞,ω);
i.e. a point whose normal is either e2 or −e2. Since the differential
Harnack inequality (in the form of (5.25)) ensures that the curvature
is monotone increasing in time in the turning angle parametrization,
the compactness theorem ensures that the spacetime translated flows
{∂Ωt+s − p(s)}s∈(−∞,ω−s) admit a limit {Γt}t∈(−∞,∞) along some se-
quence of times sj → −∞. It is not hard to show that this limit must
evolve by translation and therefore be either a Grim Reaper or a sta-
tionary line. In fact, since its normal is vertical at the spacetime origin
and it is contained in a strip of width π, {Γt}t∈(−∞,∞) must be a verti-
cally translating Grim Reaper of scale at most one.

Figure 6.2: If the scale of the asymptotic
Grim Reaper at the lower tip is r, then
the area enclosed by the time t slice be-
low the x-axis is ≳ − π

2 (1 + r−1)t.

We claim that the scale of any asymptotic Grim Reaper is actually
equal to one. Indeed, if this were not the case, then the scale would
be uniformly less than one, r < 1, say. But then, due to the differential
Harnack inequality, the curvature at the tip would be uniformly more
than one—at least r−1. Integrating the differential Harnack inequality,
this implies that |p(t)− p(0)| ≳ r−1t, which guarantees that the area
A enclosed by Ωt and the x-axis grows like A ≳ −π

2 (1 + r−1)t. But
this violates the first variation of area (which imposes A ∼ −πt).
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This shows that our solution {∂Ωt}t∈(−∞,ω) is very close to either
a Grim Reaper or to the paperclip solution when t ∼ −∞ (recall
that the latter is very close to two oppositely oriented Grim Reapers
when t ∼ −∞). These “unique asymptotics” can be bootstrapped into
uniqueness using the maximum principle, in the form of Alexandrov’s
method of moving planes.

6.2 The slab dichotomy and its consequences

Let {∂Ωt}t∈(−∞,ω) be a maximal convex ancient mean curvature flow
in Rn+1 and consider the limit region Ω−∞ ≑ ∪t∈(−∞,ω)Ωt. Since the
regions {Ωt}t∈(−∞,ω) are monotone decreasing with respect to inclu-
sion, Ωt → Ω−∞ locally uniformly in the Hausdorff sense. It fol-
lows that the mean curvature flows {∂Ωs

t}t∈(−∞,−s) defined by Ωs
t ≑

Ωs+t converge locally uniformly in the Hausdorff sense to the static
flow, {∂Ω−∞}t∈(−∞,∞). But the differential Harnack inequality and
the Bernstein estimates ensure that the convergence is actually smooth,
which implies that {∂Ω−∞}t∈(−∞,∞) is a smooth mean curvature flow.
Since it is static, we conclude that ∂Ω−∞ is either flat or empty, and
hence Ω−∞ is either the whole space, a half-space, or a slab (the region
between two distinct parallel hyperplanes).

Theorem 6.2 shows that all three cases are possible. But note that
the half-plane is rigid in that the only examples whose limiting set is
a half-plane are the half-planes themselves. X.-J. Wang proved that
this is true in all dimensions. His theorem is a consequence of the
following remarkable estimate.

8 X.-J. Wang, “Convex solutions to the
mean curvature flow”, Lemma 2.7

Lemma 6.3 (Slab estimate8). There exist β = β(n) > 0 and R = R(n) <
∞ with the following property. Let {∂Ωt}t∈(−∞,ω) be a convex ancient mean
curvature flow in Rn+1 which contains the spacetime origin; i.e. 0 < ω and
0 ∈ Ω0. If Ω−1 ∩ BR(0) ⊂ {x ∈ Rn+1 : −β < xn+1 < β}, then there is a
fixed slab in Rn+1 which contains Ωt for all t ∈ (−∞, 0].

Sketch of the proof. We may represent ∂Ωt as a pair of graphs, ∂Ωt =

graph g+(·, t) ∪ graph g−(·, t), over the projection of Ωt onto the hy-
perplane {xn+1 = 0}, with ∂Ω+

t ≑ graph g+(·, t) lying “above” ∂Ω−
t ≑

graph g−(·, t). The hypothesis is then essentially that the vertical dis-
placements, max g+(·, t) and −min g−(·, t), increase by at most β ∼ 0
in a ball of radius R ≫ 0 as time moves backwards from 0 to −1.

Using the fact that planar slicings of ∂Ωt evolve faster than curve
shortening flow, and hence exhibit superlinear enclosed area growth
in backwards time, it can be shown that the horizontal displacements
increase by at least ∼ β−1 ≫ 0 over the same backwards time interval.
Exploiting convexity of Ωt (which implies concavity of g+ and −g−
in the space variable), this then ensures that (taking R ≫ β−1) the
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gradients Dg±(·, t) are controlled by ∼ 1 in a ball of radius ∼ β−1 over
the backwards time interval [−1,− 1

2 ].
Now, concavity of the vertical displacements g+ and −g− with

respect to the time variable (which is a consequence of the differ-
ential Harnack inequality for convex ancient solutions) implies that
g+(·, t)− g−(·, t) at most doubles during the next unit of backwards
time; so the above arguments can be repeated with the constant 2β. On
the other hand integrating the gradient bound ensures that the mean
curvature H(·, t) cannot be very large on average in a ball of radius
∼ β−1 during this time interval. The Fubini theorem then ensures that
we can find a point x in this ball at which the mean curvature H(x, ·)
is small on average over our time interval. Since the mean curvature
controls the rate of change of the displacement, this integrates to an
improved displacement bound. When applied very carefully, the pro-
cess can be iterated (with summably decaying loss), resulting in the
desired estimate g+(0, t)− g−(0, t) ≤ O(1).

9 ibid., Corollary 2.2Corollary 6.4 (Slab dichotomy9). Let {∂Ωt}t∈(−∞,ω) be a convex, locally
uniformly convex ancient mean curvature flow in Rn+1. Either

– {Ωt}t∈(−∞,ω) exhausts all of space, or

– {Ωt}t∈(−∞,ω) is confined to a fixed slab region.

Sketch of the proof. As in the proof of Theorem 6.2, the estimate (5.26)
and the compactness theorem (Theorem 2.22) ensure that the rescaled
mean curvature flows {λ∂Ωλ−2t}t∈(−∞,λ2ω) take a limit along some
subsequence λj → 0.

If the enclosed regions do not degenerate, then Huisken’s mono-
tonicity formula (Proposition 5.13) guarantees that limit will be a con-
vex self-shrinking mean curvature flow, and hence a shrinking cylinder
by Theorem 6.11 below (cf. Theorem 5.8). We readily conclude from
this that {Ωt}t∈(−∞,ω) exhausts all of space.

On the other hand, if the enclosed regions degenerate, then the
limit must be a hyperplane of multiplicity two, and the hypotheses of
the slab estimate can certainly be arranged for j sufficiently large. So
{λj∂Ωλ−2

j t}t∈(−∞,λ2
j ω) is confined to a fixed slab for such j, and hence

{∂Ωt}t∈(−∞,ω) must also.

A convex ancient solution whose enclosed regions exhaust all of
space is said to be entire.

6.2.1 A nontrivial example

So far, our only examples of ancient solutions are either solitons with
a high degree of symmetry (obtained by reduction to an ode) or the
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ancient paperclip solution (an explicit non-soliton solution obtained
by imposing an ad hoc ansatz on the level set flow equation). White10 10 White, “The nature of singularities in

mean curvature flow of mean-convex
sets”.

provided the first truly “parabolic" (in the sense of pde methods) con-
struction of an ancient mean curvature flow.

11 Steeden are the producers of the
iconic Australian Rugby League football
(which is more oval than a European
football and less pointy than a North
American football). Evidently, I am
a Rugby League fan; followers of the
Rugby Union may prefer the “ancient
Gilbert”; followers of Australian Rules
Football may prefer the “ancient Sher-
rin”. Followers of American or Canadian
football should consider orbifolds.

Theorem 6.5 (The ancient Steeden11). There exists a non-round entire
convex ancient mean curvature flow X : S2 × (−∞, 0) → R3 on which
O(2)× O(1) acts by isometries.

Sketch of the proof. The idea is to take a limit of “very old” solutions
constructed by evolving suitable initial data. We begin by evolving a
sequence of (O(2)× O(1)-invariant) smoothly capped cylinders Ck =

S1 × [−k, k] of radius one and length 2k. When k = 0, the solution is
the round sphere of radius one, which shrinks to a point after time
∼ 1. For other values of k, Ck still shrinks to a point in time ∼ 1
(the initial cylinder is an outer barrier), becoming round in the process
(in accordance with Huisken’s theorem). After translating time, we
can arrange that the final time is t = 0. Using srinking spheres as
inner barriers, it can be shown that the “perigee” and “apogee” take
a fixed amount of time to decrease by 1/2. So we can parabolically
rescale so that, for k ≥ 1, the “eccentricity” is ∼ 2 and the inradius
is ∼ 1/2 at time t = −1, and that the initial time αk goes to −∞
as k → ∞. Since the inscribed radius times the mean curvature is
uniformly controlled from below at the initial time, it remains so due
to Andrews’ noncollapsing estimate (Proposition 5.15). Proposition
5.17 and the Bernstein estimates then ensure that the curvature and
its derivatives are uniformly bounded along the sequence. We can
now take a limit as k → ∞ using the compactness theorem. Since we
ensured that the eccentricity is ∼ 2 at time −1 along the sequence, the
limit cannot be the shrinking sphere.

6.2.2 Entire ancient solutions in two space dimensions

The ancient Steeden completes the list of entire convex ancient solu-
tions to mean curvature flow in R3.

12 S. Angenent, Daskalopoulos, and
Sesum, “Uniqueness of two-convex
closed ancient solutions to the mean cur-
vature flow”
13 Brendle and K. Choi, “Uniqueness of
convex ancient solutions to mean curva-
ture flow in R3”
14 X.-J. Wang, “Convex solutions to the
mean curvature flow”

Theorem 6.6 (Angenent–Daskalopoulos–Šešum12, Brendle–Choi13,
X.-J. Wang14). Every entire convex ancient mean curvature flow in R3 is
one of the following:

1. a shrinking sphere.

2. a shrinking cylinder.

3. a radio-dish soliton.

4. an ancient Steeden.
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6.2.3 The structure of entire convex ancient solutions

X.-J. Wang developed a beautiful structure theory for entire convex
ancient solutions to mean curvature flow. We will present a brief
overview of his theory.

We first observe that the interior curvature estimate of Proposition
2.25 implies the following rudimentary compactness property for the
space of convex ancient solutions.

Proposition 6.7. Let {∂Ωj
t}t∈(−∞,0] be a sequence of convex ancient mean

curvature flows and xj ∈ Ωj
tj

, tj ∈ (−∞, 0] a sequence of points and times
such that (xj, tj) → (0, 0) and

lim inf
j→∞

Hj(xj, tj) > 0.

The following are equivalent.

1. A subsequence of {∂Ωj
t}t∈(−∞,0] converges in C∞

loc(R
n+1 × (−∞, 0]).

2. There are constants ρ > 0 and C < ∞ such that, after passing to a
subsequence,

sup
Bρ(0)×[−ρ2,0]

Hj ≤ C

for each j.

3. The sequence {Ωj
0}j∈N subconverges in the Hausdorff topology to a con-

vex set of dimension n + 1.

4. After passing to a subsequence, there is an open ball in ∩j∈N Ωj
0.

Sketch of the proof. This is a straightforward consequence of the Bern-
stein estimates (Proposition 2.21) and Proposition 2.25.15 15 See, e.g., Bourni, Langford, and

Lynch, “Collapsing and noncollapsing in
convex ancient mean curvature flow”,
Proposition 2.2.

The following “paraboloid estimate” is a consequence of the slab
estimate and Proposition 6.7.16

16 The terminology comes from the fact
that the inclusion Bη

√
t0−t(p0) ⊂ Ωt for

some η > 0 is equivalent to the existence
of a paraboloid lying below the graph of
the arrival time of {Ωt}t∈(−∞,0]—the
function u : ∪t∈(−∞,0]∂Ωt → R defined
by

u(X) = t ⇐⇒ X ∈ ∂Ωt .

17 X.-J. Wang, “Convex solutions to the
mean curvature flow”, Theorem 2.2

Proposition 6.8 (Paraboloid estimate17). There exists η = η(n) > 0 with
the following property. Let {∂Ωt}t∈(−∞,0] be an entire convex ancient mean
curvature flow. Given p0 ∈ ∂Ωt0 ,

Bη
√

t0−t(p0) ⊂ Ωt for all t ≤ t0 − H(p0, t0)
−2 .

Proof. Suppose, contrary to the claim, that there is a sequence of entire
convex ancient solutions {∂Ωi

t}t∈(−∞,0] with the following properties:

– ∂Ωi
0 contains the origin.

– There is a sequence of times ti ≤ −Hi(0, 0)−2 such that

√
−ti dist(0, ∂Ωi

ti
) → 0 as i → ∞ .
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Performing a parabolic rescaling by
√
−ti for each i ∈ N, we may

assume that ti = −1 and Hi(0, 0) ≥ 1. Passing to a subsequence, we
may assume that Ωi

−1 converges locally uniformly in the Hausdorff
topology to a closed convex set K.

We consider two cases. First, if K has no interior, then it lies in a
hyperplane by convexity. We are assuming 0 ∈ Ωi

−1, so K contains the
origin, and up to a rotation we may assume that K ⊂ {xn+1 = 0}. In
particular, given any β > 0 and R < ∞, for all sufficiently large i,

Ωi
−1 ∩ BR(0) ⊂ {|xn+1| ≤ β}.

Choosing R sufficiently large and β sufficiently small, the slab estimate
(Lemma 6.3) ensures that ∂Ωi

t is confined to fixed a slab for all t ≤ 0,
contrary to our assumption.

Suppose instead that K contains an open ball B2ρ. Let T be the
supremum over all times t ≤ 0 such that Ωi

t has a subsequential Haus-
dorff limit containing Bρ/2. The avoidance principle and the fact that
B2ρ ⊂ K ensure that T > −1, and by Proposition 6.7, {∂Ωi

t}t∈(−∞,T]
subconverges in C∞

loc to a smooth convex ancient solution {∂Ωt}t∈(−∞,T].
Since 0 ∈ Ωi

T and dist(0, ∂Ωi
−1) → 0, we have 0 ∈ ∂Ωt for all t ∈

[−1, T]. Applying the strong maximum principle to H shows ∂Ωt is
stationary, and thus consists of a hyperplane or pair of parallel hyper-
planes for all t ≤ T. In this case B2ρ ⊂ K = Ω−1 implies B2ρ ⊂ ΩT ,
hence there is a subsequence in i such that Bρ ⊂ Ωi

T , and unless T = 0
we obtain a contradiction to the maximality of T using the avoidance
principle. Thus, ∂Ωi

0 converges in C∞
loc to a hyperplane or pair of par-

allel hyperplanes, but we rescaled to ensure Hi(0, 0) ≥ 1, so this is
impossible.

In conjunction with the interior curvature estimate (Proposition 2.25),
the paraboloid estimate implies sequential precompactness of the space
of entire convex ancient mean curvature flows.

18 See X.-J. Wang, “Convex solutions to
the mean curvature flow”, Corollary 2.3
or Bourni, Langford, and Lynch, “Col-
lapsing and noncollapsing in convex an-
cient mean curvature flow”, Theorem 4.6
for a proof.

Theorem 6.9 (Precompactness of the space of entire convex ancient
solutions18). Let {∂Ωi

t}t∈(−∞,0], i ∈ N, constitute a sequence of entire
convex ancient mean curvature flows. Suppose that 0 ∈ ∂Ωi

0 for each i
and Hi(0, 0) → H0 ∈ [0, ∞] as i → ∞. After passing to a subsequence,
{∂Ωi

t}t∈(−∞,0] converges in C∞
loc(R

n+1 × (−∞, 0)) to a convex ancient mean
curvature flow {∂Ωt}t∈(−∞,0). Moreover,

1. if H0 = 0, then the convergence is in C∞
loc(R

n+1 × (−∞, 0]) and the limit
is a stationary hyperplane of multiplicity one;

2. if H0 ∈ (0, ∞), then the convergence is in C∞
loc(R

n+1 × (−∞, 0]) and the
limit {∂Ωt}t∈(−∞,0] is entire;
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3. if H0 = ∞, then the limit {∂Ωt}t∈(−∞,0) is entire, Σ ≑ ∩t<0 Ωt is
an affine subspace of Rn+1, and Ωt splits as a product Σ × Ω⊥

t , where
{Ω⊥

t }t∈(−∞,0) is a family of bounded convex bodies in Σ⊥.

The following short proof that entire ancient solutions to mean cur-
vature flow are noncollapsing illustrates the utility of Theorem 6.9.

Theorem 6.10. A convex ancient mean curvature flow {∂Ωt}t∈(−∞,ω) in
Rn+1 is entire if and only if it is noncollapsing.19 19 In fact, an application of the strong

maximum principle to the evolution of
the inscribed curvature guarantees that
{∂Ωt}t∈(−∞,ω) is collapsing no worse
than the shrinking cylinder {S1√

−2t
} ×

Rn−1 (i.e. r H ≥ 1 at all points).

Proof. It is easy to deduce entirety from noncollapsing.
To establish the reverse implication, suppose that there is a se-

quence of convex ancient mean curvature flows {∂Ωi
t}t∈(−∞,0] such

that 0 ∈ ∂Ωi
0 and Hi(0, 0) = 1, but the inscribed radius r̄i at (0, 0)

satisfies r̄i → 0. Part (2) of Theorem 6.9 tells us that {∂Ωi
t}t∈(−∞,0]

subconverges in C∞
loc(R

n+1 × (−∞, 0]) to a convex ancient mean cur-
vature flow {∂Ωt}t∈(−∞,0]. In particular, lim infi→∞ r̄i > 0, which is a
contradiction.

6.3 Further examples of convex ancient solutions

There are a great many further examples20 of ancient mean curvature 20 The below list is not exhaustive.

flows, even under the assumption of convexity.

21 Haslhofer and Hershkovits, “Ancient
solutions of the mean curvature flow”

Example 10 (Generalized Steedens21). White’s construction (Theorem
6.5) generalizes to spheres Sn of any dimension n ≥ 2 and any bisym-
metry class O(k) × O(n + 1 − k), k = 2, . . . , n. These examples are
convex and entire. ■

Note that, while the symmetry groups O(k) × O(n + 1 − k) and
O(ℓ) × O(n + 1 − ℓ) agree (up to a congruence of Rn+1) when ℓ =

n + 1 − k, the two corresponding examples in the above construction
are not congruent (since, for instance, the blow-down of the example
with symmetry group O(k) × O(n + 1 − k) is the shrinking cylinder
Sk−1√

−2(k−1)t
× Rn−k). This begs the question of the whereabouts of the

“missing” example: the one corresponding to the symmetry group
O(1)× O(n) (whose blow-down should be S0

0 × Rn—the hyperplane
of multiplicity two).

22 Bourni, Langford, and Tinaglia, “Col-
lapsing ancient solutions of mean cur-
vature flow”; X.-J. Wang, “Convex solu-
tions to the mean curvature flow”

Example 11 (The ancient pancake22). For each n ≥ 2, there is an
O(1)×O(n)-invariant, convex ancient mean curvature flow which ex-
hausts the slab {(x1, . . . , xn+1) ∈ Rn+1 : −π

2 < x1 < π
2 }. Its “height”

h(t) ≑ σ(e1, t) grows like

h(t) ≥ π
2 − O((−t)−k) for any k ∈ N as t → −∞

and its “radius” r(t) ≑ σ(e2, t) grows like

r(t) = −t + (n − 1) log(−t) + cn + o(1) as t → −∞ .
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This example is constructed by rotating the time t = −R slice of the
(horizontally oriented) ancient paperclip solution about the y-axis to
obtain an O(1) × O(n)-invariant convex hypersurface, evolving this
hypersurface by mean curvature flow to obtain, after time-translation,
an “old-but-not-ancient” mean curvature flow {∂ΩR

t }t∈[−αr ,0) which
shrinks to a round point at time zero in accordance with Huisken’s
theorem, and (after establishing a number of uniform-in-R estimates)
taking a limit as R → ∞. ■

Self-similarly shrinking and translating solutions are “trivial” exam-
ples of ancient mean curvature flows. The (mean) convex self-similarly
shrinking solutions are relatively easily classified.

23 Tobias H. Colding and Minicozzi,
“Generic mean curvature flow I: generic
singularities”, Theorem 10.1.

Theorem 6.11 (Colding–Minicozzi23). The shrinking cylinders Sk√
−2kt

×
Rn−k, k ∈ {1, . . . , n}, are (up to ambient isometries) the only embedded,
mean convex, self-similarly shrinking mean curvature flows.

On the other hand, there are a great many convex self-similarly
translating mean curvature flows. The first nontrivial examples to be
constructed were the flying wings (so named, by Richard Hamilton,
for their resemblance to the Northrop and Grumman “flying wing”
aircraft).

Figure 6.3: A “flying wing” translator.
Example 12 (Flying wings). For each θ ∈ (0, π

2 ) and n ≥ 2, there is an
O(1)×O(n− 1)-invariant convex translator in Rn+1 with bulk velocity
en+1 which exhausts the slab {(x1, . . . , xn+1) ∈ Rn+1 : −π

2 sec θ <

x1 < π
2 sec θ}. It is asymptotic to an Sn−2 family of Grim hyperplanes

tilted24 through angle θ and scaled by sec θ. 24 Recall that rotating the Grim hyper-
plane {(x, y,− log cos x + t) ∈ R ×
Rn−1 × R : x ∈ (− π

2 , π
2 )}t∈(−∞,∞)

through angle θ ∈ [0, π
2 ) in a vertical

plane e ∧ en+1, e ∈ span{e1, en+1}⊥, and
parabolically rescaling by sec θ yields
another unit speed, vertically translating
mean curvature flow.

These examples are obtained (after establishing suitable estimates)
by taking a limit of solutions to the Dirichlet problem for the graphical
translator pde over suitable bounded, convex domains which tend to
the desired horizontal slab. In fact, they were originally constructed
by first performing the Legendre transform to the graphical transla-
tor pde to obtain a certain fully nonlinear equation.25 (The upshot be- 25 X.-J. Wang, “Convex solutions to the

mean curvature flow”.ing that solutions to this equation are automatically convex, and are
thereby equipped with the a priori estimate |II| ≤ H ≤ 1 due to the
translator equation.) They may also be obtained via a barrier con-
struction and Allard’s regularity theorem26, and there is yet a another 26 Bourni, Langford, and Tinaglia, “On

the existence of translating solutions of
mean curvature flow in slab regions”

approach which exploits the stability of graphical translators as critical
points of the energy functional (5.15).27 (In fact, in this construction,

27 Hoffman et al., “Graphical translators
for mean curvature flow”.the principal curvatures at the tip are prescribed, rather than the slab

width.)
The downside of the two latter approaches is that convexity of the

constructed examples is unclear. But this can be established a posteriori
under the bisymmetry condition.28 28 Bourni, Langford, and Tinaglia, “On

the existence of translating solutions of
mean curvature flow in slab regions”;
Spruck and Xiao, “Complete translating
solitons to the mean curvature flow in
R3 with nonnegative mean curvature”.

That each of these constructions agrees is not obvious—it follows a
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posteriori from the fact that each slab admits at most one convex, locally
uniformly convex translator.29 29 Hoffman et al., “Graphical translators

for mean curvature flow”.A quite natural (and more general) construction was later found
which directly encodes the convexity and asymptotic Grim Reapers;
we will discuss this approach further below, in Example 15. ■

The flying wing family interpolates between the Grim plane (θ = 0)
and the radio-dish (θ = π

2 ). There is also a family of entire analogues
of the flying wings, for which the (k-dimensional) radio dish plays the
role of the Grim Reaper.

30 Hoffman et al., “Graphical translators
for mean curvature flow”; X.-J. Wang,
“Convex solutions to the mean curvature
flow”

Example 13 (Entire wings30). For every n ≥ 3 and k ∈ {2, . . . , n − 1},
and each pair of numbers 0 < λ < µ satisfying (n − k)λ + kµ =

1, there exists an entire, O(k) × O(n − k)-invariant convex translator
in Rn+1 with bulk velocity en+1 and principal curvatures given by
(λ, . . . , λ︸ ︷︷ ︸

k-times

, µ, . . . , µ) at its “tip” (the point of intersection with the xn+1-

axis). ■

There is also a family of examples which interpolate between the
generalized ancient Steedens.

31 Du and Haslhofer, “On uniqueness
and nonuniqueness of ancient ovals”

Example 14 (Deformed Steedens31). For every n ≥ 3 and each k ∈
{2, . . . , n− 1}, there exists an (n− k)-parameter family of entire convex
ancient mean curvature flows that are “only” O(k)×O(1)× · · · × O(1)︸ ︷︷ ︸

(n+1−k)-times

-

invariant. The blow-down of each member of the family is the shrink-
ing cylinder Sk−1

−2(k−1)t × Rn+1−k. ■

There are also a great many non-entire examples. The following
construction suggests the existence of examples which decompose into
axially congruent Grim hyperplanes in any configuration.

32 Bourni, Langford, and Tinaglia, “An-
cient mean curvature flows out of poly-
topes”

Example 15 (Ancient polytopes, flying hyperwings and formations of
flying (hyper)wings32). Given any regular polytope33 P ⊂ Rn (nor-

33 Note that we allow convex polytopes
to be unbounded (any intersection of
finitely many halfspaces is permissible).

malized to circumscribe the unit sphere) there exists a convex ancient
mean curvature flow {∂Ωt}t∈(−∞,ω) whose squash-down

Ω∗ ≑ lim
t→−∞

1
−t

Ωt

is equal to P × {0} ⊂ Rn+1. The solution {∂Ωt}t∈(−∞,ω) exhausts
the slab {(x1, . . . , xn+1) : −π

2 < xn+1< π
2
} and inherits the dihedral

symmetries of P; it is also symmetric under reflection across Rn ×{0}.
If P is unbounded, then {∂Ωt}t∈(−∞,ω) evolves by translation in

the direction of the axis of P. In particular, this provides a different
construction of the flying wings, but also generates many further ex-
amples when n ≥ 3—“flying hyperwings”.
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These examples are constructed by forming the intersection of the
convex regions bounded by the time −R slices of the Grim hyper-
planes whose linear factors are parallel to the facets of P, evolving
the boundary of this region by mean curvature flow to obtain, af-
ter a time-translation, an “old-but-not-ancient” mean curvature flow
{∂ΩR

t }t∈[αR ,0) which reaches the origin at time zero, and (after estab-
lishing a number of uniform-in-R estimates) taking a limit as R → ∞.

Figure 6.4: Grim planes are placed along
each edge of the circumscribed polytope;
the boundary of the enclosed region is
evolved by mean curvature flow, termi-
nating at the origin at time zero (after
a spacetime translation); in the limit as
R → ∞, an ancient solution is obtained.

Figure 6.5: A formation of flying (hy-
per)wings appears at time −∞ and
merges into a simpler formation at time
+∞, preserving width, total velocity,
and total exterior angle.

This construction is slightly more general; it can also be applied to
obtain ancient solutions out of any (not necessarily regular) simplex
P (including unbounded simplices, which are obtained by removing a
face from a bounded simplex). These examples are quite surprising in
that they do not, in general, admit any symmetry beyond the reflection
symmetry across Rn × {0}.

It is also possible to construct examples out of the semi-frustum
(truncation) of an unbounded regular polytope. These examples re-
semble a family of flying hyperwings appearing from infinity at time
minus infinity, coalescing into a single flying hyperwing at time plus
infinity (conserving the total exterior angle). They are interesting in
that they are eternal but do not evolve by translation.34

34 It is tempting to conjecture, based on
Corollary 5.11, that any convex, eternal
mean curvature flow should evolve by
translation (see, e.g. White, “The nature
of singularities in mean curvature flow
of mean-convex sets”, Conjecture 1).

It seems likely that there should exist examples out of any circum-
scribed convex polytope, but this remains an open problem.

Moreover, while it can be shown that, conversely, the squash-down
of any unit scale (non-entire) example must circumscribe the unit ball,
uniqueness is wide open. ■

A good classification of ancient solutions is thus a very difficult
problem in general, even under the assumption of convexity. The two
dimensional case may be within reach, however.35

35 Some very recent progress on the clas-
sification of entire convex ancient so-
lutions in R4 has been announced by
K. Choi and Haslhofer, “Classification
of ancient noncollapsed flows in R4”
(building on work of K. Choi, Hasl-
hofer, and Hershkovits, “Classification
of noncollapsed translators in R4”; Du
and Haslhofer, “On uniqueness and
nonuniqueness of ancient ovals” and B.
Choi et al., “Classification of bubble-
sheet ovals in R4”). In short: we have
already described all possible examples.

6.4 Exercises

Exercise 6.1. Find all solutions to curve shortening flow satisfying the
Ansatz (6.5).

Exercise 6.2. Let {∂Ωt}t∈(−∞,ω) be a convex, locally uniformly convex
ancient mean curvature flow in Rn+1 which is not entire (so that, by
Theorem 6.4, it is confined to a slab region). Show that ∪t∈(−∞,ω)Ωt is a
slab region.
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Epilogue

During the last 50 years, in view of great breakthroughs in analysis—say,
De Giorgi–Nash, or the regularity theory for harmonic maps, then min-
imal surfaces—it became possible to use these [nonlinear] structures—
minimal surfaces, harmonic maps, constant mean curvature surfaces—
to investigate structures in differential geometry that before then could
only be investigated with ODE, geodesics, measuring angles, etc. But
now nonlinear PDE are understood so well that they could be used as
a toolbox in understanding structures in differential geometry. And I
think we’ve only just started—there will be much more that can be done;
in particular, I think really elliptic and parabolic theory—Ricci flow is a
prime example—has become a fantastic tool in a new relation between
analysis and geometry.

– Gerhard Huisken, Mathmedia Interview: Prof. Gerhard Huisken





Part II

Ricci flow





When the dimension n is 0 or 1 there is not much to prove. The n = 2 result is
a special case of uniformization. The first modern work is Smale’s1 in which he 1 Smale, “Generalized Poincaré’s conjec-

ture in dimensions greater than four”.proved PCn, n ≥ 5... PC4 amounts to Smale’s outline with a topological
twist.2 But here the tail wags the dog. When you delve into this detail the 2 Freedman, “The topology of four-

dimensional manifolds”.twist expands to fill your entire field of view... The final case (historically),
dimension 3, was proved by Perelman3 using Hamilton’s theory of Ricci flow. 3 Perelman, “Finite extinction time for

the solutions to the Ricci flow on cer-
tain three-manifolds.”, “Ricci flow with
surgery on three-manifolds.”, “The en-
tropy formula for the Ricci flow and its
geometric applications”.

It is entirely different in outline, more like Beethoven’s 9th than a conventional
proof, and still stands as the greatest accomplishment of 21st century
mathematics.

– Michael H. Freedman, “Afterword: PC4 at age 40”.





Preamble to Part II

The Ricci flow, introduced by Richard Hamilton4,5 in 1982, is a defor- 4 Richard S. Hamilton, “Three-manifolds
with positive Ricci curvature”.
5 Remarkably, the Ricci flow equation
also arises independently in the context
of quantum field theory—as the first or-
der (or “one loop”) approximation of the
renormalization group equation for non-
linear sigma models. In this context,
it was actually discovered slightly be-
fore Hamilton’s foundational work, by
Friedan, “Nonlinear models in 2 + ε di-
mensions”.

mation process for Riemannian metrics which, in a suitable “gauge”,
formally resembles the heat equation, and indeed exhibits a number
of phenomena which are shared by other diffusion processes. These
diffusive properties are highly desirable from the point of view of
geometric and topological applications—in principle, the Ricci flow
smooths out rough metrics and diffuses their curvature, driving them
towards ideal and canonical equilibrium states, thereby restricting the
possible topologies which the initial metric can carry. Alas, life is never
so straightforward: the Ricci flow equation (suitably interpreted) is de-
generate and nonlinear, and suffers singularities in finite time, all of
which prevent the direct implementation of this programme. Nonethe-
less, it has proved itself to be one of the most fruitful tools available to
the geometric analyst, leading (famously) to proofs of the Poincaré and
Thurston conjectures, amongst manifold further important advances.

These motivations aside, the Ricci flow is the canonical heat equa-
tion for Riemannian metrics, and gives rise to many remarkable and
beautiful geometric structures (e.g. solitons, ancient solutions) and
analytic features (e.g. gradient-like structures, differential Harnack in-
equalities, pseudolocality) and as such is a fascinating area of study
for topologists, geometers, and analysts alike.

We shall present here an introduction to the Ricci flow leading up
to the foundations of some modern developments.6 We assume the 6 There are now a number of excellent re-

sources on the Ricci flow, including (and
by no means limited to) the books of An-
drews and Hopper, The Ricci flow in Rie-
mannian geometry, Chow and Knopf, The
Ricci flow: an introduction, Chow, Lu, and
Ni, Hamilton’s Ricci flow and Morgan and
Tian, Ricci flow and the Poincaré conjecture;
the article of Kleiner and Lott, “Notes
on Perelman’s papers”; and the excellent
lectures of Richard Bamler (accessible on
Richard’s webpage at the time of writ-
ing), each of which this part has drawn
upon to some degree.

reader has some basic familiarity with partial differential equations
and Riemannian geometry. For background, the reader may refer, for
instance, to the books of Olver7 and Chavel.8

7 Olver, Introduction to partial differential
equations.
8 Chavel, Riemannian geometry.
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The fundamentals

A smooth one-parameter family {gt}t∈I of smooth Riemannian metrics
gt on a smooth1 n-manifold Mn

evolves by/satisfies/is a Ricci
1 Henceforth, we shall stop using the
qualifier “smooth” so irritatingly often,
leaving it for the most part to the reader
to decide how regular they wish a given
object to be in order to make sense of a
given statement.

flow
2 if

2 In fact, we shall soon replace this by a
more abstract definition, which may ap-
pear more complicated at first but has
many advantages. The two definitions
are equivalent in the sense that there is
a canonical bijection between their solu-
tions.

dgt

dt
= −2Rcgt , (8.1)

where Rcgt is the Ricci tensor associated to gt and the time derivative
is understood fibrewise, in the usual sense: for any x ∈ M,(

dgt

dt

)
x
≑ lim

h→0

(gt+h)x − (gt)x

h
.

If we introduce local coordinates {xi : U → R}n
i=1 in some region

U ⊂ M, then for each x ∈ U we may represent (gt)x and (Rct)x as

(gt)x = gij(x, t)dxi ⊗ dxj and (Rcgt)x = Rcij(x, t)dxi ⊗ dxj ,

and we see that3 3 Note that we follow the conven-
tion Rm(X, Y, Z, W) ≑ g(∇Y∇X Z −
∇X∇Y Z −∇[Y,X]Z, W) for the Riemann
curvature tensor.

∂gij

∂t
= − 2Rcij

= − 2gkℓRmikjℓ

= gkℓ

(
∂2gij

∂xk∂xℓ
+

∂2gkℓ

∂xi∂xj −
∂2gkj

∂xi∂xℓ
− ∂2giℓ

∂xk∂xj

)

+
1
2

gkℓgmn
[ (

∂kgjn + ∂jgkn − ∂ngkj

)
(∂igmℓ + ∂mgiℓ − ∂ℓgim)

−
(
∂igjn + ∂jgin − ∂ngij

)
∂mgkℓ

]
, (8.2)

a system of nonlinear second order partial differential equations. Un-
appealing, certainly, but it does have the redeeming feature that it is
weakly parabolic (which explains the choice of sign on the right hand
side).

We can make this a little nicer (and gain some very important intu-
ition) by being more selective in our choice of “gauge”: at any time t,
about any point x ∈ M, the existence of a gt-harmonic coordinate
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chart can be established using standard results on the existence and
regularity of solutions to elliptic partial differential equations. These
are coordinates satisfying

∆gt x
i = 0,

where ∆gt is the Laplace–Beltrami operator induced by gt; as such, in
gt-harmonic coordinates, the Ricci flow system can be seen to take the
form

∂gij

∂t
= ∆gt(gij) + terms of lower order (8.3)

at time t. This suggests that we should view the Ricci flow as a kind
of geometric heat equation for Riemannian metrics (and also pro-
vides justification for the factor of 2 on the right hand side of the
equation). We shall soon see that it is quite right to do so, but be-
fore pursuing this further, let us first establish some additional useful
intuition, this time more geometric.

8.1 Invariance properties

The Ricci flow is invariant under certain canonical operations4, in the 4 The following list is not intended to be
exhaustive.sense that these operations take one solution and produce another.

8.1.1 Pullback by diffeomorphisms

If {gt}t∈I is a Ricci flow on Mn and ϕ : Nn → Mn is a diffeomorphism,
then (since the Ricci curvature is invariant under diffeomorphisms)(

d
dt

ϕ∗gt

)
x
=

(
ϕ∗ d

dt
gt

)
x
= −2ϕ∗(Rcgt) = −2(Rcϕ∗gt)x .

That is, {ϕ∗gt}t∈I is a Ricci flow on Nn. This is not at all surprising.
On the other hand, if we allow the diffeomorphism to change with

time5), then we pick up an extra term due to the chain rule: 5 We shall always assume the group
property ϕt1 ◦ ϕt2 = ϕt1+t2 for one-
parameter families of diffeomorphisms
ϕt.

d
dt

ϕ∗
t gt = −2Rcϕ∗

t gt + LV(ϕ
∗
t gt) ,

where V is the vector field defined by

V(ϕt(x)) ≑
d
dt
(t 7→ ϕt(x)) .

The converse of this statement is that if gt satisfies the equation

d
dt

gt = −2Rcgt + LV gt

for some vector field V, then the family of metrics ϕ∗
−tgt satisfies Ricci

flow, where ϕt is the flow of V.



the fundamentals 139

8.1.2 Time translations

If {gt}t∈I is a Ricci flow on M and τ ∈ R, then clearly {gt+τ}t∈I−τ is a
Ricci flow on M.

8.1.3 Parabolic rescaling

If {gt}t∈I is a Ricci flow on M and λ > 0, then (since the Ricci tensor
is scale invariant)(

d
dt

λ2gλ−2t

)
x
= −2

(
Rcg

λ−2t

)
x = −2

(
Rcλ2g

λ−2t

)
x .

That is, {λ2gλ−2t}t∈λ2 I is a Ricci flow on M.

8.1.4 Orthogonal sums with flat factors

If {gt}t∈I is a Ricci flow on M and k ∈ N, then {gt + gRk}t∈I is a Ricci
flow on M × Rk.

8.1.5 Quotients and lifts

Let q : Nn → Mn = Nn/G be a quotient map (induced by a proper
and free action of a subgroup G ⊂ Diff(Nn)). If {gt}t∈I evolves by
Ricci flow on Mn, then the lifts {q∗gt}t∈I evolve by Ricci flow on Nn.
Conversely, if {gt}t∈I evolves by Ricci flow on Nn and each ϕ ∈ G is
an isometry of each gt, then {gt}t∈I descends to a Ricci flow on Mn.

8.2 Invariant solutions (a.k.a. self-similar solutions/solitons)

The continuous symmetries of Ricci flow (diffeomorphism, time trans-
lation and scaling) give rise to special types of solutions: those that
evolve purely by some combination of these symmetries. There are
three primary types (but more generally one might consider combina-
tions of these motions).

8.2.1 Steady self-similar solutions

A solution {gt}t∈R to Ricci flow on a manifold M is called a steady

self-similar solution if there is a one-parameter family of diffeo-
morphisms {ϕt}t∈R of M such that

ϕ∗
ε gt−ε = gt

for all ε and t. Differentiating with respect to ε at ε = 0, we find that
such a solution must satisfy the equation

0 = Rcgt +
1
2LV gt
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for all t.
Conversely, if a Riemannian manifold (M, g) satisfies

0 = Rc + 1
2LV g

for some vector field V, whose flow is ϕ, then the family of metrics
{gt ≑ ϕ∗

t g}t∈R satisfies

d
dt

gt =
d
dε

∣∣∣∣
ε=0

gt+ε = LV gt = LVϕ∗
t g = ϕ∗

t LV g = −2ϕ∗
t Rcg = −2Rcgt .

8.2.2 Shrinking/expanding self-similar solutions

A solution {gt}t∈I to Ricci flow on a manifold M is called a homo-
thetic self-similar solution if there is a one-parameter family of
diffeomorphisms {ϕt}t∈I of M such that

e2εϕ∗
ε ge−2εt = gt

for all t ∈ I and ε such that e−2εt ∈ I. Differentiating with respect to ε

at ε = 0, we find that such a solution must satisfy the equation

0 = gt + 2tRcgt +
1
2LV gt

for all t. There are two cases: if I = (−∞, 0), then {gt}t∈(−∞,0) is called
a shrinking self-similar solution. If I = (0, ∞), then {gt}t∈(0,∞)

is called an expanding self-similar solution.
Conversely, if a Riemannian manifold (M, g) satisfies

0 = g ± Rc + 1
2LV g

for some vector field V, then the family of metrics {gt}±t∈(0,∞) defined
respectively by gt ≑ ±2tϕ∗

log
√
±tg satisfies

d
dt

gt = ±2ϕ∗
log

√
±t(g + 1

2LV g) = −2Rcgt .

8.2.3 Examples: Einstein metrics

Recall that a Riemannian manifold (M, g) is Einstein if

Rc = (n − 1)λg

for some λ ∈ R (λ ∈ {−1, 0, 1} modulo scaling). Einstein metrics pro-
vide examples of “trivial” soliton Ricci flows: if λ = 0, e.g. (Mn, g) =
(Rn, gRn), then {gt = g}t∈(−∞,∞) is a steady self-similar Ricci flow
(in this case static), if λ = −1, e.g. (Mn, g) = (Hn, gHn), then
{gt = 2(n − 1)tg}t∈(0,∞) is an expanding self-similar Ricci flow, and
if λ = 1, e.g. (Mn, g) = (Sn, gSn), then {gt = −2(n − 1)tg}t∈(−∞,0) is a
shrinking self-similar Ricci flow.
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Observe that the static Ricci flow t 7→ gt ≑ gRn on Euclidean space
Rn (for example) may also be viewed, not quite trivially, as a steady
Ricci flow by pulling back along the flow ϕ of any Killing vector field
K (since LKgRn = 0). Similarly, we may view Euclidean space as an
expanding or shrinking Ricci flow by pulling back along the flow of the
conformally Killing radial vector field X ≑ xi∂i or its negative (since
LX gRn = 2gRn ).

8.3 Explicit solutions

Certain “explicit” solutions can be constructed “by hand” by imposing
suitable symmetry or algebraic ansätze. We present three examples
here, but there are a great many more examples which have been dis-
covered by analogous methods.

By imposing a large enough symmetry group, the Ricci flow equa-
tion may be reduced to a (possibly highly complicated) system of or-
dinary differential equations.

Example 16 (The shrinking sphere). We seek a solution to Ricci flow on
Sn starting from a round metric, g0 = r2

0gSn . Since we expect roundness
to be preserved, we suppose a priori that the timeslices are always
round,

gt = r2(t)gSn .

The Ricci tensor of gt is then

Rcgt = Rcr2gSn = RcgSn = (n − 1)gSn ,

while its time derivative is

d
dt

gt = 2rr′gSn .

The Ricci flow equation is therefore equivalent to 2rr′ = (n− 1), which
is solved by

r2(t) = r2
0 − 2(n − 1)t , t ∈ (−∞, r2

0
2(n−1) ) . ■

We can play a similar game with self-similar solutions, though in
this case—since the time evolution is already trivial—we may relax
symmetry by one degree of freedom.

Example 17 (Hamilton’s cigar soliton). We seek a two dimensional
steady soliton on the plane which is circle fibred. I.e. a metric on R2

which takes the form

g = dr2 + ψ2(r)dθ2

in polar coordinates and satisfies

−Rc = 1
2LV g
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for some vector field V = f (r)∂r. In two dimensions, the Ricci curva-
ture is just Rc = Kg, where K is the Gauss curvature, which in our
case is given by K = −ψrr

ψ . The Lie derivative term is found to be

1
2
LV g = frds2 + f

ψr

ψ
ψ2 dθ2 .

Equating the two, we find that

fr

f
=

ψr

ψ
.

So f = 2Cψ for some constant C, and hence

ψrr = 2Cψψr .

Equivalently,
ψr = Cψ2 + D .

Under the polar coordinate compatibility conditions (ψ admits a smooth
odd extension about r = 0, where ψr = 1), this is solved by

ψ = λ tanh(λ−1r) .

When λ = 1, the resulting metric

g = dr2 + tanh2 r dθ2

is called Hamilton’s cigar. (The parameter λ merely induces a
scaling of the “standard” cigar.)

Setting V = −2 tanh r∂r yields the flow equation
ds
dt

= − 2 tanh s

s(r, 0) = r ,

which is solved by

sinh s(r, t) = e−2t sinh r .

So Hamilton’s cigar gives rise to the Ricci flow

g =
cosh2 r

e4t + sinh2 r
(dr2 + tanh2 r dθ2) .

Cigar solutions of different scales may be obtained by parabolic
rescaling. ■

Example 18 (Bryant’s radio-dish soliton). We may play the same game This body holding me reminds
me of my own mortality
Embrace this moment, remember
We are eternal, all this pain is an
illusion.
– Tool, “Parabola”

in higher dimensions. We now seek an O(n)-invariant metric

g = dr2 + ψ2(r)gSn−1
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on Rn (n ≥ 3). This leads to the system

f ′ = (n − 1)
ψrr

ψ
, ψψr f + (n − 2)(1 − ψ2

r ) = ψψrr .

Upon making suitable substitutions, we again are able to obtain a
global solution satisfying the required compatibility conditions (see
e.g.6). When n ≥ 3, it behaves as 6 Chow, Ricci solitons in low dimensions.

ψ ∼
√

r as r → ∞ . ■

These basic ideas have a vast generalization: recall that a homo-
geneous space may be regarded as a Riemannian manifold (M, g)
whose isometry group acts transitively. In short, the manifold “looks
the same from any vantage point”. This degree of symmetry guaran-
tees that the curvature tensor at any given point is determined alge-
braically by the metric at that point; if we impose the ansatz that the
isometry group is preserved, this reduces the Ricci flow to a system of
ordinary differential equations. Similar considerations apply to homo-
geneously fibred solitons (though additional compatibility conditions
may be required at any singular fibres). For a much more comprehen-
sive examination of the Ricci flow on homogeneous geometries, see.7 7 Chow and Knopf, The Ricci flow: an in-

troduction.

8.4 Uniqueness and (short-time) existence of solutions

We would like to exhibit the Ricci flow equation as an equation or sys-
tem of equations for which known methods from the theory of partial
differential equations may be applied. There is indeed a general short-
time existence theory which applies to strictly parabolic second order
partial differential equations in vector bundles over compact mani-
folds. Unfortunately, this cannot be applied to the Ricci flow due to
the lack of strict parabolicity.

For nonlinear equations, parabolicity is determined by the lineariza-
tion.

8 See, for example, Andrews and Hop-
per, The Ricci flow in Riemannian geometry,
§5.2.

Lemma 8.1 (Linearization of the Ricci flow8). Suppose that the two pa-
rameter family of metrics gε

t , t ∈ I, ε ∈ (−ε0, ε0), forms a one-parameter fam-
ily of Ricci flows {gε

t}t∈I about gt ≑ g0
t . The variation field ht ≑ d

dε

∣∣∣
ε=0

gε
t

satisfies, in any local coordinate chart,

∂hij

∂t
= gkℓ

(
∇k∇ℓhij +∇i∇jhkℓ −∇ℓ∇jhik −∇k∇ihjℓ

)
. (8.4)

After some calculation, the equation (8.4) can be seen to be weakly,
but not strictly, parabolic9. It turns out that the lack of strict parabol- 9 See, for example, ibid.

icity is essentially due to the Bianchi identities. Treating the Bianchi
identities as a constraint, Hamilton10 is able to prove short-time ex- 10 Richard S. Hamilton, “Three-

manifolds with positive Ricci curva-
ture”.
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istence using direct methods (in particular, the Nash–Moser implicit
function theorem). Soon after Hamilton’s work, de Turck found a way
to relate the Ricci flow to a strictly parabolic equation, to which the
standard theory may be more readily applied.

Theorem 8.2 (Short-time existence and uniqueness). Let Mn be a com-
pact manifold. Given a metric g0 on M there exists δ > 0 and a Ricci flow
{gt}t∈(0,δ) on M such that gt converges uniformly to g0 as t → 0 (in the
smooth sense if g0 is smooth). Moreover, any other Ricci flow starting from
g0 agrees with gt on their common interval of existence. Finally, the Ricci
flow {gt}t∈(0,δ) depends continuously on g0 (in the smooth sense if g0 is
smooth).

11 For a more in-depth presentation of de
Turck’s argument, in particular its rela-
tion to the Bianchi identities, see, e.g.
Andrews and Hopper, The Ricci flow in
Riemannian geometry.

Sketch of the de Turck argument11. Fix some background metric g on M
and consider, instead of the Ricci flow, the Ricci-harmonic map flow
system 

d
dt

Φt = ∆gt ,gΦt

d
dt

gt = − 2Rcgt ,
(8.5)

where Φt : M → M and ∆gt ,g is the map Laplacian with the domain
endowed with the metric gt and the codomain endowed with g. In
fact, don’t consider (8.5); consider instead the system

d
dt

Φt = ∆Φ∗
t g̃t ,gΦt

d
dt

g̃t = − 2Rcg̃t −L(Φ−1
t )∗ d

dt Φt
g̃t ,

(8.6)

which is related to (8.5) by gt ≑ Φ∗
t g̃t. The system (8.6) is strictly

parabolic, and hence admits a (unique) solution {(Φt, gt)}t∈[0,δ) for a
short-time (which depends continuously on g0), thereby providing the
desired Ricci flow {gt ≑ Φ∗

t g̃t}t∈[0,δ).

8.5 The time-dependent geometric formalism

A one-parameter family {gt}t∈I of metrics gt ∈ Γ(T∗M ⊗ T∗M) may
(perhaps more properly) be viewed as a map (x, t) 7→ g(x,t) ≑ (gt)x ∈
T∗M ⊗ T∗M Any such map may be exhibited as a section of a bun-
dle over M × I whose fibres are those of T∗M ⊗ T∗M. Indeed, if we
introduce the spatial tangent bundle

12 12 Here, t : M × I → R denotes the pro-
jection onto the second factor.

Note that the fibres of S are canoni-
cally identified with those of TM; how-
ever, S is a bundle over Mn × I (not Mn),
which means that its sections are “time-
dependent”.

S ≑ {ξ ∈ T(M × I) : dt(ξ) = 0}

of M × I, then any (x, t) 7→ g(x,t) induces (canonically) a section g
of S∗ ⊗S∗, which we shall refer to as a time-dependent metric.
Similarly, the Ricci tensors Rct of the metrics gt induce a section Rc of
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S∗ ⊗S∗. From this point of view, the Ricci flow equation becomes

L∂t g = −2Rc, (8.7)

where ∂t is the canonical vector field on I. Indeed, since the
flow of ∂t is ϕs(x, t) = (x, t + s),

L∂t g(x,t) =
d
ds

∣∣∣∣
s=0

(ϕ∗
s g)(x,t) =

d
ds

∣∣∣∣
s=0

g(x,t+s) =
d
dt
(gt)x .

This may seem like abstract nonsense (and it is), but it does have
a more pragmatic purpose: any time-dependent metric g induces a
natural (and computationally convenient) “time-dependent” geomet-
ric formalism on Mn, which is entirely analogous to the geometric
formalism induced by a (time-independent) metric. In particular, it
induces a canonical (compatible) connection.

Proposition 8.3 (The time-dependent connection). Given any metric g
on the spatial tangent bundle S of M × I there exists a unique connection13 13 called the time-dependent connec-

tion∇ : T(M × I)× Γ(S) → S on S which is

1. metric: for any U, V ∈ Γ(S) and ξ ∈ T(M × I),

0 = ∇ξ g(U, V) ≑ ξg(U, V)− g(∇ξU, V)− g(U,∇ξV)

2. spatially symmetric: for any U, V ∈ Γ(S),

∇UV −∇VU = [U, V] ,

and

3. irrotational: the tensor S ∈ Γ(S∗ ⊗S) defined by

S(V) ≑ ∇tV − [∂t, V]

is g-self-adjoint.

Proof. Observe that the properties (1)–(3) yield

0 = ∂t(g(U, V))− g(∇tU, V)− g(U,∇tV)

= L∂t g(U, V)− g(S(U), V)− g(U, S(V))

= L∂t g(U, V)− 2 S(U, V) ,

and hence
S = 1

2L∂t g .

We shall thus refer to S as the variation tensor of g.
In particular, along a Ricci flow,

S = −Rc,
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and hence, for any time dependent vector field V ∈ Γ(S), we have the
formula

∇tV = [∂t, V]− Rc(V) . (8.8)

Since T(M × I) = S⊕ R∂t and the properties (1) and (2) ensure that
∇ξV satisfies the Levi–Civita formula when ξ ∈ S, this completely
determines ∇.

Conversely, the Levi–Civita formula combined with (8.8) defines a
connection on S.

The time-dependent connection provides a natural notion of differ-
entiation in the time direction of time-dependent vector fields

(sections of S). The upshot is that this notion is computationally very
convenient, as it is compatible with the time-dependent metric.

In the sequel, when it is clear that we are working in the “time-
dependent” setting, we shall conflate S with TM and we will often
use the data (M × I, g) (where g is a time-dependent metric satisfying
(8.7)) to denote a Ricci flow.

8.6 Exercises

Exercise 8.1. Consider metric on S2 which takes the form

g = dr2 + ψ2(r)dθ2

in spherical polar coordinates.

(a) Show that the sectional curvature of g is given by

K = −ψrr

ψ
.

(b) Suppose that g satisfies

Rc = g + 1
2LV g

for some radial vector field V = f (r)∂r. Find f , and hence deter-
mine g.

Exercise 8.2. Consider a time-dependent metric g which is locally of
the form

g(x,θ,t) = y2(x, t) dx2 + x2 dθ2

(a) Show that g satisfies

∂tg = −2Rc + 2∇2 φ

for some potential function φ if and only if y and φ satisfy the
system 

yt = x
(

yx

xy2

)
x

φx =
yx

y3 .
(8.9)
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(b) Find all time-independent solutions to (8.9).

(c) Which (if any) of these solutions extend to a complete metric?

Exercise 8.3. (a) Show that the Levi–Civita connections ∇ε of a one-
parameter family of metrics gε on a manifold Mn satisfy

2
(

d
dε

∣∣∣∣
ε=0
∇ε

)
(X, Y, Z) = ∇ε

Zh(X, Y)−∇ε
Xh(Y, Z)−∇ε

Yh(X, Z) , (8.10)

where g ≑ g0, h ≑ d
dε

∣∣∣
ε=0

gε, and(
d
dε

∣∣∣∣
ε=0
∇ε

)
(X, Y, Z) ≑ g

((
d
dε

∣∣∣∣
ε=0
∇ε

)
(X, Y), Z

)
.

(b) Deduce that, under Ricci flow,

d∇gt

dt
(X, Y, Z)=∇gt

X Rcgt(Y, Z)+∇gt
Y Rcgt(X, Z)−∇gt

Z Rcgt(X, Y) . (8.11)

Exercise 8.4. Show that the map V 7→ S(V) of Proposition 8.3 is indeed
linear over the ring of smooth functions and takes values in Γ(S) (and
hence induces a genuine tensor field S ∈ Γ(S∗ ⊗S) as claimed).

Exercise 8.5. Equip the time-dependent Riemannian manifold (Mn ×
I, g) with its time-dependent connection ∇. Given (x0, t0) ∈ Mn × I
and sufficiently small ε, define the parallel transport maps τε :
Tx0 Mn → Tx0 Mn by

τε(u) ≑ U(t0 + ε) ,

where, for each u ∈ Tx0 Mn, t 7→ U(t) ∈ Tx0 Mn is the unique solution
to {

∇tU = 0

U(t0) = u .

(a) Show that τε is an isometry for each ε.

(b) Show that d
dε

∣∣∣
ε=0

τε(u) = S(x0,t0)
(u).

(c) Deduce that the projection of d
dε

∣∣∣
ε=0

τε onto so(Tx Mn, gt0) van-
ishes.

(This justifies the term “irrotational” to describe the third defining
property of the time-dependent connection.)

Exercise 8.6. Show that, on any Riemannian manifold equipped with
its Levi–Civita connection,

(a) ∆∇ f = ∇∆ f + Rc(∇ f ) for any function f .

Show that, along any Ricci flow equipped with its time-dependent
connection,
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(c) ∇t∇ f = ∇∂t f + Rc(∇ f ) and

(d) ∂t∆ f = ∆∂t f + 2g(Rc,∇2 f ) for any time-dependent function f .

Exercise 8.7. Let g be a time-dependent metric on Mn × I. Equip Mn ×
I with its canonical time-dependent connection ∇. Prove that

Rm(ξ, X, Y, Z) + Rm(ξ, X, Z, Y) = 0

for any ξ ∈ T(M × I) and X, Y, Z ∈ TM. Hint: The argument is the usual
one: since the time-dependent connection is metric compatible, so too is the
curvature operator: Rm(∂t, X)g = 0 for any X ∈ TM.

Exercise 8.8 (Bianchi identities for the time-dependent connection). Let
g be a time-dependent metric on Mn × I. Equip Mn × I with its canon-
ical time-dependent connection ∇. Prove the following identities.

(a) Rm(∂t, X)Y + Rm(Y, ∂t)X = ∇X S(Y)−∇Y S(X).

(b) ∇∂t(Rm(X, Y)) = ∇X(Rm(∂t, Y))−∇Y(Rm(∂t, X)).

Deduce from part (a) that

(c) Rm(∂t, X, Y, Z) = ∇Z S(X, Y)−∇Y S(Z, X).
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The groundwork

9.1 The maximum principle

The maximum principle is a fundamental tool in the analysis of par-
tial differential equations of parabolic type, and the Ricci flow is no
exception. Indeed, in the context of Ricci flow, the maximum principle
exhibits multiple useful manifestations.

9.1.1 Maximum principle for scalars

Proposition 9.1. Let (Mn × [0, T), g) be a Ricci flow on a compact manifold
Mn. Suppose that u ∈ C∞(Mn × (0, T)) ∩ C0(Mn × [0, T)) satisfies

(∂t − ∆ −∇b − c)u ≤ 0

for some time-dependent vector field b and some locally bounded function
c : Mn × [0, T) → R, where the Laplacian ∆ is taken with respect to the
time-dependent metric g. If maxMn×{0} u ≤ 0, then

max
Mn×{t}

u ≤ 0 for all t ∈ [0, T] . (9.1)

If c ≡ 0, then
max

Mn×[0,T]
u = max

Mn×{0}
u . (9.2)

Proof. Given σ ∈ (0, T) and ε > 0, consider uσ,ε(x, t) ≑ u(x, t) −
εe(C+1)t, where C ≑ maxMn×[0,σ] c. We claim that uσ,ε < 0 in Mn ×
[0, σ]. Suppose, to the contrary, that uσ,ε(x0, t0) ≥ 0 for some point
(x0, t0) ∈ Mn × [0, σ]. Since uσ,ε( · , 0) < 0, there exists a positive earli-
est such time, which we take to be t0, in which case u(x0, t0) = 0. At
the point (x0, t0),

0 ≤ (∂t − ∆ −∇b)uσ,ε ≤ cu − ε(C + 1)e(C+1)t

= εe(C+1)tc − ε(C + 1)e(C+1)t

≤ − εe(C+1)t < 0,
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which is absurd. We conclude that uσ,ε < 0 in Mn × [0, σ]. But σ ∈
(0, T) and ε > 0 were arbitrary. Taking ε → 0 and then σ → T yields
the claim.

Of course, the same argument applies with the inequalities reversed,
leading to a minimum principle.

The following ode comparison principle is an immediate con-
sequence of the maximum principle.

Proposition 9.2 (Ode comparison principle). Let (Mn × [0, T), g) be a
Ricci flow on a compact manifold Mn. Suppose that u ∈ C∞(Mn × (0, T))∩
C0(Mn × [0, T)) satisfies

(∂t − ∆ −∇b)u ≤ F (u) , (9.3)

for some time-dependent vector field b and some locally Lipschitz function
F : R → R, where the Laplacian ∆ and covariant derivative ∇ are taken
with respect to the time-dependent metric g. If u ≤ ϕ0 at t = 0 for some
ϕ0 ∈ R, then u (x, t) ≤ ϕ (t) for all x ∈ Mn and 0 ≤ t < T, where ϕ is the
solution to the ode 

dϕ

dt
= F (ϕ) in (0, T) ,

ϕ (0) = ϕ0 .
(9.4)

Proof. Fix s ∈ (0, T). Since F is locally Lipschitz, there exists some
L < ∞ such that

(∂t − ∆ −∇b)(u − ϕ) ≤ F(u)− F(ϕ)

≤ L|u − ϕ| = L sign(u − ϕ)(u − ϕ)

in Mn × (0, s], where sign(u − ϕ) is the sign of the expression u − ϕ.
The claim now follows, within Mn × [0, s], from Theorem 9.1. Taking
s → T completes the proof.

Again, one can reverse the inequalities to obtain the corresponding
ode comparison from below.

The strong maximum principle also passes to the geometric setting.

Proposition 9.3. Let (Mn × (0, T), g) be a Ricci flow on a connected mani-
fold Mn. Suppose that u ∈ C∞(Mn × (0, T)) is nonpositive and satisfies

(∂t − ∆ −∇b − c)u ≤ 0 (9.5)

for some time-dependent vector field b and some function c : Mn × (0, T) →
R, where the Laplacian ∆ and covariant derivative ∇ are taken with respect
to the time dependent metric g. If u(x0, t0) = 0 for some (x0, t0) ∈ Mn ×
(0, T), then u(x, t) = 0 for all (x, t) ∈ Mn × (0, t0].
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Proof. In local coordinates {xi}n
i=1 for a connected coordinate patch

U ⊂ Mn about x0, u satisfies

∂tu ≤ gijuij + (bk + gijΓij
k)uk + cu .

The classical strong maximum principle then implies that u ≡ 0 in
U × (0, t0]. Since Mn is connected, the claim follows from a standard
‘open-closed’ argument.

9.1.2 A maximum principle for symmetric bilinear forms

Hamilton1 discovered the following beautiful maximum principle for 1 Richard S. Hamilton, “Three-manifolds
with positive Ricci curvature”.symmetric bilinear forms.

Proposition 9.4 (Tensor maximum principle). Let (Mn × [0, T), g) be a
Ricci flow on a compact manifold Mn. Suppose that S ∈ Γ(T∗Mn ⊙ T∗Mn)

satisfies

(∇t − ∆ −∇b)S(x,t)(v, v) ≥ F(x, t, S(x,t))(v, v) for all (x, t, v) ∈ TMn

for some time-dependent vector field b ∈ Γ(TM) and some time-dependent

vertical vector field—a (time-dependent) section F of π∗(T∗Mn ⊙
T∗Mn)—which is Lipschitz in the fibre and satisfies the null eigenvec-
tor condition:

F(x, t, T(x,t))(v, v) ≥ 0 whenever T(x,t) ≥ 0 and T(x,t)(v) = 0,

where ∇ and ∆ are the time-dependent connection and (spatial) Laplacian
induced by the time-dependent metric g. If S(x,0) ≥ 0 for all x ∈ Mn, then
S(x,t) ≥ 0 for all (x, t) ∈ Mn × [0, T).

Proof. Fix σ ∈ (0, T) and ε > 0. Setting C ≑ max
(x,t)∈Mn×[0,σ]

LipF(x, t, ·),

we will show that the function qσ,ε : TMn → R defined by

qσ,ε(x, y, t) ≑
(

S(x,t) + εe(C+1)tg(x,t)

)
(y, y)

is positive in TMn|Mn×[0,σ] \ {0}. By hypothesis, qσ,ε(x, 0, y) > 0 for
all y ∈ Tx Mn, x ∈ Mn. So suppose, contrary to the claim, that there
exist2 (x0, y0, t0) ∈ TMn|Mn×(0,σ] such that qσ,ε(x, y, t) > 0 for each 2 This is ensured (despite the noncom-

pactness of TM \ {0}) by the homogene-
ity of qσ,ε with respect to y.

(x, y, t) ∈ TMn|Mn×[0,t0)
but qσ,ε(x0, y0, t0) = 0. Without loss of gen-

erality, |y0| = 1. Choose an orthonormal basis {ei}n
i=1 for Tx0 Mn con-

sisting of eigenvectors of S(x0,t0)
, with y0 = e1, and let xi : U → Rn be

the corresponding local normal coordinate chart for Mn and (xi, yj =

dxj) : π−1(U) → Rn × Rn the induced chart for TMn. With respect to
these coordinates,

qσ,ε =
(

Sij + εe(C+1)tgij

)
yiyj .
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We thereby compute

∂tqσ,ε =
(

∂tSij + ε(C + 1)e(C+1)tgij + εe(C+1)t∂tgij

)
yiyj ,

∂xk qσ,ε =
(

∂kSij + εe(C+1)t∂kgij

)
yiyj ,

and

∂xk ∂xℓqσ,ε =
(

∂k∂ℓSij + εe(C+1)t∂k∂ℓgij

)
yiyj .

Using the normal coordinate conditions, gij = δij and ∂kgij = 0, the
vanishing condition S11 = Sijyiyj = −εe(C+1)t, and the gradient condi-
tion

0 =
(

∂kSij + εe(C+1)t∂kgij

)
yiyj + 2

(
Skj + εe(C+1)tgkj

)
yj = ∂kS11 ,

at the point (x0, y0, t0), we find that

0 ≥
(
∂t − δkℓ∂xk ∂xℓ

)
qσ,ε

= (∇t − ∆ −∇b)S11 + ε(C + 1)e(C+1)t

≥ F(x0, t0, S(x0,t0)
)11 + ε(C + 1)e(C+1)t

≥ F(x0, t0, Sσ,ε
(x0,t0)

)11 − Cεe(C+1)t + ε(C + 1)e(C+1)t

≥ εe(C+1)t

> 0

at (x0, y0, t0), which is absurd. We conclude that qσ,ε does indeed re-
main positive in Mn × [0, σ]. The claim now follows by taking ε → 0
and then σ → T.

9.1.3 A maximum principle for sections of vector bundles

There is even a version of the maximum principle for sections of a
vector bundle. As the reader has likely already realized, the above
maximum principles do not depend on the condition that the time-
dependent metric g satisfies the Ricci flow equation. As such, we state
the vector bundle maximum principle without this hypothesis.

Proposition 9.5 (Vector bundle maximum principle). Let Mn be a com-
pact manifold and π : E → Mn × [0, T) a time-dependent vector bundle
over Mn which is equipped with a metric h and a metric connection ∇, and
let Ω ⊂ E be a closed subset which is convex in the fibre and in-
variant under parallel transport. Given any time-dependent vec-
tor field b on Mn and any time-dependent vertical vector field

F ∈ Γ(π∗E → E) which points into Ω, any solution u ∈ Γ(E) to

(∇t − ∆ −∇b)u = F(u)

satisfying u(x, 0) ∈ Ω for all x ∈ M satisfies u(x, t) ∈ Ω for all x ∈ M and
all t ∈ [0, T).
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The conditions of Proposition 9.5 are intuitive enough: a subset Ω
of the (time-dependent) vector bundle π : M × [0, T) → E is convex

in the fibre if its fibres Ω(x,t) ≑ Ω∩ E(x,t) are convex subsets of E(x,t),
and invariant under parallel transport if parallel translates of
vectors in Ω along curves in M × [0, T) remain in Ω; a vertical vector
field F ∈ Γ(π∗E) points into Ω at (x, t, v) ∈ ∂Ω if (x, t, v) +
εF(x, t, v) ∈ Ω for all small ε > 0 (where addition is is understood
fibrewise).

The proof of Proposition 9.5 uses tools from convex geometry, but
is very similar in nature to that of Proposition 9.4 (see e.g.3); we omit 3 Andrews and Hopper, The Ricci flow in

Riemannian geometry.it for the sake of brevity.

9.2 Evolution of geometry under Ricci flow

The Ricci flow equation induces diffusion equations of various types
for the various geometric attributes of the evolving metric.

9.2.1 Distance distortion estimates

Let (M × I, g) be a Ricci flow. Given any curve γ : [0, L] → M in M,

d
dt

length(γ) =
d
dt

ˆ L

0
|γ′(s)| ds

=
d
dt

ˆ L

0

√
g(γ′(s), γ′(s)) ds

= −
ˆ L

0
Rc
(

γ′(s)
|γ′(s)| ,

γ′(s)
|γ′(s)|

)
ds .

Thus, the Ricci curvature determines the rate of change of lengths of
curves. Applying this at minimizing geodesics yields the following
elementary distance distortion estimates.

Proposition 9.6. If Kg ≤ Rc ≤ Kg along a complete Ricci flow (M ×
[t1, t2], g), then

K dist(x, y, t) ≤ − d
dt

dist(x, y, t) ≤ K dist(x, y, t)

in the (forward and backward, respectively) barrier sense, and in the classical
sense almost everywhere. Furthermore,

e−K(t2−t1) ≤ dist(x, y, t2)

dist(x, y, t1)
≤ e−K(t2−t1) .

Proof. Given any two distinct points x, y ∈ M and any time t0 ∈ [t1, t2],
we can find a distance minimizing geodesic γ : [0, L] → M with respect
to the metric at time t0 which joins x and y. We may assume that γ

is parametrized by arclength, so that the distance d(x, y, t0) between x
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and y with respect to the metric at time t0 is equal to L. By the above
computation and the hypotheses,

K length(γ) ≤ − d
dt

length(γ) ≤ K length(γ) .

Since length(γ) ≥ d(x, y, ·) with equality at time t = t0, we have found
a (forward resp. backward) barrier satisfying the inequalities. The a.e.
classical inequality then follows because t 7→ dist(x, y, t) is Lipschitz
(and hence admits a classical derivative at a.e. time, which must be
equal to that of the barrier because of the first order contact). We may
then integrate to obtain the distance distortion estimates.

These estimates are quite crude. The following argument (inspired
by the proof of the Bonnet–Meyers theorem) provides a much sharper
estimate on long geodesics.

Proposition 9.7. If Rc ≤ (n − 1)Kg for some K > 0 along a complete Ricci
flow (Mn × [t1, t2], g), then

− d
dt

dist(x, y, t) ≤ 10K
1
2

in the barrier sense, and in the classical sense almost everywhere. Thus,

dist(x, y, t2) ≥ dist(x, y, t1)− 10K
1
2 (t2 − t1)

Proof. Given any two distinct points x, y ∈ M and any time t0 ∈ [t1, t2],
we can find a distance minimizing geodesic γ : [0, L] → M with respect
to the metric at time t0 which joins x and y. We may assume that γ

is parametrized by arclength, so that the distance d(x, y, t0) between x
and y with respect to the metric at time t0 is equal to L. By the above
computation and the hypotheses,

− d
dt

length(γ, t) ≤ K length(γ, t) .

In case L ≤ 2K− 1
2 , we have

− d
dt

length(γ, t) ≤ 2K
1
2 ≤ 10K

1
2

at t = t0. The interesting case is L ≥ 2K
1
2 . Choose a parallel orthonor-

mal frame {Ei}n
i=1 along γ such that E1 = γ′ and let φ : [0, L] → R be

a smooth function satisfying

0 ≤ φ ≤ 1, φ|
[K− 1

2 ,L−K− 1
2 ]

, |φ′|2 ≤ 4K
1
2 .

For i = 2, . . . , n, the second variation formula for length yields

0 ≤
ˆ L

0

[
|∇s(φEi)|2 − Rm(γ′, φEi, γ′, φEi)

]
ds

=

ˆ L

0

[
|φ′|2 − φ2Rm(γ′, Ei, γ′, Ei)

]
ds
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at t = t0, since γ is minimizing at t = t0. Tracing, we obtain

0 ≤
ˆ L

0

[
(n − 1)|φ′|2 − φ2Rc(γ′γ′)

]
ds .

Thus,

ˆ L

0
Rc(γ′, γ′) ds =

ˆ L

0

(
φ2Rc(γ′, γ′) + (1 − φ2)Rc(γ′, γ′)

)
ds

≤ (n − 1)
ˆ L

0

(
|φ′|2 + (1 − φ2)K

)
ds

= (n − 1)
ˆ
[0,K− 1

2 ]∪[d−K− 1
2 ,d]

(
|φ′|2 + (1 − φ2)K

)
ds

≤ 10(n − 1)K
1
2 .

The claims now follow as before.

9.2.2 The first variation of volume

Recall that, on any Riemannian manifold (Mn, g), the Riemannian
measure of any compact subset K ⊂ M is defined by

volume(K, g) =
ˆ

K
dµ ≑ ∑

α

ˆ
xα(Uα)

(x−1
α )∗

(
ρα

√
det gα

)
dx ,

where {(Uα, xα)}α is any locally finite covering of K, {ρα}α is any
subordinate partition of unity, dx is the Lebesgue measure on Rn,
and gα is the component matrix of g induced by the α-th chart. If
{gε}ε∈(−ε0,ε0)

is a one-parameter family of metrics on Mn with g0 = g

and d
dε

∣∣∣
ε=0

gε = h, then, with respect to any coordinate chart,

d
dε

∣∣∣∣
ε=0

√
det gε =

1
2

√
det g trg h . (9.6)

We thus obtain the first variation formula:

d
dε

∣∣∣∣
ε=0

volume(K, gε) = −1
2

ˆ
K

trg h dµ . (9.7)

In particular,

Proposition 9.8. along a Ricci flow (M × I, g),

d
dt

volume(K, ·) = −
ˆ

K
R dµ (9.8)

for any compact K ⊂ M, where volume(K, t) ≑ volume(K, gt).
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9.2.3 Evolution of the Ricci and scalar curvatures

Given a Ricci flow {gt}t∈I , applying Lemma 8.1 to the one parameter
family {gε

t ≑ gt+ε}t+ε∈I of time translated Ricci flows yields

d
dt

Rcij = gkℓ
(
∇k∇ℓRcij +∇i∇jRckℓ −∇ℓ∇jRcik −∇k∇iRcjℓ

)
= ∆Rcij + Qij ,

where

Qij ≑ gkℓ
(
∇i∇jRckℓ −∇k∇jRciℓ −∇k∇iRcjℓ

)
= gkℓgpq

(
∇i∇jRmkpℓq −∇k∇jRmipℓq −∇k∇iRmjpℓq

)
.

We can write this in a more natural way by applying the Bianchi iden-
tities and making use of the time-dependent connection.

Proposition 9.9. Along a Ricci flow (Mn × I, g),

(∇t − ∆)Rc = Q(Rc) , (9.9)

where, with respect to any local basis,

Q(Rc)ij ≑ 2RmikjℓRckℓ .

Proof. With respect to (time-independent) local coordinates about a
given point of Mn, the second Bianchi identity and the definition and
symmetries of curvature yield

gkℓgpq∇i∇jRmkpℓq = − gkℓgpq
(
∇i∇kRmpjℓq +∇i∇pRmjkℓq

)
= − gkℓgpq

(
∇i∇kRmpjℓq +∇i∇kRmjpqℓ

)
= − 2gkℓgpq∇i∇kRmpjℓq

= − 2gkℓgpq
(
∇k∇iRmpjℓq + (RmkiRm)pjℓq

)
= 2gkℓgpq

(
∇k∇iRmjpℓq + (RmikRm)pjℓq

)
The second and first Bianchi identities then yield

Qij = gkℓgpq
(

2(RmikRm)pjℓq +∇k∇iRmjpℓq −∇k∇jRmipℓq

)
= gkℓgpq

(
2(RmikRm)pjℓq −∇k∇pRmijℓq

)
= gkℓgpq

(
2(RmikRm)pjℓq +∇k∇pRmiqjℓ −∇k∇pRmiℓjq

)
= − 2gkℓ(RmikRc)jℓ + gkℓgpq

(
∇k∇pRmiqjℓ −∇p∇kRmiqjℓ

)
= 2RmikjℓRckℓ − 2Rc2

ij + gkℓgpq(RmpkRm)iqjℓ .

Observe that4 4 There is an easier way to see
that this term vanishes: since
the terms Qij = ( d

dt − ∆)Rcij and
2(RmikRm)pjℓq = 2RmikjℓRckℓ − 2Rc2

ij
are symmetric, so must be the remain-
der, gkℓgpq(∇k∇iRmjpℓq −∇k∇jRmipℓq).
But this term is clearly skew-symmetric.
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gkℓgpq(RmpkRm)iqjℓ = − gkℓgpqgmn
(

RmpkimRmnqjℓ + RmpkqmRminjℓ

+RmpkjmRmiqnℓ + RmpkℓmRmiqjn

)
= gkℓgpqgmn

(
RmkpimRmnqjℓ − RmnℓiqRmpkjm

RmmqpkRminjℓ − RmpkℓmRmiqjn

)
= 0.

So the claim follows upon applying the identity

∇tRcij =
d
dt

Rcij + 2Rc2
ij .

Taking the trace of (9.9), we find that

Corollary 9.10. along a Ricci flow (Mn × I, g),

(∂t − ∆)R = 2|Rc|2 . (9.10)

Applying the maximum principle to these equations yields useful
information about the behaviour of curvature under Ricci flow.

Proposition 9.11 (Scalar curvature tends towards positive). Let {gt}t∈[α,ω)

be a Ricci flow on a compact manifold M.

1. If minM×{α} R = 0 then either Rc ≡ 0 or R > 0 for t ∈ (α, ω).

2. If minM×{α} R = n(n − 1)r−2 > 0, then ω ≤ α + n
2 r2 and

min
M×{t}

R ≥ n(n − 1)
r2 − 2(n − 1)(t − α)

for t ∈ (α, ω).

3. If minM×{α} R = −n(n − 1)r−2 < 0, then

min
M×{t}

R ≥ − n(n − 1)
r2 + 2(n − 1)(t − α)

for t ∈ (α, ω).

Proof. In the first case, the maximum principle ensures that R remains
nonnegative due to (9.10). The strong maximum principle then guar-
antees that either R > 0 at interior times, or R ≡ 0. But in the latter
case, (9.10) implies |Rc| ≡ 0.

Now, since
|Rc|2 ≥ 1

n R2 ,

we may estimate
∂tR ≥ ∆R + 2

n R2 .

The ode comparison principle then yields the remaining claims.
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Proposition 9.11 tells us two important facts. First, a Ricci flow with
positive scalar curvature on a compact manifold must become singular
in finite time. Second if a Ricci flow on a compact manifold happens to
exist on a very large time interval, then the scalar curvature is almost
nonnegative at the end time. In particular, if the flow has an infinite
past, then the scalar curvature is nonnegative in the present.

Corollary 9.12. For any ancient
5 Ricci flow (Mn × (−∞, ω), g) on a 5 I.e. having an infinite past.

compact manifold Mn, either R > 0 or Rc ≡ 0.

9.2.4 Evolution of the curvature operator

It is also possible to derive an evolution equation for the full curvature
tensor Rm.

Proposition 9.13. Along a Ricci flow (Mn × I, g),

(∇t − ∆)Rm = 2
(
Rm2 + Rm#) , (9.11)

where, as operators on vector fields,

Rm2(X, Y) ≑ 1
2 tr Rm(Rm(X, Y)·, ·)

and
Rm#(X, Y) ≑ tr

[
Rm(X, ·), Rm(Y, ·)

]
,

or, with respect to a local orthonormal frame,

Rm2
ijkℓ =

1
2 RmijpqRmkℓpq

and
Rm#

ijkℓ = (RmipkqRmjpℓq − RmipℓqRmjpkq) .

6 See Exercise 9.3 or, e.g., Andrews and
Hopper, The Ricci flow in Riemannian ge-
ometry; Chow and Knopf, The Ricci flow:
an introduction; Chow, Lu, and Ni, Hamil-
ton’s Ricci flow.

Sketch of the proof6. On the one hand, the Bianchi identities can be ex-
ploited to write the Laplacian of the curvature tensor as

∆Rm(X, Y, Z, W) = ∇X∇ZRc(Y, W)−∇X∇WRc(Y, Z)

−∇Y∇ZRc(X, W) +∇Y∇WRc(X, Z)

− Rm(Rc(X), Y, Z, W) + Rm(X, Rc(Y), Z, W)

− 2
(

B(X, Y, Z, W)− B(X, Y, W, Z)

+ B(X, Z, Y, W)− B(X, W, Y, Z)
)

,

where the tensor B is defined by

B(X, Y, Z, W) ≑ g(Rm(X, ·, Y, ∗), Rm(Z, ·, W, ∗)) .

On the other hand, the “time-dependent Bianchi identities” of Exer-
cise 8.8 can be exploited to write the covariant time-derivative of the
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curvature tensor as

∇tRm(X, Y, Z, W) = ∇X∇ZRc(Y, W)−∇X∇WRc(Y, Z)

−∇Y∇ZRc(X, W) +∇Y∇WRc(X, Z)

− Rm(Rc(X), Y, Z, W) + Rm(X, Rc(Y), Z, W) .

The claim then follows upon recognizing that

(Rm2 +Rm#)(X, Y, Z, W) = B(X, Y, Z, W)− B(X, Y, W, Z)

+ B(X, Z, Y, W)− B(X, W, Y, Z) .

The terms on the right hand side of (9.11) have a natural algebraic
interpretation. Indeed, the term Rm2 is at each point the square of
Rm as an endomorphism of Λ2(TM), while Rm# is the “Lie algebra
square” of Rm (where at each point Λ2(TM) is identified with so(n)).
I.e.

Rm# = ad ◦Rm ∧ Rm ◦ ad∗ ,

where
ad : Λ2(so(n)) → so(n)

is the adjoint representation.

9.3 Global-in-space Bernstein estimates and long-time existence

The evolution equation for Rm immediately yields an evolution equa-
tion for |Rm|2:

(∂t − ∆)|Rm|2 = 2g((∇t − ∆)Rm, Rm)− 2|∇Rm|2

= 2g(Rm2 + Rm#, Rm)− 2|∇Rm|2 .

The first term is formed from the metric contraction of a linear com-
bination of terms which are cubic tensor products of Rm. In partic-
ular, by Young’s inequality, we may estimate 2g(Rm2 + Rm#, Rm) ≤
C|Rm|3, where the constant C depends only on n.

Let us denote by S ∗ T any tensor which is a linear combination of
metric contractions of the tensor product of S and T (of the same type).

Lemma 9.14. Along a Ricci flow (Mn × I, g),

[∇t − ∆,∇]T = Rm ∗ ∇T +∇Rm ∗ T .

From this, we find that

(∂t − ∆)|∇Rm|2 = 2g((∇t − ∆)∇Rm,∇Rm)− 2|∇2Rm|2

= 2g(∇(∇t − ∆)Rm + Rm∗∇Rm +∇Rm∗Rm,∇Rm)

− 2|∇2Rm|2

= Rm ∗ ∇Rm ∗ ∇Rm − 2|∇2Rm|2 .
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If |Rm| remains bounded on the time interval [0, T], then we can esti-
mate

(∂t − ∆)|∇Rm|2 ≤ C|∇Rm|2 ,

where C depends only on n and the bound for |Rm|. The ode compar-
ison principle then implies that |∇Rm|2 grows at most exponentially
on [0, T]:

|∇Rm|2 ≤ max
t=0

|∇Rm|2eCT .

This estimate takes a more natural form if we exploit its scale in-
variance: since |Rm| scales (under parabolic rescaling of our Ricci
flow) like the inverse square of distance, whereas t scales as distance
squared, the constant CT will be scale invariant. If we introduce the
scale parameter r =

√
T and assume that |Rm| ≤ Kr−2 for t ∈ [0, r2] (a

scale-invarant assumption), then the estimate becomes

|∇Rm|2 ≤ C1 max
t=0

|∇Rm|2 ,

where C1 depends only on K and n.
We can also obtain a time-interior version of this estimate: consider,

for some to-be-determined constant a, the combination

Q ≑ 2t|∇Rm|2 + a|Rm|2 .

Observe that

(∂t − ∆)Q = 2|∇Rm|2 + 2t(∂t − ∆)|∇Rm|2 + a(∂t − ∆)|Rm|2

≤ 2|∇Rm|2 + 2tC1|Rm||∇Rm|2 + a(C0|Rm|3 − 2|∇Rm|2)
= 2(1 + C1t|Rm| − a)|∇Rm|2 + aC0|Rm|3 .

If we know that |Rm| is bounded by Kr−2 on M × [0, r2], then

(∂t − ∆)Q ≤ 2(1 + C1K − a)|∇Rm|2 + aC0K3r−6

Thus, if we choose a = 1 + C1K, then the ode comparison principle
yields

t|∇Rm|2 ≤ Q ≤ max
t=0

Q + aC0K3r−6t ≤ aK2(1 + C0K)r−4 .

That is,

|∇Rm| ≤ Dr−2
√

t
,

where D2 ≑ aK2(1 + C0K). This is another manifestation of the diffu-
sive nature of the Ricci flow: even if the curvature is arbitrarily rough
at the initial time, it becomes much more regular only a short-time
later.

An inductive extension of this argument yields the following esti-
mates.
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7 Bando, “Real analyticity of solutions of
Hamilton’s equation”.

Theorem 9.15 ((Global-in-space) Bernstein estimates7). For every n ∈
N, K < ∞ and m ∈ N, there exists Cm < ∞ with the following property.
Let (Mn × [0, T), g) be a Ricci flow on a compact manifold Mn. If

|Rm(x,t)| ≤ Kr−2 for all (x, t) ∈ Mn × [0, r2] ,

then

|∇mRm(x,t)| ≤ Cm max
M×{0}

|∇mRm| for all (x, t) ∈ Mn × [0, r2]

and

|∇mRm(x,t)| ≤
Cmr−2

t
m
2

for all (x, t) ∈ Mn × [0, r2] .

A fundamental application of the global-in-space Bernstein esti-
mates is the following characterization of finite time singularities.

Theorem 9.16 (Long-time existence). Let (Mn × [0, T), g) be a maxi-
mal

8 Ricci flow on a compact manifold Mn. If T < ∞, then 8 I.e. there is no Ricci flow (Mn ×
[0, T′), g′) with T′ > T such that g′(x,t) =

g(x,t) for all t < T.lim sup
t→T

max
M×{t}

|Rm| = ∞ .

Sketch of the proof. Let (Mn × [0, T), g) with T < ∞ be a maximal Ricci
flow on a compact manifold Mn and suppose, contrary to the claim,
that

|Rm| ≤ K on Mn × [0, T) .

By the Bernstein estimates, we also have bounds on Mn × [0, T) for
∇mRm for all m. These geometric estimates can be converted, by an
inductive argument, to estimates in Ck for the metric coefficients in
any local coordinate chart. The only subtlety is the k = 0 and k = 1
cases; to control these terms, we observe that, for any x ∈ Mn and any
v ∈ Tx Mn, ∣∣∣∣ d

dt
log
(

g(x,t)(v, v)
)∣∣∣∣ =

∣∣∣∣∣2Rc(x,t)(v, v)
g(x,t)(v, v)

∣∣∣∣∣ ≤ C .

Integrating, we find that g(x,t) remains uniformly equivalent to g(x,0)
under the evolution. (The first derivatives are then bounded due to
the interpolation inequality.)

Cover Mn by finitely many compact sets Kα which each lie to the
interior of some coordinate chart ϕα : Uα → Rn. The Arzelá–Ascoli
theorem now implies that, for any sequence of times tj → T, we can
find, for each compact set Kα, a subsequence of times such that the
metric coefficients in the chart ϕα converge uniformly on Kα in the
smooth topology to some limit. Taking appropriate subsequences, we
can find limits along the same sequence of times which agree on over-
laps. These limits thus define a global smooth metric on Mn, which we



162

now evolve by the Ricci flow using our short-time existence theorem.
The so extended family of metrics is smooth at each time and it is also
smooth in time across the jump time T since time derivatives of g are
related to spatial derivatives by the Ricci flow equation. But this is im-
possible since our original Ricci flow was assumed to be maximal.

Proposition 9.17. Let (Mn × [0, T), g) be the maximal Ricci flow of a com-
pact Riemannian manifold (Mn, g0). If T < ∞, then

max
Mn×{t}

|Rm| ≥ C
T − t

where C depends only on n.

Proof. Since lim supt↗T maxMn×{t} |Rm| = ∞ and

(∂t − ∆)|Rm|2 ≤ c(n)|Rm|3 ,

the claim follows from the ode comparison principle.

9.4 Local-in-space Bernstein estimates and the compactness the-
orem

By introducing spatial cutoff functions into the above argument, one
may derive the following local-in-space estimates.

9 Shi, “Deforming the metric on com-
plete Riemannian manifolds”.

Theorem 9.18 (Fully local Bernstein estimates9). For every n ∈ N, K <

∞ and m ∈ N, there exists Cm < ∞ with the following property. Let
(Mn × I, g) be a Ricci flow on a manifold Mn. If Br(x, t) has compact closure
in Mn, [t − r2, t] ⊂ I and supBr(x,t)×[t−r2,t] |Rm| ≤ Kr−2, then

|∇mRm(x,t)| ≤ Cmr−m−2 .

Combining these estimates with the Cheeger–Gromov compactness
theorem for Riemannian manifolds with bounded geometry yields the
following compactness theorem for Ricci flows under modest geomet-
ric assumptions.

Theorem 9.19 (Compactness of the space of Ricci flows with bounded
geometry). Let {(Mk × Ik, ok, gk)}k∈N be a sequence of pointed Ricci flows.
Suppose the following conditions hold

1. Br(ok, α) ⋐ Mk and I ≑ [α, ω] ⊂ Ik for all k.

2. maxBr(ok ,α)×I |Rmgk | ≤ C < ∞ for all k.

3. injgk
(ok, α) ≥ δ > 0 for all k.
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There exists a pointed Ricci flow (M × I, o, g) such that, after passing to a
subsequence, the Ricci flows (B r

2
(ok, α) × Ik, ok, gk) converge uniformly in

the smooth sense to the Ricci flow (B r
2
(o, 0)× I, o, g). That is, there exists a

sequence of diffeomorphisms ϕk : B r
2
(o, 0) → Mk with ϕk(o) = ok such that

ϕ∗
k gk → g uniformly in the smooth topology.

By taking limits along diagonal subsequences, one can obtain a
complete limit under global bounds on the curvature and injectivity
radius. Note though that the limit can lose or gain topology, and
different subsequences can take different limits. Compact limits are
better behaved, however (as in this case the convergence is necessarily
uniform).

9.5 An estimate for the curvature

By Klingenberg’s lemma, lower injectivity radius bounds are equiva-
lent to lower volume bounds under the assumption of bounded cur-
vature.

Proposition 9.20. Given κ > 0 and K < ∞, there exists δ > 0 with the
following property. Let (Mn, g) be a Riemannian manifold. If

1. supBr(x0)
|Rm| ≤ Kr−2 and

2. volume(Br(x0)) ≥ κrn,

then
inj(x0) ≥ δr .

Proof. See e.g.10. 10 Chow and Knopf, The Ricci flow: an in-
troduction; Chow, Lu, and Ni, Hamilton’s
Ricci flow.So the lower injectivity radius bound in the compactness theorem

may be replaced by lower volume bounds for geodesic balls.
On the other hand, if the volume of a geodesic ball is bounded from

below for some time under Ricci flow, then the curvature at the centre
is bounded from above.

11 Perelman, “The entropy formula for
the Ricci flow and its geometric appli-
cations”

Theorem 9.21 (Perelman11). For any n ≥ 2 and any κ > 0, there exists
C < ∞ with the following property. Let (Mn × I, g) be a Ricci flow. Suppose
that Br(x, t)× (t − r2, t] ⋐ Mn × I. If

Rm ≥ −r−2g in Br(x, t)× (t − r2, t] and volume(Br(x, t), t) ≥ κrn ,

then
|Rm(x,t)| ≤ Cr−2 .

Sketch of the proof. Suppose, to the contrary, that we can find κ > 0,
a sequence {(Mn

j × Ij, gj)}j∈N of Ricci flows (Mn
j × Ij, gj) containing

points (xj, tj) ∈ Mn
j × Ij, and a sequence of scales rj such that
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– Rmj ≥ −r−2
j gj in Brj(xj, tj)× (tj − r2

j , tj] and

– volume(Brj(xj, tj), tj) ≥ κrn
j , but nonetheless

– |(Rmj)(xj ,tj)
| > j2r−2

j .

Set Qj(x, t) ≑ |(Rmj)(x,t)|. We claim that points (xj, tj) ∈ Mn
j × Ij can

be found with the following properties (see Lemma 9.22 below):

1. (xj, tj) ∈ B 2j
Qj(xj ,tj)

(xj, tj)× (tj −
4j2

Q2
j (xj ,tj)

tj].

2. Qj(xj, tj) ≥ Qj(xj, tj).

3. Qj ≤ 2Qj(xj, tj) in B j
Qj(xj ,tj)

(xj, tj)× (tj −
j2

Q2
j (xj ,tj)

tj].

Set rj ≑ Q−1
j (xj, tj). After parabolically rescaling by r−1

j , we obtain
a sequence of pointed Ricci in flows with curvature bounded by two
on Bj(xj, 0) × (−j2, 0] and volume(Bj(xj, 0), 0) ≥ κ. By the compact-
ness theorem (Theorem 9.19), a subsequence converges to a complete
ancient Ricci flow with nonnegative curvature operator and curvature
bounded from above by two, which has positive asymptotic volume ratio,

V(Mn
∞, g0) ≑ lim

r→∞

volume(Br(x∞, 0), 0)
rn > 0.

It turns out that this final condition is incompatible with the others.
(See Theorem 13.7 in Chapter 13.)

In the proof of Theorem 9.21, we used the following “point picking”
trick.

Lemma 9.22 (Point picking lemma). Let (Mn × I, g) be a Ricci flow and
f : Mn × I → (0, ∞) a continuous function. Given (x, t) ∈ Mn × I and
any d > 0 such that B 2d√

f (x,t)
(x, t)× (t − 4d2

f (x,t) , t) ⋐ Mn × I, there exists

(y, s) ∈ B 2d√
f (x,t)

(x, t)× (t − 4d2

f (x,t) , t) such that f (y, s) ≥ f (x, t) and f ≤

4 f (y, s) in B d√
f (y,s)

(y, s)× (s − d2

f (y,s) , s).

Proof. Set (y0, s0) ≑ (x, t). If (y, s) = (y0, s0) satisfies the conclusion,
we are done. Else there exists (y1, s1) ∈ B d√

f (x,t)
(x, t) × (t − d2

f (x,t) , t)

such that f (y1, s1) > 4 f (y0, s0). If (y1, s1) satisfies the conclusion, we’re
done. Else, we continue choosing points (yj, sj) in the same way. Since
the radii form a geometric series, the points (yj, sj) never leave the ball

B 2d√
f (x,t)

(x, t)× (t − 4d2

f (x,t) , t). Since f admits some finite bound within

B 2d√
f (x,t)

(x, t) × (t − 4d2

f (x,t) , t), the process must terminate after finitely

many steps.
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While the estimates for derivatives of curvature (under the assump-
tion of bounded curvature) rely entirely on the maximum principle,
inspired by a classical argument of Bernstein, the estimate of Theorem
9.21 requires a number of new ideas. We will touch on these ideas in
Chapter 12.

9.6 Exercises

Exercise 9.1. Let (Mn, g) be a Riemannian manifold equipped with
its Levi-Civita connection ∇. Assuming f ∈ C2(Mn) attains a local
maximum at x0 ∈ Mn, show that

0 = ∇ f (x0) and ∇2 f (x0) ≤ 0.

Exercise 9.2. Let {gε}ε∈(−ε0,ε0)
be a one-parameter family of metrics on

a manifold Mn with g0 = g and d
dε

∣∣∣
ε=0

gε = h.

(a) Show that

d
dε

∣∣∣∣
ε=0

Rgε = −g(Rc, h)− ∆ tr h + div div h , (9.12)

where the Ricci curvature, trace, Laplacian and divergence are all
with respect to the metric g.

(b) Deduce that
(∂t − ∆)R = 2|Rc|2

under Ricci flow.

Exercise 9.3. Let g be a time-dependent metric on Mn × I which evolves
by Ricci flow.

(a) Using parts (b) and (c) from Exercise 8.8, show that

∇tRm(X, Y, Z, W) = ∇X∇ZRc(Y, W)−∇X∇WRc(Y, Z)

−∇Y∇ZRc(X, W) +∇Y∇WRc(X, Z)

− Rm(Rc(X), Y, Z, W) + Rm(X, Rc(Y), Z, W) ,

where

B(X, Y, Z, W) ≑ g(Rm(X, ·, Y, ∗), Rm(Z, ·, W, ∗))

(b) Show that

∆Rm(X, Y, Z, W) = ∇X∇ZRc(Y, W)−∇X∇WRc(Y, Z)

−∇Y∇ZRc(X, W) +∇Y∇WRc(X, Z)

− Rm(Rc(X), Y, Z, W) + Rm(X, Rc(Y), Z, W)

− 2
(

B(X, Y, Z, W)− B(X, Y, W, Z)

+ B(X, Z, Y, W)− B(X, W, Y, Z)
)

.
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(c) Deduce that

(∇t − ∆)Rm = 2
(

B(X, Y, Z, W)− B(X, Y, W, Z)

+ B(X, Z, Y, W)− B(X, W, Y, Z)
)

.

Exercise 9.4. Show that any eternal Ricci flow (Mn × (−∞, ∞), g) on
a compact manifold Mn is Ricci flat.

Exercise 9.5. Show (using the ode comparison principle) that, along
any Ricci flow (Mn × [0, T), g) on a compact manifold Mn,

max
Mn×{t}

|Rm| ≤ 1(
maxMn×{0} |Rm|

)−1
+ c(n)t

, (9.13)

where c(n) is a constant which depends only on the dimension n.



10
Pinching and its consequences

We have seen that positivity of scalar curvature is preserved under the
Ricci flow, by applying the (scalar) maximum principle to the reaction-
diffusion equation for the scalar curvature. The reaction terms in the
evolution equation for the Riemann tensor enjoy a far richer algebraic
structure. Understanding this structure (in relation to the tensor and
vector bundle maximum principles) is a crucial step in understand-
ing the long term behaviour of the Ricci flow. We will explore this
paradigm in this chapter.

10.1 Contraction of compact three-manifolds with positive Ricci
curvature to round points

In three dimensions, the trace-free part of the Riemann curvature ten-
sor (the Weyl tensor) necessarily vanishes, so the curvature is entirely
determined by the Ricci tensor.1 1 Indeed, in general, in dimensions n ≥

3, the Riemann curvature tensor admits
the decomposition

Rm = Wy+ Sc⃝∧ g , (10.1)

where the Schouten tensor, Sc, is de-
fined by

Sc ≑ 1
n−2

(
Rc− 1

2(n−1) R g
)

,

the Kulkarni–Nomizu product, ⃝∧ ,
of two symmetric (0, 2) tensors S and T
is defined by

(S ⃝∧ T)(u, v, w, z)

≑ S(u, w)T(v, z)− S(v, w)T(u, z)

+ S(v, z)T(u, w)− S(u, z)T(v, w) ,

and the Weyl tensor, Wy, which may
be taken to be defined by the formula
(10.1), is totally trace-free.

Moreover, the inequality Rc ≥ 0 implies the inequality Rm ≥ 0.
The tensor maximum principle guarantees that these inequalities are
preserved.

Proposition 10.1. Let (Mn × [0, T), g) be Ricci flow on a compact three
manifold M3. If Rc|t=0 ≥ 0, then either

1. Rc > 0 for all t > 0,

2. (M3, g) is flat, or

3. (M3 × I, g) is an isometric quotient of (M2 × R × I, h + dr2) for some
two-dimensional Ricci flow (M2 × I, h).

Proof. Recall that

(∇t − ∆)Rcij = RmikjℓRckℓ .

With the tensor maximum principle in mind, consider, for any non-
negative definite symmetric two-tensor S, the reaction term2 N(S)ij ≑ 2 We may write Rm(S) explicitly using

the formula

Rm(S) ≑
(

S − 1
4 tr(S)g

)
⃝∧ g .

But it will suffice to know that Rm(S)
has the (algebraic) symmetries of the
Riemann tensor and its trace is S.
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Rm(S)ikjℓS
kℓ. Given any null eigenvector v of S, we claim that

N(S)(v, v) = Rm(S)ikjℓSkℓvivj ≥ 0.

To see this, let {e1 = v/|v|, e2, e3} be an orthonormal frame of eigen-
vectors, with corresponding eigenvalues 0 = ρ1 ≤ ρ2 ≤ ρ3. Sinceρ1

ρ2

ρ3

 =

σ12 + σ13

σ12 + σ23

σ13 + σ23

 ,

where σij ≑ Rm(S)ijij, we may expressσ23

σ13

σ12

 =
1
2

ρ2 + ρ3 − ρ1

ρ1 + ρ3 − ρ2

ρ1 + ρ2 − ρ3

 ,

and hence

N(S)(v, v) = 2Rm(S)1k1k ρk

= 2σ12ρ2 + 2σ13ρ3

= (ρ2 − ρ3)ρ2 + (ρ3 − ρ2)ρ3

= (ρ3 − ρ2)
2

≥ 0.

So the tensor maximum principle indeed implies that Rc ≥ 0.
In fact, the strong maximum principle implies that either Rc > 0 or

min
|v|=1

Rc(v, v) ≡ 0,

and hence Rc admits a null eigenvector v (at every point). Now, start-
ing at some point (x, t), parallel transport v along radial geodesics to
form a vector field, and then extend this vector field in time to form
a time dependent vector field V by solving ∇tV = 0. Note that this
vectorfield will satisfy ∇V = 0 and ∆V = 0 at the point (x, t). Thus,
since Rc(V, V) ≥ 0 with equality at (x, t), we find at (x, t) that

∇Rc(V, V) = ∇(Rc(V, V)) = 0,

∆Rc(V, V) = ∆(Rc(V, V)) ≥ 0,

and

0 = ∂t(Rc(V, V)) = ∇tRc(V, V) = ∆Rc(V, V) + Q(Rc) ,

and hence both terms on the right (being each nonnegative) must van-
ish. In an eigenframe {e1, e2, e3} for Rc at (x, t) with e1 = v/|v| and
corresponding eigenvalues 0 = ρ1 ≤ ρ2 ≤ ρ3,

0 = Q(Rc) = 2 sec(e1 ∧ ej)ρj = (ρ3 − ρ2)
2 ,
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and hence ρ2 = ρ3. So Rc has eigenvalues {0, ρ(x, t), ρ(x, t)} at each
point (x, t). If ρ vanishes at some (x, t), then so does R, and the strong
maximum principle implies that 2ρ = R ≡ 0, and hence Rc ≡ 0. So
we may assume that ρ > 0 everywhere. This guarantees that there is a
smooth null eigenvector field, U. Computing as above, we find that

0 ≥ Rc(∇U,∇U) = ρ2|∇U|2

and hence U is parallel in space. It then follows that

∆Rc(U) ≡ 0

and hence

Rc([∂t, U]) = Rc(∇tU) = ∇t(Rc(U))−∇tRc(U) ≡ 0.

The claim now follows from the Frobenius theorem (consider the dis-
tribution U ≑ ker Rc).

When Rc > 0, we may estimate |Rc|2 ≤ R2, so the ode comparison
principle give the following blow-up estimates for the scalar curvature.

Proposition 10.2. Let (M3 × [0, T), g) be Ricci flow on a compact three
manifold M3 with positive Ricci curvature.

min
M×{t}

1
3 R ≤ 1

2(T − t)
≤ max

M×{t}
R.

Proof. Since Rc > 0, we may estimate |Rc|2 ≤ R2, and hence

2
3 R2 ≤ (∂t − ∆)R ≤ 2R2 .

Since lim supt→T maxM3×{t} R = ∞, the ode comparison principle
yields the claims.

The tensor maximum principle can also be used to show that any
uniform positive pinching of the Ricci tensor is preserved.

Proposition 10.3 (Pinching is preserved). Let (M3 × [0, T), g) be a Ricci
flow on a compact manifold M3 such that Rc > 0 at the initial time. There
exists α > 0 such that

Rc ≥ αRg > 0

at all times.

Proof. Since M3 is compact and Rc > 0, a constant α > 0 may be found
such that the inequality holds at the initial time. Given such a constant,
consider the tensor S ≑ Rc − αRg. Observe that

(∇t − ∆)Sij = (∇t − ∆)Rcij − α(∂t − ∆)Rgij

= 2RmikjℓRckℓ − 2α|Rc|2gij .
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If v is a null eigenvector of S, then v is an eigenvector of Rc with
eigenvalue ρ1 = αR. Consider an orthonormal basis {e1 = v, e2, e3}
which diagonalizes Rc. With respect to this basis,

(
RmikjℓRckℓ − α|Rc|2gij

)
vivj = (Rm1k1ℓ − αRckl)Rckℓ

= (σ1k − αρk) ρk

= − αρ2
1 + (σ12 − αρ2)ρ2 + (σ13 − αρ3)ρ3 ,

where σij = sec(ei ∧ ej) (= ρi + ρj − 1
2 R). Since

σ12 − αρ2 + σ13 − αρ3 = ρ1 − α(ρ2 + ρ3) = α(R − ρ2 − ρ3) = αρ1 > 0,

we have

max{σ12 − αρ2, σ13 − αρ3} > 0

and hence

(σ12 − αρ2)ρ2 + (σ13 − αρ3)ρ3 ≥
(
(σ12 − αρ2) + (σ13 − αρ3)

)
min{ρ2, ρ3}

= αρ1 min{ρ2, ρ3}
≥ αρ2

1 .

So the claim follows from the tensor maximum principle.3 3 In fact, our argument is not quite rig-
orous. It may be easily made so by ex-
pressing Rm, Rc and R algebraically in
terms of the tensor S.

Consider now the ratio |R̊c|2/ R2, where R̊c = Rc− 1
3 Rg denotes the

trace-free part of Rc. Since R̊c vanishes precisely at Einstein points, this
ratio is a scale invariant pointwise measure of the “roundness” of our
hypersurface. We will show that this measure of roundness becomes
optimal in regions of very large curvature. First, observe that it does
not decay.

Proposition 10.4 (Roundness is preserved). Let (M3 × [0, T), g) be a
Ricci flow on a compact manifold M3 such that Rc > 0 at the initial time.

|R̊c|2

R2 ≤ max
M3×{0}

|R̊c|2

R2 .

Proof. Since

|R̊c|2

R2 =
|Rc|2

R2 − 1
3

,
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we find that

(∂t − ∆)
|R̊c|2

R2 = (∂t − ∆)
|Rc|2

R2

= 2g
(
(∇t − ∆)

Rc
R

,
Rc
R

)
− 2

∣∣∣∣∇Rc
R

∣∣∣∣2
= 2g

(
(∇t − ∆)Rc

R
− (∂t − ∆)R

Rc
R2 + 2∇∇R

R

Rc
R

,
Rc
R

)
− 2

∣∣∣∣∇Rc
R

∣∣∣∣2
= 4

RmikjℓRcijRckℓ

R2 − 4
|Rc|4

R3 + 2∇∇R
R

∣∣∣∣Rc
R

∣∣∣∣2 − 2
∣∣∣∣∇Rc

R

∣∣∣∣2
= 4

RmikjℓRcijRckℓ

R2 − 4
|Rc|4

R3 + 2∇∇R
R

∣∣∣∣∣ R̊c
R

∣∣∣∣∣
2

− 2
∣∣∣∣∇Rc

R

∣∣∣∣2 .

Observe that, with respect to an eigenframe for Rc,

RRmikjℓRcijRckℓ − |Rc|4 = ∑
i,k

R sec(ei ∧ ek)ρiρk −
(

∑
i

ρ2
i

)2

= ∑
i ̸=k

R(ρi + ρk − 1
2 R)ρiρk −

(
∑

i
ρ2

i

)2

.

Since, by Exercise 10.1, this is nonpositive, we find that

(∂t − ∆)
|R̊c|2

R2 ≤ 2∇∇R
R

∣∣∣∣∣ R̊c
R

∣∣∣∣∣
2

.

So the claim follows from the maximum principle.

By taking a little more care in estimating the reaction terms, we are
able to show that roundness improves at the onset of a singularity.

Proposition 10.5 (Roundness improves). Let (M3 × [0, T), g) be a Ricci
flow on a compact manifold M3 such that Rc > 0 at the initial time. For
every ε > 0, there exists Cε < ∞ (which depends only on ε and the initial
data) such that

|R̊c|2 ≤ εR2 + Cε . (10.2)

Proof. Given σ, consider the function Rσ |R̊c|2
R2 . We aim to show, using

the maximum principle, that an initial upper bound for this function
is preserved, for some σ > 0 (which will depend on the preserved
pinching constant α). The claim then follows from Young’s inequality.
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Observe that

(∂t − ∆)

(
Rσ |R̊c|2

R2

)

= Rσ(∂t − ∆)
|R̊c|2

R2 +
|R̊c|2

R2 (∂t − ∆)Rσ − 2g

(
∇Rσ,∇|R̊c|2

R2

)

= Rσ(∂t − ∆)
|R̊c|2

R2 + σRσ |R̊c|2

R2

[
(∂t − ∆)R

R
+ (1 − σ)

|∇R|2

R2

]
− 2σRσg

(
∇R
R

,∇|R̊c|2

R2

)

= Rσ

[
4

RmikjℓRcijRckℓ

R2 + 2σ
|R̊c|2

R2
|Rc|2

R
− 4

|Rc|4

R3

+2(1 − σ)∇∇R
R

|R̊c|2

R2 − 2
∣∣∣∣∇Rc

R

∣∣∣∣2 + σ(1 − σ)
|R̊c|2

R2
|∇R|2

R2

]
.

Since

∇∇R
R

(
Rσ |R̊c|2

R2

)
= σRσ |∇R|2

R2
|R̊c|2

R2 + Rσ∇∇R
R

|R̊c|2

R2 ,

we arrive at

(∂t − ∆)

(
Rσ |R̊c|2

R2

)

= Rσ

[
4

RmikjℓRcijRckℓ

R2 + 2σ
|R̊c|2

R2
|Rc|2

R
− 4

|Rc|4

R3 − 2
∣∣∣∣∇Rc

R

∣∣∣∣2
−σ(1 − σ)

|R̊c|2

R2
|∇R|2

R2

]
+ 2(1 − σ)∇∇R

R

(
Rσ |R̊c|2

R2

)

≤ 4R1+σ

(
Z +

σ

2
|Rc|2

R2
|R̊c|2

R2

)
+ 2(1 − σ)∇∇R

R

(
Rσ |R̊c|2

R2

)
,

where

Z ≑
RmikjℓRcijRckℓ

R3 − |Rc|4

R4 .

By Exercise 10.1, this expression is nonpositive, with equality only if at
least one of the eigenvalues is zero. It follows that the homogeneous
expression Z (as an algebraic function of the Ricci eigenvalues) takes
a negative maximum, −ζα, on the cone described by the condition
Rc ≥ αR. Since |R̊c| ≤ |Rc| ≤ R on the positive cone, we may take σ to
be twice ζα to obtain

(∂t − ∆)

(
Rσ |R̊c|2

R2

)
≤ 2(1 − σ)∇∇R

R

(
Rσ |R̊c|2

R2

)
,

at which point the claim follows from the maximum principle.
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Proposition 10.5 ensures that the metric is becoming round at any
point where the curvature is becoming large, in the sense that the
scale invariant ratio |R̊c|/R is becoming small. We already know that
max R ≥ 1

2(T−t) is blowing up at the final time. We thus need to show
that min R blows up at the same rate. So we should try to control
the gradient of Rc. In order to do this, we need to compare |∇Rc|2 to
some function (of curvature) whose evolution equation can overcome
the bad reaction terms Rc ∗∇Rc ∗ ∇Rc in the evolution equation for
|∇Rc|2. We can exploit the estimate (10.2) in this regard.

Proposition 10.6. Let (M3 × [0, T), g) be a Ricci flow on a compact mani-
fold M3 such that Rc ≥ αR at the initial time. For any ε > 0, there exists
Cε < ∞ such that

|∇Rc|2 ≤ εR3 + Cε

at all times.

Proof. Recall that

(∂t − ∆)|∇Rc|2 ≤ c|Rc||∇Rc|2 − 2|∇2Rc|2 .

Given ε > 0, choose Cε (as permitted by Proposition 10.5) so that

|R̊c|2 ≤ εR2 + Cε

and consider, for suitable Cε < ∞, the function

Gε ≑ 2Cε + εR2 − |R̊c|2 ≥ Cε > 0.

Estimating Z ≥ 0, |Rc| ≤ R, and (see Exercise 10.2) |∇Rc|2 ≥ 7
20 |∇R|2,

we find that

(∂t − ∆)Gε = 4
((

1
3 + ε

)
R|Rc|2 − Rm(Rc, Rc)

)
+ 2

(
|∇Rc|2 −

(
1
3 + ε

)
|∇R|2

)
≥ 4

|Rc|2
R

(Gε − 2Cε) + κ|∇Rc|2

≥ − 4|Rc|Gε + κ|∇Rc|2 ,

where κ ≑ 1
21 , say, so long as ε ≤ 1

120 .

We aim to preserve upper bounds for the function |∇Rc|2
RGε

. So con-
sider

(∂t − ∆)
|∇Rc|2

RGε

=
(∂t − ∆)|∇Rc|2

RGε
− |∇Rc|2

RGε

(
(∂t − ∆)R

R
− (∂t − ∆)Gε

Gε

)
+ 2g

(
∇|∇Rc|2

RGε
,∇ log(RGε)

)
+ 2

|∇Rc|2
RGε

g
(
∇R
R

,
∇Gε

Gε

)
.
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We estimate the terms on the first line as above. To control the terms
on the second line, observe that, at a new local maximum of |∇Rc|2

RGε
,

0 = ∇k
|∇Rc|2

RGε
= 2

g(∇k∇Rc,∇Rc)
RGε

− |∇Rc|2
RGε

(
∇kR

R
+

∇kGε

Gε

)
and hence

4
|∇Rc|2

RGε
g
(
∇R
R

,
∇Gε

Gε

)
≤ |∇Rc|2

RGε

∣∣∣∣∇R
R

+
∇Gε

Gε

∣∣∣∣2 ≤ 4
|∇2Rc|2

RGε
.

Thus, at such a point,

0 ≤ (∂t − ∆)
|∇Rc|2

RGε
≤ |∇Rc|2

Gε

(
(c + 4)

|Rc|
R

+ 2
|Rc|2

R2 − κ
|∇Rc|2

RGε

)
and hence

κ
|∇Rc|2

RGε
≤ (c + 4)

|Rc|
R

+ 2
|Rc|2

R2 ≤ c + 6.

We conclude that

|∇Rc|2
RGε

≤ C ≑ max

{
c + 6

κ
, max

M3×{0}

|∇Rc|2
RGε

}
.

The claim now follows from Young’s inequality.

Proposition 10.7. Let (M3 × [0, T), g) be the maximal Ricci flow of a com-
pact Riemannian three-manifold (M3, g) with positive Ricci curvature.

Rmax(t)
Rmin(t)

→ 1 and diam(M3, g(·,t)) → 0 as t → T , (10.3)

where Rmax ≑ max
M3

R and Rmin ≑ min
M3

R.

Proof. By the gradient estimate (Proposition 10.6), for every η > 0
there is a constant Cη < ∞ such that

|∇R| ≤ 1
2 η2R

3
2 + Cη .

Since Rmax(t) → ∞ as t → T, there is, for every η > 0, some point
(xη , tη) ∈ M3 × [0, T) such that

R
3
2
η ≑ R

3
2 (xη , tη) = R

3
2
max(tη) ≥ 8Cη/η2

and hence

|∇R|(x, tη) ≤ η2R
3
2 (xη , tη)

for all x ∈ M. Now let γ be a unit speed g(·,tη)-geodesic through

γ(0) = xη . For each s ≤ L ≑ η−1R− 1
2

η , the mean value theorem pro-
vides some s0 ∈ (0, s) such that

R(γ(s), tη) = Rη + s∇γ′(s0)
R(γ(s0), tη) ≥ Rη(1 − η) . (10.4)
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Applying the preserved pinching estimate Rc ≥ αRg, we may estimate

Rc(γ′, γ′) ≥ αR ≥ αRη(1 − η)

for s ≤ L. If η < 1
2 , then

Rc(γ′, γ′) ≥ 2Kg ,

where K ≑ α
4 Rη . Choosing further η ≤ α

4π , we obtain L ≥ πK−1.
Myers’ theorem then implies that every point of M3 is reached by a
g(·,tη)-geodesic of length at most L and we conclude from (3.15) that

Rmin(tη) ≥ (1 − η)Rmax(tη) .

Since Rmin is nondecreasing, we then have

R2
max(t) ≥ (1 − η)2R2

max(tη) ≥
1
4

R2
η for all t ≥ tη ,

so that the above arguments hold for all t ≥ tη . We now conclude that,
given any η ≤ min{ α

4π , 1
2}, there is some time tη ∈ [0, T) such that

diam(M, g(·,t)) ≤
1

ηRmax(t)
and Rmin(t) ≥ (1 − η)Rmax(t)

for all t > tη . The proposition follows since Rmax(t) ≥ 1
2(T−t) .

It follows that the diameter of the rescaled metrics 1
2(n−1)(T−t) g(·,t)

remains bounded, and their scalar curvature converges uniformly to
a constant as t → T. Bootstrapping arguments then yield smooth
convergence to a round metric.

4 Richard S. Hamilton, “Three-manifolds
with positive Ricci curvature”

Theorem 10.8 (Hamilton4). Let (M3, g0) be a compact Riemannian three
manifold with positive Ricci curvature. The maximal Ricci flow (M3 ×
[0, T), g) of (M3, g0) satisfies

1
4(T − t)

g(·,t) → ḡ

uniformly in the smooth topology as t → T, where g is a metric of constant
sectional curvature one. In particular, M3 is a quotient of S3.

10.2 Manifolds with positive curvature operator

In higher dimensions, Böhm and Wilking5 were able to exploit the al- 5 Böhm and Wilking, “Manifolds with
positive curvature operators are space
forms”.

gebraic structure of the reaction terms in the evolution equation for the
curvature tensor to prove (using the vector bundle maximum princi-
ple) that pinching of the curvature operator is preserved and improves
under Ricci flow in all dimensions. As a result, they obtained the fol-
lowing higher dimensional analogue of Hamilton’s theorem.
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Theorem 10.9. Let (Mn, g0) be a compact Riemannian manifold with posi-
tive curvature operator. The maximal Ricci flow (Mn × [0, T), g) of (Mn, g0)

satisfies
1

2(n − 1)(T − t)
g(·,t) → ḡ

uniformly in the smooth topology as t → T, where g is a metric of constant
sectional curvature one. In particular, Mn is a quotient of Sn.

10.3 Positive isotropic curvature and the quarter-pinched dif-
ferentiable sphere theorem

The quarter pinched sphere theorem of Rauch–Klingenberg–Berger
states that a simply connected, complete Riemannian manifold whose
sectional curvature satisfies 1

4 < sec ≤ 1 must be homeomorphic to a
sphere.6 6 The hypothesis is optimal since the sec-

tional curvatures of the Fubini–Study
metric on CPn take values between 1/4
and 1 inclusive.

Micallef and Moore7 later showed that every manifold of positive

7 Micallef and Moore, “Minimal two-
spheres and the topology of mani-
folds with positive curvature on totally
isotropic two-planes”.

isotropic curvature is homeomorphic to a sphere. This condition
states that the curvature operator takes only positive values when act-
ing on totally isotropic two planes. Since, by Berger’s lemma, any
manifold whose curvature is pointwise quarter pinched has positive
isotropic curvature, this generalizes the quarter pinched sphere theo-
rem.

It is natural to expect that these results also hold within the smooth
category (i.e. such a manifold should be diffeomorphic to the sphere) but
attempts to prove this failed for almost fifty years, with the problem
becoming known as the quarter pinched differentiable sphere

conjecture. The conjecture was finally resolved in 2009 by Brendle
and Schoen8 using the Ricci flow. 8 Brendle and Schoen, “Manifolds with

1/4-pinched curvature are space forms”.
Theorem 10.10. Let (Mn, g0) be a compact Riemannian manifold. If g0

has positive isotropic curvature, then the unique Ricci flow starting from g0

deforms g0 through a family of metrics {gt}t∈[0,T), T < ∞, each having
positive isotropic curvature. Moreover,

1
2(n − 1)(T − t)

gt → g

uniformly in the smooth topology as t → T, where g is a metric of constant
curvature one. In particular, Mn is diffeomorphic to Sn.

Corollary 10.11 (Quarter pinched differentiable sphere theorem). Let
(Mn, g) be a compact Riemannian manifold. If 1

4 < sec ≤ 1, then Mn is
diffeomorphic to Sn.

A key ingredient is the observation (following Böhm and Wilking)
that nonnegative isotropic curvature is preserved by Ricci flow (estab-
lished independently by Nguyen9). 9 Huy T. Nguyen, “Isotropic curvature

and the Ricci flow”.
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10.4 Pinched manifolds are compact

By establishing local versions of Hamilton’s arguments, it becomes
possible to apply them in the noncompact setting.

10 Deruelle, Schulze, and M. Simon, “Ini-
tial stability estimates for Ricci flow and
three dimensional Ricci-pinched mani-
folds.”; Lee and P. Topping, “Three-
manifolds with non-negatively pinched
Ricci curvature”; Lott, “On 3-manifolds
with pointwise pinched nonnegative
Ricci curvature”

Theorem 10.12 (Ricci pinched three-manifolds are compact10). If a com-
plete Riemannian three-manifold (M3, g) satisfies R > 0 and

Rc ≥ αRg

for some α > 0, then M3 is compact (indeed, M3 ∼= S3/Γ).

The idea is to flow the metric by Ricci flow, preserving and improv-
ing the pinching condition until it converges to a round point in finite
time. Note, though, that this is much harder to achieve in the (a priori)
absence of compactness!

Theorem 10.12 should be compared with the Bonnet–Myers the-
orem (which guarantees that a complete Riemannian manifold with
uniformly positive Ricci curvature, Rc ≥ αg > 0, is compact).

There are higher dimensional versions of Theorem 10.12 which hold
under stronger conditions.11 11 B.-L. Chen and Zhu, “Complete

Riemannian manifolds with pointwise
pinched curvature”; Lee and P. Topping,
“Manifolds with PIC1 pinched curva-
ture”; Ni and Wu, “Complete manifolds
with nonnegative curvature operator”.

10.5 Exercises

Exercise 10.1. Given nonnegative numbers ρ1, ρ2 and ρ3, show that

∑
i ̸=k

R(ρi + ρk − 1
2 R)ρiρk −

(
∑

i
ρ2

i

)2

≤ 0

with equality only if at least one of the numbers ρi vanish, where
R ≑ ρ1 + ρ2 + ρ3.

Exercise 10.2. Show that, on any Riemannian three-manifold (M3, g),

|∇Rc|2 ≥ 7
20 |∇R|2 .

Hint: Split ∇Rc into its trace and trace-free components.
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Conformal flow of surfaces by curvature

A key step in the proof of Hamilton’s theorem on the convergence of
three-manifolds of positive Ricci curvature (and its higher dimensional
analogues) was the improvement of pinching of the eigenvalues of the
Ricci curvature (or curvature operator). No such estimate is possible in
the two-dimensional setting as, in that case, the curvature operator has
only one component! Fortunately, in two-dimensions, the Ricci flow
enjoys some additional structure, which actually allows us to prove
something far stronger.

11.1 Special properties of the Ricci flow in two space dimen-
sions

Since in two dimensions the Ricci tensor is in proportion to the metric1, 1 This is a straightforward consequence
of the algebraic symmetry properties of
the Riemann curvature tensor.

the Ricci flow takes the form

∂tg = −2Kg , (11.1)

where the scalar of proportion, K, is called the Gauss curvature.
This equation is also the two-dimensional special case of a number of
other higher dimensional flows (e.g. the Kähler Ricci flow, the Yamabe
flow, and conformal flows by functions of the Schouten tensor). With
this in mind, it is perhaps not surprising that (11.1) displays properties
of these higher dimensional flows that are not necessarily shared by
the Ricci flow in higher dimensions.

11.1.1 The logarithmic fast diffusion equation and conformal invari-
ance

Two dimensional Ricci flow (M2 × I, g) of a compact manifold M2

is actually a conformal flow; that is, we can find a function u ∈
C∞(M2 × I) such that

g(x,t) = e−2u(x,t)g(x,0) . (11.2)
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To prove this, observe that a time-dependent metric of the form (11.2)
satisfies Ricci flow if and only if

∂tug = −1
2
L∂t g = Rc = Kg .

That is,

∂tu = K.

By Exercise 11.1,

K(x, t) = e2u(x,t)(∆0u(x, t) + K0(x)) ,

where ∆0 and K0 are the Laplace–Beltrami operator and sectional cur-
vature of g0, so we conclude that e−2ug0 satisfies Ricci flow if and only
if

∂tu = e2u(∆0u + K0) . (11.3)

But this is a parabolic equation, and hence admits a (unique) solution
u for a short-time, given the initial condition u0 = 0. By uniqueness of
solutions to Ricci flow on compact manifolds, g = e−2ug0 must be the
unique Ricci flow starting from g0.

We note that (11.3) is equivalent to the logarithmic fast diffu-
sion equation

∂tv = ∆0 log v − 2K0 (11.4)

on (M2, g0) for the conformal factor v = e−2u.

11.1.2 Preservation of negative curvature

Since Rc = Kg, the Gauss curvature (which is half the scalar curvature)
evolves according to

(∂t − ∆)K = 2K2 . (11.5)

This means that negativity of curvature is preserved in two dimen-
sions (recall that positivity of the scalar curvature is preserved in all
dimensions). We also obtain an analogue of Proposition 9.11:

Proposition 11.1. Let (M2 × [0, T), g) be a Ricci flow on a compact two-
manifold M2.

1. If maxM2×{α} K = 0 then either K ≡ 0 or K < 0 for t ∈ (α, ω).

2. If maxM2×{α} K = −r−2 < 0, then

max
M2×{t}

K ≤ − 1
r2 + 2(t − α)

for t ∈ (α, ω).
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3. If maxM2×{α} K = r−2 > 0, then

max
M2×{t}

K ≤ 1
r2 − 2(t − α)

for t ∈ (α, ω).

In fact, we can do better by making use of the Gauss–Bonnet theo-
rem.

11.1.3 A simple formula for the area

By the Gauss–Bonnet theorem and the first variation of area, the area
of a two-dimensional Ricci flow changes at a precise rate:

d
dt

area(t) = −2
ˆ

M2
K dµ = −4πχ(M2) , (11.6)

where χ(M2) is the Euler characteristic of M2. Integrating yields

area(M2, t) = area(M2, 0)− 4πχ(M2)t , (11.7)

a remarkably simple—and useful—formula. Indeed, consider the av-
erage Gauss curvature

κ(t) ≑
´

M2 Kdµ´
M2 dµ

=
2πχ(M2)

area(M2, t)
=

2πχ(M2)

area(M2, 0)− 4πχ(M2)t
.

By (11.6) (or (11.7)),

d
dt

κ = − 2πχ(M2)

area2(M2, t)
d
dt

area(M2, t) = 2κ2 .

Recalling (11.5), we thus find that

(∂t − ∆)(K − κ) = 2(K − κ)

(
K − κ +

4πχ(M2)

area(M2, 0)− 4πχ(M2)t

)
and hence, if we normalize so that area(M2, 0) = 4π,

min
M2×{t}

K ≥ κ + ϕ (11.8)

for t ∈ [0, T), where ϕ is the solution to the problem
dϕ

dt
= 2ϕ

(
ϕ +

χ(M2)

1 − χ(M2)t

)
ϕ(0) = ϕ0 ≑ min

M2×{0}
(K − κ) ;
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that is (note that ϕ0 ≤ 0),

ϕ(t) =
ϕ0

(1 − χ(M2)t)(1 − χ(M2)t − 2ϕ0t)

∼



− 1
t2 as t → ∞ if χ(M2) < 0

−1
t

as t → ∞ if χ(M2) = 0

−1
1 − χ(M2)t

as t → 1
χ(M2)

if χ(M2) > 0.

In particular, T ≤ 1
χ(M2)

if χ(M2) > 0.
An analogous argument may be carried out to establish an upper

bound for maxM2×{t} K, but that estimate will prove of little utility. We
will obtain a congruous estimate from above by a different argument,
which is strongly informed by the behaviour of solitons.

11.1.4 The Chow–Hamilton entropy

The Chow–Hamilton entropy
2 of a Riemannian surface (M2, g)of 2 Compare this to the Nash entropy,

−
´

u log u, of a positive function u, in-
troduced by Nash, “Continuity of so-
lutions of parabolic and elliptic equa-
tions”.

positive curvature is defined to be

E (M2, g) ≑
area(M2, g)

χ(M2)
exp

(
1

χ(M2)

ˆ
M2

K log K dµ

)
. (11.9)

3 The stated result was established by
Richard S. Hamilton, “The Ricci flow on
surfaces”. A modified version which al-
lows the curvature to change sign was
established by Chow, “The Ricci flow on
the 2-sphere”.

Proposition 11.2 (Monotonicity of the Chow–Hamilton entropy3). Along
any Ricci flow with positive curvature (M2 × I, g) on a compact surface M2,

d
dt

E (M2, gt) ≤ 0

at all times, with strict inequality unless ∂t log K− |∇ log K|2 is constant in
space.

Proof. To make the calculations slightly simpler, we assume that M2 ∼=
S2 but the general case is the same. Using the evolution equations for
curvature (11.5) and area (9.8), we find that

d
dt

ˆ
M2

K log K dµ =

ˆ
M2

(
∂tK
K

− |∇K|2

K2

)
K dµ .

Set
Q ≑ ∂t log K−|∇ log K |2 .

Using the formulae

[∇, ∆] f = −K∇ f , ∇t∇ f = ∇∂t f + K∇ f and [∂t, ∆] f = 2 K ∆

(and a little elbow grease) we find that

(∂t − ∆)Q = 2g(∇ log K,∇Q) + 2
∣∣∣∇2 log K+K g

∣∣∣2 . (11.10)
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We thus find that

d2

dt2

ˆ
M2

K log K dµ =
d
dt

ˆ
M2

QK dµ

=

ˆ
M2

(K ∂tQ + Q∆ K) dµ

=

ˆ
M2

(
∆(KQ) + 2 K

∣∣∣∇2 log K+K g
∣∣∣2) dµ

= 2
ˆ

M2

∣∣∣∇2 log K+K g
∣∣∣2 K dµ .

Estimating∣∣∣∇2 log K+K g
∣∣∣2 =

∣∣∣∇2 log K− 1
2 ∆ log K g + 1

2 (∆ log K+2K) g
∣∣∣2

=
∣∣∣∇2 log K− 1

2 ∆ log K g
∣∣∣2 + 1

2 (∆ log K+2K)2

≥ 1
2 (∆ log K+2K)2

= 1
2 Q2 , (11.11)

this becomes
d2

dt2

ˆ
M2

K log K dµ ≥
ˆ

M2
Q2 K dµ .

Applying Hölder’s inequality and the Gauss–Bonnet theorem, we ar-
rive at

d2

dt2

ˆ
Γt

K log K ds ≥ 1
4π

(
d
dt

ˆ
Γt

K log K ds
)2

. (11.12)

On the other hand, recalling (4.2), we see that the function

ϕ(t) ≑
32π2

area(M2, gt)
=

4π
area(M2,g0)

8π − t

satisfies the corresponding ode

dϕ

dt
= 1

4π ϕ2 .

Moreover, by Perelman’s curvature estimate (Theorem 9.21), the flow
may be continued until the area tends to zero4; i.e. (by (9.8)) until time 4 We shall present an alternative argu-

ment for this below.T ≑ area(M2,g)
8π . This means that

ϕ(t) → ∞ as t → T ,

and we may thereby deduce, by ode comparison, that

d
dt

ˆ
M2

K log K dµ ≤ 32π2

area(M2, gt)

= − 4π
d
dt

log area(M2, gt) .
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Rearranging, we conclude that

d
dt

log E (Γt) ≤ 0.

Now, if the inequality is saturated at some time t0, then we may
deduce from (11.12) that is saturated for all t ≤ t0. But this guaran-
tees that the Hölder inequality is saturated, which ensures that Q is
constant in space for t ≤ t0.

11.2 Self-similar solutions

Recall that a metric g on a two-manifold M2 generates a self-similarly
expanding, steady or shrinking Ricci flow if there are a constant λ ∈ R

and a vector field V such that

Rc = λg − 1
2LV g . (11.13a)

An important special class of solutions are those with V = grad f for
some potential function f , in which case,

Rc = λg −∇2 f . (11.13b)

Theorem 11.3. Every compact, two-dimensional gradient Ricci soliton has
constant curvature.

Proof. Let (M2, g, f ) be a gradient Ricci soliton on a compact two-
manifold. By Exercise 11.2, the vector field K ≑ J(∇ f ) is Killing. Since
M2 is compact, there must be some o ∈ M2 such that ∇ f (o) = 0 and
hence K(o) = 0. It follows that K generates rotations, and hence we can
find coordinates (r, θ) ∈ (0, R)×R/2πZ such that g = dr2 + ψ2(r)dθ2.
The claim now follows from the result of Exercise 8.1.

Essentially the same argument yields the following.

Theorem 11.4. The cigar is the only steady two-dimensional gradient Ricci
soliton with positive curvature.

Sketch of the proof. By Theorem 11.3, M2 cannot be compact. It follows
from Theorem 9.21 (though indirectly; see Theorem 13.2 below) that
K → 0 as the distance to any fixed point x of M2 goes to infinity. But
then K attains a (positive) maximum at some point, at which ∇ f =

∇K/K = 0. The claim now follows as in the previous theorem and
Example 17.

By manipulating the (gradient) soliton equation, we shall establish
a suite of identities for two-dimensional (gradient) Ricci solitons.

First observe that taking the trace of (11.13a) yields (note that, for
any vector field V, 1

2LV g is equal to the symmetric part of ∇V)

K = λ − 1
2 div V , (11.14a)
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or, in the gradient case,

−∆ f = 2(K − κ) . (11.14b)

From this, we see that (11.13a) is equivalent to

LV g − div Vg = 0. (11.15a)

or, in the gradient case,

∇2 f − 1
2 ∆ f g = 0. (11.15b)

Moreover, in case M2 is compact,

0 = −
ˆ

M2
div V dµ = 2

ˆ
M2

(K − λ) dµ

and hence

λ = κ ≑

´
M2 K dµ´

M2 dµ
.

Taking the divergence of (11.15a), we find that

∆V + Rc(V) = 0 (11.16a)

which, on a gradient Ricci soliton becomes

∇K − K∇ f = 0. (11.16b)

Next observe that taking the divergence of (11.16b) yields, in the
gradient case,

∆K −∇∇ f K + 2K(K − λ) = 0. (11.17)

We may also rewrite (11.16b), using (11.15b), as

0 = ∇K − (K − λ)∇ f − λ∇ f

= ∇K + 1
2 ∆ f∇ f − λ∇ f

= ∇K +∇∇ f∇ f − λ∇ f

= ∇
(

K + 1
2 |∇ f |2 − λ f

)
. (11.18)

Thus, in the gradient case,

K + 1
2 |∇ f |2 − λ f = C

for some constant C ∈ R. Equivalently (by (11.14b)),

−∆ f + 1
2 |∇ f |2 − K−λ f = C − 2λ .

Remarkably, this is the Euler–Lagrange equation for a certain con-
strained energy functional.
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Proposition 11.5. Given any compact Riemannian surface (M2, g) and any
λ ∈ R, define, for any smooth function f ,

F( f ) ≑
ˆ

M2

(
1
2 |∇ f |2 + K+λ f

)
e− f dµ . (11.19)

If { fε}ε∈(−ε0,ε0)
is a smooth variation of f = f0 which satisfies the weighted

volume constraint
d
dε

ˆ
M2

e− fε dµ ≡ 0,

then

d
dε

∣∣∣∣
ε=0

F( fε) = −
ˆ

M2

(
∆ f − 1

2 |∇ f |2 + K+λ f
)
h e− f dµ ,

where h ≑ d
dε |ε=0 fε. In particular, if f is a stationary point of the action with

respect to constrained variations, then −∆ f + 1
2 |∇ f |2 − K−λ f is constant.

Proof. Since the weighted volume constraint guarantees that

0 = − d
dε

∣∣∣∣
ε=0

ˆ
M2

e− fε dµ =

ˆ
M2

he− f dµ ,

we find that

d
dε

∣∣∣∣
ε=0

F( fε) =

ˆ
M2

(
g(∇ f ,∇h) + λh − h

[
1
2 |∇ f |2 + K+λ f

])
e− f dµ

= −
ˆ

M2

(
∆ f − 1

2 |∇ f |2 + K+λ f
)

he− f dµ .

This is the first claim. The second claim follows since any function h
which is L2(e− f dµ)-orthogonal to the constant functions gives rise to
an admissible variation.

Theorem 11.6. All compact, two-dimensional shrinking Ricci solitons are
gradient.

Sketch of the proof. We will prove this statement in all dimensions in
§12.2. The idea is to find a minimizer f for the functional F (using
classical methods from the calculus of variations). If λg − Rc = 1

2LV g
for some vectorfield V (the Ricci soliton equation), then this minimizer
will satisfy λg − Rc = ∇2 f (the gradient Ricci soliton equation). (Note
that this does not necessarily mean that the original soliton vector field
V is given by V = ∇ f —the two could differ by a Killing vector field).

Combined with Theorem 11.3, we find that

Corollary 11.7. every compact, two-dimensional shrinking Ricci soliton has
constant curvature.
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Consider now, for some gradient Ricci soliton (M2, g, f ), the corre-
sponding self-similar Ricci flow ϕ∗g, ϕ being the flow of ∇ f . This Ricci
flow will satisfy the soliton equation with

λ(t) =


1

−2t
for t ∈ (−∞, 0) (shrinking case)

0 for t ∈ (−∞, ∞) (steady case)
1
2t

for t ∈ (0, ∞) (expanding case).

Thus, by (11.18),

∂t f = ∇∇ f f

= |∇ f |2

= − 2 K+2λ f + C

= − 2(K−λ)− 2λ + 2λ f + C

= ∆ f + 2λ f + C − 2λ .

Since we are free to modify the potential function, at each time, by
addition of a constant, some choice of potential function will satisfy
the heat equation

(∂t − ∆) f = 2λ f . (11.20)

Alternatively, since −∆ f = 2(K−λ), we may exhibit f as a solution
to the backwards heat equation

(∂t + ∆) f + 2 K = 2∆ f + 2λ f + C + 2(K−λ)

= − 2(K−λ) + 2λ f + C

= |∇ f |2 + 2λ . (11.21)

Remarkably, this means that the function h ≑ λe− f satisfies the con-
jugate heat equation:

−(∂t + ∆ − 2K)h = 0.

The name comes from the fact that, along any two-dimensional Ricci
flow (M2 × I, g),

d
dt

ˆ
M2

uφ dµ =

ˆ
M2

(
∂tuφ + u∂t φ − 2Kuφ

)
dµ

=

ˆ
M2

(
(∂t − ∆)uφ + u(∂t + ∆ − 2K)φ

)
dµ .

so long as φ(·, t) is compactly supported. In particular, a smooth func-
tion u : M2 × (a, b) → R satisfies the heat equation if and only if every
smooth function φ : M2 × (a, b) → R which is compactly supported in
M2 × (a, b) satisfies

ˆ b

a

ˆ
M2

u(∂t − ∆)∗φ dµ dt = 0.
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where
(∂t − ∆)∗ = −(∂t + ∆ − 2K)

is the conjugate heat operator.

11.3 The differential Harnack inequality

The classical heat equation exhibits a remarkable property, known as
the (matrix) differential Harnack inequality, which states that
any positive solution u : Rn × (0, ∞) → R must satisfy

∇2 log u +
I

2t
≥ 0. (11.22)

In fact, the inequality must be strict, unless u is a constant multiple of

the (self-similar) fundamental solution, ρ(x, t) ≑ (4πt)−
n
2 e−

|x−x0 |2
4t for

some x0. Integrating the trace of (11.22) along spacetime curves of the
form t 7→ (γ(t), t), with γ a geodesic joining points x1 and x2, yields
the classical Harnack inequality:

(4πt2)
n
2 u(x2, t2) ≥ (4πt1)

n
2 u(x1, t1) exp

(
−|x2 − x1|2

4(t2 − t1)

)
, (11.23)

for any x2, x1 and any t2 > t1.
For an ancient

5 solution u : Rn × (−∞, ∞) → R, performing a 5 I.e. having an infinite past.

series of time-translations yields the stronger inequality

∇2 log u ≥ 0.

Again, we have strict inequality, except in the exceptional circumstance
that ∇2 log u = 0; that is, u is a constant multiple of the travelling wave
solution, u(x, t) = e(x+tv)·v for some v ∈ Rn.

Observe that, by (11.16b) and (11.17), a two-dimensional expanding
gradient self-similar Ricci flow must satisfy

∂tK = ∆K + 2K2 =
|∇K|2

K
− K

t
,

while a two-dimensional steady gradient self-similar Ricci flow must
satisfy

∂tK = ∆K + 2K2 =
|∇K|2

K
.

6 Richard S. Hamilton, “The Ricci flow
on surfaces”. Cf. Chow, “The Ricci flow
on the 2-sphere”

Theorem 11.8 (Differential Harnack inequality6). Along any Ricci flow
(M2 × [0, T), g) with positive curvature on a compact two-manifold,

∂tK
K

− |∇K|2

K2 +
1
t
≥ 0 for t ∈ (0, T) . (11.24)

Moreover, if (11.24) holds along a Ricci flow (M2 × (0, T), g) on a (not nec-
essarily compact) connected two manifold, then it holds with strict inequality,
unless (M2 × (0, T), g) is an expanding self-similar solution.
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On any non-flat ancient two-dimensional Ricci flow (M2 × (−∞, T), g),

∂tK
K

− |∇K|2

K2 ≥ 0. (11.25)

Moreover, if (11.25) holds along Ricci flow (M2 × (−∞, T), g) on a (not nec-
essarily compact) connected two manifold, then it holds with strict inequality,
unless (M2 × (−∞, T), g) is a steady self-similar solution.

Proof. Consider the functions

Q ≑ ∂t log K − |∇ log K|2

and

P ≑ t(∂t log K − |∇ log K|2) + 1.

Note that P ≡ 0 if and only if (Mn × I, g) is an expanding self-similar
solution and Q ≡ 0 if and only if (Mn × I, g) is a steady self-similar
solution.

Recalling (11.10), we have

(∂t − ∆)Q = 2g(∇ log K,∇Q) + 2
∣∣∣∇2 log K+K g

∣∣∣2 .

Applying (11.11), we thus find that

(∂t − ∆)P ≥ 2g(∇ log K,∇P) + QP .

Since P|t=0 = 1 > 0, the maximum principle implies that P ≥ 0 for
positive times, and either P > 0 or P ≡ 0. The claims follow.

Note that, by continuity, smooth limits of Ricci flows on compact
surfaces satisfy the differential Harnack inequality (and hence also the
rigidity case by the strong maximum principle).

Corollary 11.9 ((Integral) Harnack inequality). Along any Ricci flow
(M2 × [0, T), g) with positive curvature on a compact two-manifold,

K(x2, t2)

K(x1, t1)
≥
[

t2

t1
exp

(
d2(x1, x2, t1)

4(t2 − t1)

)]−1

for any x1, x2 ∈ M2 and any 0 < t1 < t2 < T, with strict inequality unless
(M2 × [0, T), g) is an expanding self-similar solution.

Proof. Integrate the differential Harnack inequality along curves of the
form t 7→ (t, γ(t)).

In fact, Theorem 11.8 is the trace version of the following more gen-
eral “matrix Harnack inequality”.
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7 Richard S. Hamilton, “The Harnack es-
timate for the Ricci flow”

Theorem 11.10 (Matrix differential Harnack inequality7). Along any
Ricci flow (M2 × [0, T), g) with positive curvature on a compact two-manifold
M2,(

∂tK − K2 +
1
t

K
)
|W|2 −∇W∇WK + 2g(∇K ∧ W, U) + K|U|2 ≥ 0

(11.26)
for every time-dependent vector field W and two-form U. Moreover, if (11.26)
holds along a Ricci flow (M2 × (0, T), g) on a (not necessarily compact)
connected two manifold, then it holds with strict inequality, unless (M2 ×
(0, T), g) is an expanding self-similar solution.

Along any ancient Ricci flow (M2 × (−∞, T), g) with positive curvature
on a compact two-manifold M2,(

∂tK − K2
)
|W|2 −∇W∇WK + 2g(∇K ∧ W, U) + K|U|2 ≥ 0 (11.27)

for every time-dependent vector field W and two-form U. Moreover, if (11.27)
holds along a Ricci flow (M2 × (−∞, T), g) on a (not necessarily compact)
connected two manifold, then it holds with strict inequality, unless (M2 ×
(−∞, T), g) is a steady self-similar solution.

Proof. Motivated by various identities which hold on expanding (and
steady) solitons, one considers the forms

Q(U, W) ≑
(

∂tK − K2
)

g(W, W)−∇W∇WK + 2g(∇K ∧ W, U)

+ Kg(U, U)

and

P(U, W) ≑ tQ(U, W) + Kg(W, W) .

After some arduous computations (motivated by various identities
which hold on solitons), it is possible to obtain a suitable differential
inequality for P.

11.4 The monotonicity formula for Perelman’s functional

Given a Ricci flow (M2 × I, g) on a compact surface M2, define, for
any f : M2 × I → R and τ : I → R, the functional

P( f , g, τ) ≑
ˆ

M2

[
τ
(
|∇ f |2 + 2K

)
+ f − 2

]
(4πτ)−1e− f dµ . (11.28)

Observe that, when τ is identified with backwards time, Perelman’s
functional P is just a multiple of the functional F of (11.19) in the
shrinking case, λ > 0 (with f replaced by f − 2).
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Now, on a self-similarly shrinking Ricci flow (M2 × (−∞, 0), g) with
potential function f and τ taken to be negative time,

P( f , g, τ) =

ˆ
M2

[
τ
(
|∇ f |2 + 2K

)
+ f − 2

]
(4πτ)−1e− f dµ

=
1

2π

ˆ
M2

[
1
2 |∇ f |2 + K + λ( f − 2)

)
e− f dµ

=
1
π

ˆ
M2

λ f e− f dµ

due to (11.18) (and the choice of normalization of f ). Since (by (11.21))
λe− f satisfies the conjugate heat equation, we find that

d
dt

P( f , g, τ) =
1
π

ˆ
M2

(∂t − ∆) f λe− f dµ

=
1
π

ˆ
M2

(
∂t f − |∇ f |2

)
λe− f dµ

= 0.

The following remarkable inequality holds along a general Ricci flow
on a compact surface.8 8 We omit the proof, as we will establish

a generalization of the formula to all di-
mensions in §12.4.
9 Perelman, “The entropy formula for
the Ricci flow and its geometric appli-
cations”

Theorem 11.11 (Perelman’s monotonicity formula9). Let (M2 × I, g) be
a Ricci flow on a compact surface M2. If f and τ satisfy

(∂t + ∆ + 2K) f = |∇ f |2 + 1
τ ,

dτ

dt
= − 1,

then

d
dt

P( f , g, τ) = 2τ

ˆ
M2

∣∣Rc +∇2 f − 1
2τ g
∣∣2e− f dµ (11.29)

so long as τ > 0. In particular, the Perelman entropy

µ(M2, gt, t0 − t) ≑ inf
{

P(gt, f , t0 − t) :
1

4π(t0 − t)

ˆ
M2

e− f dµt = 1
}

is nondecreasing for t < t0 (strictly, unless (M2, gt0+t) is a gradient shrink-
ing soliton with potential f (·, t0 + t)).

11.5 Noncollapsing

Roughly speaking, a sequence of Riemannian surfaces (M2
j , gj) is said

to collapse if some sequence of neighbourhoods Uj ⊂ M2
j and scales

λj can be found such that (Uj, λjgj) resemble a one-dimensional mani-
fold as j → ∞. One precise way to quantify this is to ask for a sequence
of points pj ∈ Mj such that

injgj
(pj) sup

Bj injgj
(pj)

(pj)

|K|
1
2 ≤ j−1 , (11.30)
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where injg(p) denotes the injectivity radius of (M2, g) at p—the
radius of the largest ball in (Tp M2, gp) on which the exponential map
is a diffeomorphism.

Note that injg |K| 1
2 is scale invariant. Thus, if (11.30) holds, then,

at the scale of the curvature, the injectivity radius degenerates to zero.
On the other hand, at the scale of the injectivity radius, the curvature is
tending towards zero in arbitrarily large regions, and at this scale the
regions converge to a flat surface.

Example 19. Consider the constant sequence (M2
j , gj) = (R2, gcigar),

where, in polar coordinates

gcigar = dr2 + tanh2 rdθ2

is the cigar metric. If pj are a sequence of points with rj → ∞, then,
on the one hand, injj(pj) → π as j → ∞. On the other hand, since
rj → ∞ as j → ∞, we may arrange, by passing to a subsequence, that
rj − jπ → ∞, and hence (recalling that K = 2 sech2 r)

sup
Bj injj(pj)

(pj)

K ≤ sup
Bjπ(pj)

K

≤ sup
rj−jπ≤r≤rj+jπ

K

= K(rj + jπ))

= 2 sech2(rj − jπ)

= o(1) as j → ∞ .

So the sequence is collapsing. ■

11.5.1 The isoperimetric estimate

The relative isoperimetric constant of a Riemannian two-sphere
(M2 ∼= S2, g) is defined to be

I(M2, g) ≑ inf
Γ

relength(Γ, g) ,

where the infimum is taken over all separating curves—regular Jor-
dan curves Γ ⊂ M2 which10 separate M2 into two topological disks, Ω1

10 Necessarily, by the Schoenflies theo-
rem.and Ω2—and the relative length of a separating curve is defined

by

relength(Γ, g) ≑
length(Γ, g)
length(Γ, g)

,

where the comparison arc Γ is the (unique up to isometry) shortest
Jordan curve which separates the round sphere (S2, g) of the same
area as (M2, g) into regions Ω1 and Ω2 of the same areas as Ω1 and
Ω2, respectively.
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Obviously, the relative isoperimetric constant of a round sphere is
one. Moreover, since

relength(Γ, g) → 1 as length(Γ, g) → 0,

the relative isoperimetric constant cannot exceed one on any two-
sphere (M2, g). In fact, I(M2, g) < 1 unless (M2, g) is isometric to
a round sphere.

Figure 11.1: Given a curve, Γ, separat-
ing a surface (M2 ∼= S2, g), into regions
Ω1 and Ω2, the comparison curve, Γ,
is the shortest curve separating M2 into
regions Ω1 and Ω2 which when mea-
sured in the round geometry on M2 of
the same area as g have the same areas
as Ω1 and Ω2, respectively, as measured
in the original geometry.

Hamilton proved that the isoperimetric constant of a Riemannian
sphere does not decrease under Ricci flow.

Proposition 11.12. Let (M2 × [0, T), g) be a Ricci flow on a surface M2 ∼=
S2.

d
dt

I(M2, gt) ≥ 0

in the viscosity sense11 whenever I(M2, gt) < 1. In particular, 11 This is a weak formulation of the dif-
ferential inequality du

dt ≥ 0 which ap-
plies to any continuous function. It as-
serts, for every t0 ∈ (0, T), that every
smooth function φ : [0, T) → R which
touches u from below at t0, in the sense
that u ≤ φ for t in a backward neigh-
bourhood (t0 − δ, t0] of t0 with equality
at t0, satisfies dφ

dt (t0) ≥ 0.

I(M2, gt) ≥ I(M2, g0) .

Sketch of the proof. First note that, given any separating curve Γ for a
surface (M2, g), the first variation formula for the length of a sep-
arating curve in the comparison surface (M2, g), subject to the area
constraint, guarantees that any comparison curve Γ has constant cur-
vature. For such curves, we have the formula

4π

length2(Γ, g)
=

1
area(Ω1, g)

+
1

area(Ω2, g)
,

where Ω1 and Ω2 are the two regions bounded by Γ, which gives the
formula

relength(Γ, g) =
length(Γ, g)√

4π

(
1

area(Ω1, g)
+

1
area(Ω2, g)

) 1
2

,

where Ω1 and Ω2 are the regions bounded by Γ.
Recall now that the length and area of a variation {Γε}ε∈(−ε0,ε0)

of
Γ = Γ0 vary according to

d
dε

∣∣∣∣
ε=0

length(Γε) = −
ˆ

Γ
g(⃗κ, V) ds ,
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and
d
dε

∣∣∣∣
ε=0

area(Ωε) =

ˆ
Γ

g(N, V) ds ,

where V is the variation field and N is the outward unit normal corre-
sponding to the choice of bounded region, Ω. It follows that
´

Γ κg(N, V) ds´
Γ g(N, V) ds

=
1
2

length(Γ, g)
(

1
area(Ω, g)

− 1
area(M2 \ Ω, g)

)
at a minimizer of the relative length for any (nontrivial) variation V.
From this we may conclude that a miminizer has constant curvature,

κ ≡ 1
2

length(Γ, g)
(

1
area(Ω, g)

− 1
area(M2 \ Ω, g)

)
. (11.31)

Consider now the constant distance variation, Γε = {expp εNp : p ∈
Γ}. The second variation identities, along this variation, are given by

d2

dε2

∣∣∣∣
ε=0

length(Γε) = −
ˆ

Γ
K ds

and
d2

dε2

∣∣∣∣
ε=0

area(Ωε) =

ˆ
Γ

κ ds .

(The first of these is established by differentiating the Gauss–Bonnet
formula,

´
Ωε

K dµ +
´

Γε
κε ds = 2π while the second follows from the

identity d
dε area(Ωε, g) = length(Γε, g).) Combining these and recalling

(11.31), we conclude that
ˆ

Γ
K ds ≤ length3(Γ, g)

area(Ω, g) area(M2 \ Ω, g)
(11.32)

at a minimizer Γ of the relative length.
Now, if I(M2, g) < 1, then (since relength(Γ, g) approaches 1 as

length(Γ, g) approaches 0) a minimizing sequence12 of separating curves 12 I.e. relength(Γj, g) → I(M2, g) as j →
∞.Γj will have lengths bounded uniformly from below. It is then pos-

sible to extract a suitable weak limit curve, Γ. Though this limiting
curve may not be smooth a priori, the vanishing of the first variation
of the relative length at Γ ensures that Γ has constant curvature in the
corresponding weak sense, which guarantees that it is smooth (and
connected, else a better constant is given by one of the components).

Now suppose that the metrics {gt}t∈[0,T) on M2 evolve by Ricci flow.
Given t0 ∈ (0, T), if I(M2, gt0) < 1, then we can find some minimiz-
ing curve, Γt0 , as above. Given any variation {Γt}t∈(t0−δ,t0]

of Γt0 , the
inequality relength(Γt, gt) ≥ I(M2, gt) holds for t ∈ (t0 − δ, t0], with
equality at time t0. Thus, if φ is a lower support for I(M2, gt) at time
t0, then φ(t) ≤ relength(Γt, gt) with equality at time t0, and hence, at
time t0,

d
dt

φ ≥ d
dt

relength(Γt, gt) .
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If we take {Γt}t∈(t0−δ,t0]
to be the constant distance variation (in the

outwards direction with respect to a choice of bounded domain Ω),
then

d
dt

length(Γt, gt) =

ˆ
Γt

(κ − K) ds ,

d
dt

area(Ωt, gt) = length(Γt, gt)− 2
ˆ

Ωt

K dµ

= length(Γt, gt) + 2
ˆ

Γt

κ dµ − 4π

and
d
dt

area(M2 \ Ωt, gt) = − length(Γt, gt)− 2
ˆ

Γt

κ dµ − 4π ,

where Γt = ∂Ωt is either choice of orientation. Thus,
d
dt relength(Γt, gt)

relength(Γ, gt)

=

´
Γt
(κ − K) ds

length(Γ, gt)

+
2π
(
area2(Ωt, gt) + area2(M2 \ Ωt, gt)

)
area(Ωt, gt) area(M2 \ Ωt, gt) (area(Ωt, gt) + area(M2 \ Ωt, gt))

− 1
2

(
length(Γt, gt) + 2

ˆ
Γt

κ dµ

)(
1

area(Ωt, gt)
− 1

area(M2 \ Ωt, gt)

)
.

Recalling (11.31) and (11.32), we find, at time t = t0, that

d
dt

ln φ ≥ d
dt

ln relength(Γt, gt)

≥
2π
[

area2(Ωt, gt) + area2(M2 \ Ωt, gt)
]
(1 − relength2(Γt, gt))

area(Ωt, gt) area(M2 \ Ωt, gt)
[

area(Ωt, gt) + area(M2 \ Ωt, gt)
] .

The first claim follows.
To prove the second claim, it suffices to establish that

I(Γt)− I(Γ0) + ε(1 + t) ≥ 0

for all t ∈ [0, T) for any ε > 0. Note that the inequality holds strictly
at time t = 0 for any positive ε. Suppose then that some ε > 0 and
t0 ∈ (0, T) can be found such that

I(Γt)− I(Γ0) + ε(1 + t) ≥ 0

for all t ≤ t0, but with equality at time t = t0. But then the function

φ(t) ≑ I(Γ0)− ε(1 + t)

is a lower support for I at time t = t0, and hence

0 ≤ d
dt

φ = −ε < 0,

which is absurd.
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Combining this with Klingenberg’s lemma yields the following lower
bound for the injectivity radius.

Corollary 11.13. Let (M2 × [0, T), g) be a Ricci flow on a surface M2 ∼= S2.

inj2(M2, gt) ≥
π

4
I(M2, g0)

Kmax(t)
. (11.33)

11.5.2 A lower bound for area at the scale of the curvature

Recall, from Theorem 11.11, that, for any choice of backwards time
τ(t) = t0 − t, Perelman’s entropy

µ(M2, gt, τ(t)) = inf
{

P(gt, f , τ(t)) :
1

4πτ(t)

ˆ
M2

e− f dµt = 1
}

is nondecreasing along a Ricci flow (M2 × [0, T), g) whilever τ(t) > 0.
Given t0 ∈ [0, T), set τ = t0 + r2 − t and consider the test function
u(·, t0) = (4πr2)−

n
2 e− f (·,t0) with e− f (·,t0) = AχBr(x0,t0)

. Observe that, in
order to satisfy the constraintˆ

M2
u(·, t0)dµt0 = 1,

we should take A ∼ area(Br(x0,t0),t0)
r2 . Monotonicity of the entropy then

implies

µ(M2, g0, t0 + r2) ≤ µ(M2, gt0 , r2)

≤ P(g, f (·, t0), r2)

=

ˆ
M2

[
r2
(
|∇ f |2 + 2K

)
+ f − 2

]
(4πr2)−1e− f dµ

≲ r2 max
Br(x0,t0)

K(·, t0) + ln
area(Br(x0, t0), t0)

r2 .

Thus, if K(·, t0) ≲ r−2, then we obtain the lower area bound

area(Br(x0, t0), t0)

rn ≥ κ(M2, g0, T) .

I.e. areas are bounded uniformly from below at the scale of the cur-
vature. By Proposition 9.20, this yields a uniform lower bound for the
injectivity radius at the scale of the curvature, so the flow is noncol-
lapsing.

Note though, that this argument is not quite rigorous, as the test
function is not smooth (we took the gradient term to be zero), but it
can easily be made so by introducing a cut-off function.13 13 We omit the proof as we shall carry it

out in general dimensions in §12.4.
Theorem 11.14. 14 Let (M2 × [0, T), g) be a Ricci flow on a compact surface 14 Perelman, “The entropy formula for

the Ricci flow and its geometric appli-
cations”.

M2. Given (x, t) ∈ M2 × [0, T), if |K| ≤ r−2 on Br(x, t), r ≤ 1, then

area(Br(x, t), t) ≥ κr2 ,

where κ = κ(M2, g0, T).
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11.6 Uniformization of surfaces by Ricci flow

Recall the lower curvature bound

K − κ ≳



− 1
t2 as t → ∞ if χ(M2) < 0

−1
t

as t → ∞ if χ(M2) = 0

− 1
1 − χ(M2)t

as t → 1
χ(M2)

if χ(M2) > 0.

from (11.8). We shall obtain a complimentary upper bound by seeking
an estimate which is saturated by soliton solutions. Recall that, on a
gradient Ricci soliton, the potential function f satisfies

−∆ f = 2(K − κ) . (11.34)

On the other hand, since its right hand side has zero average, the
equation (11.34) admits a solution f on any compact two-dimensional
Ricci flow. Moreover, by the maximum principle, the solution f is
unique up to the addition of a function of time.

Lemma 11.15. Every Ricci flow (M2 × [0, T), g) on a compact two-manifold
M2 admits a curvature potential function satisfying

(∂t − ∆) f = 2κ f

and hence, assuming area(M2, 0) = 4π,

minM2×{0} f

1 − χ(M2)t
≤ f ≤

maxM2×{0} f

1 − χ(M2)t
. (11.35)

Proof. Since, for any function u,

∂t∆u = ∆∂tu + 2K∆u ,

we find that

∆∂t f = ∂t∆ f − 2K∆ f

= − 2∂t(K − κ) + 4K(K − κ)

= − 2∆(K − κ)− 4(K2 − κ2) + 4K(K − κ)

= ∆∆ f + 2κ∆ f

= ∆(∆ f + 2κ f ) .

That is,
∆(∂t f − ∆ f − 2κ f ) = 0.

So ∂t f − ∆ f − 2κ f is a function of t only. By exploiting the freedom to
add a function of t to f , we can easily guarantee that

(∂t − ∆) f − 2κ f = 0

as claimed. The second claim then follows from the maximum princi-

ple, since, under the area normalization, κ = χ(M2)
1−χ(M2)t
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Recall from (11.18) that, on a two-dimensional Ricci soliton,

0 = ∇
(

K + 1
2 |∇ f |2 − κ f

)
.

That is, K + 1
2 |∇ f |2 − κ f is a function of time only. Consider then, on

a general (compact) two dimensional Ricci flow, the function

F ≑ K + 1
2 |∇ f |2 − κ f

where f is a curvature potential satisfying Lemma 11.15.

Proposition 11.16. The function F satisfies

(∂t − ∆)F = 2κF − 2
∣∣∇2 f − 1

2 ∆ f g
∣∣2 (11.36)

and hence

F ≤
maxM2×{0} F

1 − χ(M2)t
(11.37)

with strict inequality unless (M2 × I, g) is a soliton.

Proof. We leave the verification of (11.36) as an exercise. The inequal-
ity (11.37) follows from the maximum principle, with strict inequal-
ity unless it holds identically. But in that case (11.36) implies that
∇2 f − 1

2 ∆ f g = 0. The final claim follows.

This is an extremely useful estimate. For instance, we immediately
obtain precise control on the maximal time of existence.

Corollary 11.17. Let (M2 × [0, T), g) be the maximal Ricci flow of a compact
Riemannian surface (M2, g0). If χ(M2) ≤ 0, then T = ∞. If χ(M2) > 0,
then T = 1

χ(M2)
.

Proof. By (11.35) and (11.37), there is a constant C < ∞ such that

K ≤ C
1 − χ(M2)t

(
1 − χ(M2)

1 − χ(M2)t

)
. (11.38)

So the claim follows from the long-time existence theorem (Theorem
9.16).

In fact, the estimate (11.37) in conjunction with the lower bound
(11.8) will be sufficient to establish infinite time existence and conver-
gence of the flow in case χ(M2) ≤ 0. The case χ(M2) > 0 is somewhat
trickier due to the finite time singularity. In that case, we analyze the
singularity by rescaling and applying Theorem 9.19. The rescaling nor-
malizes the curvature, but we still need to establish lower bounds for
the injectivity radius. Note that, in the elliptic case, χ(M2) > 0, the
universal cover is S2 (which is compact); so it suffices to work on S2,
in which case Corollary 11.13 yields the desired bound.
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15 Chow, “The Ricci flow on the 2-
sphere”; Richard S. Hamilton, “The Ricci
flow on surfaces”

Theorem 11.18 (Chow and Hamilton15). Given a compact Riemannian
surface (M2, g0), let (M × [0, T), g) be the maximal Ricci flow starting at
(M2, g0).

– If χ(M2) > 0, then T < ∞ and 1
2(T−t) gt converges uniformly in the

smooth topology to a metric of constant curvature K = +1 as t → T.

– If χ(M2) = 0, then T = ∞ and gt converges uniformly in the smooth
topology to a metric of constant curvature K = 0 as t → T.16 16 Observe that, in contrast to the proof

of Hamilton’s theorem (Theorem 10.8),
the argument presented here does not
provide a rate of convergence of the
rescaled curves to the shrinking sphere.
This may be remedied by a stability argu-
ment (cf. Exercise 4.8).

– If χ(M2) < 0, then T = ∞ and 1
2t gt converges uniformly in the smooth

topology to a metric of constant curvature K = −1 as t → ∞.

Sketch of the proof. Consider first the case χ(M2) = 0. In this case,
κ = 0, and (11.8) becomes

K ≥ − 1
2t

.

The uniform upper bound for K of (11.38) then implies a uniform
bound for ∇K via the Bernstein estimates. Since the average of K is
zero, we are then able to conclude that K → 0 as t → ∞. Convergence
of gt to a limit metric then follows from the Ricci flow equation via the
identity

− d
dt

log g(x,t)(v, v) = 2K(x, t) (11.39)

for any x ∈ M2 and any v ∈ Tx M2. The limit metric is flat and the
convergence is smooth, since the higher order Bernstein estimates and
the interpolation inequality yield K → 0 to all orders as t → ∞.

The hyperbolic case, χ(M2) < 0, may be treated similarly as the flat
case, χ(M2) = 0. We omit the details.

The elliptic case, χ(M2) > 0, is more difficult. But at least we
may work on the universal cover, S2 (since it is compact). The lower
bound (11.33) for the injectivity radius allows us to blow-up at the fi-
nal time, T < ∞, to obtain an ancient limit Ricci flow. Note that (by the
ode comparison principle) maxM2×{t} K ≥ 1

2(T−t) . Assume first that

maxM2×{t} K ≤ C(T − t)−1 (the expected rate of blow-up). Choose any
sequence of times tj ↗ T and points xj ∈ M2 such that

r−2
j ≑ max

M2×[0,tj ]
K = K(xj ,tj)

and consider the pointed rescaled Ricci flows (M2 × Ij, xj, gj), where
Ij ≑ [−r−2

j tj, r−2
j (T − tj)) and (gj)(x,t) ≑ r−2

j g(x, r2
j t + tj). Observe that

the curvature Kj of the rescaled Ricci flow satisfies

Kj(x, t) = r2
j K(x, r2

j t + tj) ≤
Cr2

j

T − tj − r2
j t

=
C

r−2
j (T − tj)− t

≤ 2C
1 − 2t

.
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Since, by Corollary 11.13,

inj(M2, (gj)t) ≥
√

π I(M2, g0)

2
,

some subsequence of the pointed rescaled Ricci flows (M2 × Ij, xj, gj)

converges locally uniformly in the smooth sense to a limit ancient Ricci
flow (M2

∞ × (−∞, 1), g∞). Since area(M2, gt) → 0 as t → T, Proposi-
tion 11.12 implies that diam(M2, gt) → 0 as well. Proposition 9.7 then
implies that

diam(M2, (gj)t) = r−1
j diam(M2, gr2

j t+tj
)

≤ 10r−2
j (T − tj − r2

j t)

≤ C(1 − 2t) .

So the limit is compact, and hence M2
∞ = M2 ∼= S2.

Next, we claim that maxM2×{t} F/κ is constant on the limit flow.
Recall that maxM2×{t} F/κ is nonincreasing on the original flow since

(∂t − ∆)
F
κ
= −2

∣∣∣∇2 f − 1
2 ∆ f g

∣∣∣2 .

In particular, maxM2×{t} F/κ takes a limit as t → T. Now, since both
numerator and denominator scale like curvature, we have, for any
a < b ∈ (−∞, 1),

max
M2×{b}

Fj

κj
− max

M2×{a}

Fj

κj
= max

M2×{r2
j b+tj}

F
κ
− max

M2×{r2
j a+tj}

F
κ

for all j sufficiently large. But both r2
j a + tj and r2

j a + tj tend to T,
so the right hand side tends to zero. So maxM2×{t} F/κ is indeed
constant on the limit flow. But then F

κ must be constant, due to the
strong maximum principle. We conclude that

∇2 f − 1
2 ∆ f g ≡ 0

on the limit flow, which must therefore be a gradient Ricci soliton17, 17 Alternatively, we could have invoked
the Chow–Hamilton entropy and Propo-
sition 11.2 here, since non-flat compact
ancient Ricci flows on surfaces have pos-
itive curvature (by Corollary 9.12).

and hence the shrinking sphere by Theorem 11.3. The theorem now
follows from bootstrapping arguments.

It remains to prove that K(T − t) remains bounded. Suppose then
that, to the contrary,

lim sup
t↗T

max
M2×{t}

K(T − t) = ∞ .

For each j, choose (xj, tj) ∈ M2 × [0, T) so that

(T − j−1 − tj)K(xj, tj) = max
M2×[0,T−j−1]

(T − j−1 − t)K
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and set r−2
j ≑ K(xj, tj). Consider the pointed rescaled Ricci flows

(M2 × [αj, ωj), xj, gj), where αj ≑ −r−2
j tj, ωj ≑ r−2

j (T − j−1 − tj) and

(gj)(x,t) ≑ r−2
j g(x,r2

j t+tj)
. Observe in this case that

αj → −∞, ωj → ∞ ,

and

Kj(x, t) = r2
j K(x, r2

j t + tj) ≤
T − j−1 − tj

T − j−1 − r2
j t + tj

=
ωj

ωj − t
,

which is uniformly bounded on any compact time interval for j suffi-
ciently large. Since, by Proposition 11.13, the injectivity radii remain
uniformly bounded from below after rescaling, some subsequence of
the pointed, rescaled Ricci flows (M2 × [αj, ωj), xj, gj) must converge to
an eternal limit pointed Ricci flow (M2

∞ × (−∞, ∞), x∞, g∞). Since this
Ricci flow is the limit of compact Ricci flows, it satisfies the differential
Harnack inequality. But, by construction,

K ≤ lim sup
j→∞

ωj

ωj − t
= 1 = K(x∞, 0) .

Thus, at (x∞, 0), ∂tK = 0 and ∇K = 0, and hence the rigidity case of
the differential Harnack inequality implies that (M2

∞ × (−∞, ∞), g∞)

is a steady soliton, which must be a cigar by Theorem 11.4 and the
curvature normalization at (x∞, 0). But the cigar violates the (scale
invariant) lower bound for the isoperimetric constant (which passes to
the limit as it is scale invariant and lower semi-continuous under local
uniform convergence). This completes the proof.

The original argument of Hamilton and Chow made use of the
Kazdan–Warner identity—which relies on the uniformization theorem—
to establish Theorem 11.3. The argument presented here for Theorem
11.3 (which does not require the uniformization theorem) was pointed
out by Chen–Lu–Tian.18 18 X. Chen, Lu, and Tian, “A note on uni-

formization of Riemann surfaces by Ricci
flow”.

A different proof of Theorem 11.18 was later found by Andrews–
Bryan19 and Bryan20 (following Hamilton21). They were able to obtain 19 Andrews and Bryan, “Curvature

bounds by isoperimetric comparison
for normalized Ricci flow on the
two-sphere”.
20 Bryan, “Curvature bounds via an
isoperimetric comparison for Ricci flow
on surfaces”.
21 Richard S. Hamilton, “An isoperimet-
ric estimate for the Ricci flow on the two-
sphere”.

a very sharp estimate for the isoperimetric profile under Ricci flow, sharp
enough indeed to obtain sharp control on the curvature (which ap-
pears in the second variation of the isoperimetric profile), and thereby
obtain convergence directly.

11.7 Exercises

Exercise 11.1. Suppose that the two metrics g and g0 on a surface M2

are related by g = e−2ug0 for some function u. Show that the respective
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sectional curvatures K and K0 are related by

K = e2u(∆0u + K0) ,

where ∆0 is the Laplace–Beltrami operator induced by g0.

Exercise 11.2. Let (M2, g, f ) be a two-dimensional gradient Ricci soli-
ton. Show that

K ≑ J(∇ f )

is a Killing vector field, where J : TM2 → TM2 denotes counterclock-
wise rotation in the fibres through 90 degrees. Hint: first show that J
is parallel.

Exercise 11.3. Show that a solution to the heat equation u : Rn ×
(0, ∞) → R satisfies

∇2 log u +
n
2t

= 0.

if and only if it is a fundamental solution.

Exercise 11.4. Prove that

∆ log u +
1
2t

≥ 0

for any positive periodic solution u : Tn × [0, ∞) → R to the heat
equation. Hint: Consider the function P ≑ 2t∆ log u + 1.

Exercise 11.5. Prove that

∇2 log u +
I

2t
≥ 0

for any positive periodic solution u : Tn × [0, ∞) → R to the heat
equation, where I is the Euclidean inner product. Hint: Consider the
function P ≑ 2t∇V∇V log u + I for any fixed vector V ∈ Sn.

Exercise 11.6. Set U = V ∧ W in (11.26) and trace with respect to W,
and then optimize with respect to V to obtain (11.24).

Exercise 11.7. Andrews’ inequality
22 states that 22 See Chow, Lu, and Ni, Hamilton’s Ricci

flow, Theorem B.18 for a proof.

n
n−1

ˆ
Mn

φ2 dµ ≤
ˆ

Mn
|F|2 +

ˆ
Mn

Rc−1 (∇φ − div F,∇φ − div F
)

dµ

on any compact Riemannian manifold (Mn, g) with positive Ricci cur-
vature for every zero-average smooth function φ and every trace-free,
symmetric, smooth two-tensor F, with equality only if

− n−1
n F = ∇2 f − 1

n ∆ f g and n−1
n div F = n−1

n ∇φ − Rc(∇ f )

for some (any) potential function f for φ (solution to −∆ f = φ).
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(a) Using Andrews’ inequality, show that, on any compact Rieman-
nian manifold (Mn, g) with positive Ricci curvature,

n
n−1

ˆ
Mn

(R−ρ)2 dµ ≤ α2
ˆ

Mn

∣∣R̊c
∣∣2dµ

+
(

1 − α( 1
2 − 1

n )
)2
ˆ

Mn
Rc−1(∇R,∇R)dµ

for any α ∈ R, with equality only if

− n−1
n αR̊c = ∇2 f − 1

n ∆ f g and ( 1
2 + 1

n )∇R = n
n−1 Rc(∇ f )

for some (any) scalar curvature potential function f (solution to
−∆ f = R−ρ), where ρ denotes the average scalar curvature.

(b) (Hamilton’s inequality) Deduce (or otherwise prove) that, on
any compact Riemannian surface (M2, g) with positive curvature,

ˆ
M2

(K−κ)2 dµ ≤ 1
2

ˆ
M2

|∇K|2
K

dµ (11.40)

with equality only if

∇2 f − 1
n ∆ f g = 0 and ∇K = K∇ f

for some (any) curvature potential function f (solution to −∆ f =

2(K−κ)).

Exercise 11.8. Use Hamilton’s inequality to establish the monotonicity
formula for the Chow–Hamilton entropy (Proposition 11.2).
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Singularities and their analysis

We have seen that finite time singularities will necessarily occur un- There’s only you
Nothing before you
Only you
Nothing beyond you
So now I’m without you
– Puscifer, “A Singularity”

der Ricci flow if the scalar curvature is initially positive. Under Ricci
flow on the two-sphere, or in higher dimensions when the Ricci cur-
vature is positive, we were able to deal with finite time singularities
by “blowing up” and classifying the possible blow-up limits. As a re-
sult, we saw that the Ricci flow “uniformizes” compact surfaces, and
positively curved manifolds in any dimension. One could therefore be
forgiven for hoping that Ricci flow might deform any (not necessarily
positively curved) Riemannian sphere to a round metric. This turns
out to be too optimistic, however.

1 Such examples appear to have first
been described by Hamilton.

Figure 12.1: A “barbell” configuration.
If the “bar” is sufficiently thin compared
to the “bells”, then it will “pinch off” be-
fore the bells disappear.

Example 20 (A “neckpinch” singularity1). Consider a Riemannian three-
sphere which looks like two large, round three-spheres which are far
apart but smoothly connected by a long, thin “neck” (as in Figure 12.1,
say). If the neck is sufficiently thin compared to the spheres, then its
curvature will be much larger, and it will contract much more quickly
under the flow, and it seems likely that it should “pinch off” while the
spherical components remain large. Configurations in which this be-
haviour is indeed exhibited were rigorously constructed by Angenent
and Knopf.2 ■

2 S. Angenent and Knopf, “An example
of neckpinching for Ricci flow on Sn+1”.

Figure 12.2: An asymmetric barbell con-
figuration. If one of the bells is suffi-
ciently small, it will “pass through” the
bar before it pinches off. There is a
critical configuration at which the bar
pinches off just as the smaller bell is
passing through it.

Example 21 (A “degenerate neckpinch” singularity). In the above ex-
ample, we could imagine a continuous deformation of the initial con-
figuration which shrinks one of the spherical components down to
a radius comparable to the neck radius (as in Figure 12.2, say). In
this configuration, we expect that the small spherical component of
the initial manifold is able to contract quickly enough to slip through
the neck before it pinches, the solution thereafter becoming positively
curved and shrinking to a round point according to Hamilton’s theo-
rem. But then there must be a critical stage in the deformation such
that for smaller deformations a neckpinch forms, while for larger de-
formations there is no neckpinch. Somehow, at the critical deforma-
tion, the smaller spherical component attempts a run through the neck,
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but gets caught just as it is about to emerge from the other side. Con-
figurations in which this behaviour is indeed exhibited were rigorously
constructed by Angenent, Isenberg and Knopf.3 ■ 3 Sigurd B. Angenent, Isenberg, and

Knopf, “Degenerate neckpinches in Ricci
flow”.Example 22 (A “doubly degenerate neckpinch” singularity). Imagine

now performing this deformation in a symmetric manner, so that both
bells get caught in the neck as it collapses. In this configuration, the
metric does indeed shrink to a point at the singular time, T, but its
asymptotic shape cannot be that of a round sphere: for at each time
t < T, the Ricci tensor is not positive at the neck, so the pinching ratio
inf ρ1/ρn can be no better than zero at the singular time. ■

These examples demonstrate that singularities can potentially be
quite complicated in dimensions n ≥ 3, even in the absence of topol-
ogy. On the other hand, at a neckpinch singularity, most of the man-
ifold remains “non-singular” and the flow appears to be performing
the opposite of a connected sum. This begs the question, “Can the flow
be continued after a singularity, while keeping track of any topologi-
cal changes at singular times?” Rather than attempting a comprehen-
sive answer to this (very difficult) question, we shall merely present
some basic results and tools which suggest that singularities are in-
deed somewhat “tamable”, at least in certain special settings.

We begin by noting the following immediate corollary of Theorem
9.19, which demonstrates the importance of ancient Ricci flows in the
analysis of singularities.

Lemma 12.1. Let (Mn × [0, T), g), T < ∞, be a Ricci flow and {(xk, tk)}k∈N

a sequence of spacetime points (xk, tk) ∈ Mn × [0, T) with tk → T. Suppose
that

1. r−2
k ≑ |Rm(xk ,tk)

| → ∞ as k → ∞;

2. for every A < ∞ some C < ∞ can be found such that BArk (xk, tk)× (tk −
A2r2

k , tk] ⋐ Mn × [0, T) and

sup
BArk

(xk ,tk)×(tk−A2r2
k ,tk ]

|Rm| ≤ Cr−2
k

for every k; and

3. there exists κ > 0 such that

volume(BArk (xk, tk), tk) ≥ κrn
k

for every k.

For each k, define the rescaled Ricci flow (Mn × [−r−2
k tk, r−2

k (T − tk)), gk)

by
(gk)(x,t) ≑ r−2

k g(x,r2
k t+tk)

.
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There exists a complete pointed ancient Ricci flow (Mn × (−∞, ω), x∞, g∞)

such that, after passing to a subsequence, the pointed rescaled Ricci flows
(Mn × (−r2

k tk, 0], xk, gk) converge locally uniformly in the smooth topology
to (Mn × (−∞, 0], x∞, g∞). That is, there exists an exhaustion {Uk}k∈N of
M∞ by precompact open sets Uk satisfying Uk ⊂ Uk+1 and a sequence of
diffeomorphisms ϕk : Uk → M with ϕk(x∞) = xk such that ϕ∗

k g → g∞

uniformly in the smooth topology on any compact subset of M∞ × (−∞, 0].

12.1 Curvature pinching improves

Recall that the Ricci flow forces scalar curvature towards the positive4: 4 See Proposition 9.11.

if minMn×{0} R ≥ n(n − 1)r−2, then

min
Mn×{t}

R ≥ − n(n − 1)
r2 + 2(n − 1)t

.

For three dimensional Ricci flow, a similar phenomenon holds for the
full curvature operator.

5 Richard S. Hamilton, “Non-singular
solutions of the Ricci flow on three-
manifolds”; Ivey, “Ricci solitons on com-
pact three-manifolds”

Theorem 12.2 (Ellipticity improves5). Let (M3 × [0, T), g) be a Ricci flow
on a compact three-manifold M3. Denote by λ1 ≤ λ2 ≤ λ3 the eigenvalues
of the curvature operator. If λ1(·, 0) ≥ −r−2, then

−2λ1(log(−λ1) + log(r2 + 4t)− 3) ≤ R (12.1)

for all t ∈ [0, T) wherever λ1 < 0.

Sketch of the proof. Note that the hypotheses ensure that the claim is
true at the initial time, since

1
2 R + λ1(log(−r2λ1)− 3) = λ1 + λ2 + λ3 + λ1(log(−r2λ1)− 3)

≥ λ1 log(−r2λ1) ,

which is nonnegative wherever −r−2 ≤ λ1 ≤ 0. We will establish
the claim using the vector bundle maximum principle. After passing
to the orientation cover in case M3 is not orientable, we can make
life easier by identifying the bundle of two-planes with the tangent
bundle via the Hodge star operator, ∗ : TM3 7→ TM3 ∧ TM3, which is
characterized by

∗e1 = e2 ∧ e3 , ∗e2 = e3 ∧ e3 , ∗e3 = e1 ∧ e2

on any orthonormal frame, {ej}3
j=1. This identifies Rm with a self-

adjoint endomorphism/symmetric bilinear form on TM3 via

Rm(u, v) ≑ Rm(∗u, ∗v) .

Under this identification, the Lie algebra square becomes the usual co-
factor operator6. In particular, in an orthonormal frame that diagonal- 6 See, e.g., Andrews and Hopper, The

Ricci flow in Riemannian geometry, Claim
12.15
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izes an algebraic curvature operator S = diag(λ1, λ2, λ3), the reaction
term in the evolution equation for Rm becomes7

7 Ignoring the diffusion term in the evo-
lution equation for Rm then yields the
system

d
dt

λ1
λ2
λ3

 = 2

λ2
1 + λ2λ3

λ2
2 + λ3λ1

λ2
3 + λ1λ2

 .

In the rotationally symmetric setting
(as in the dumbell example described
above), λ1 ≡ λ2, which reduces this sys-
tem to

d
dt

[
λ1
λ3

]
= 2

[
λ2

1 + λ1λ3
λ2

3 + λ2
1

]
.

This system may be reformulated as

dλ1

dλ3
=

λ1(λ1 + λ3)

λ2
1 + λ2

3
,

which admits the implicit solution

log(−λ1) =
λ2

−λ1
+ 2 log

(
−λ1

λ3 − λ1

)
+ C

in the region λ1 < 0. This solution ex-
hibits the behaviour

1
2 R ∼ λ3 > −λ1 log(−λ1) as λ1 → −∞ ,

which provides some inspiration for the
curvature terms in the inequality (12.1).
See e.g. Chow, Lu, and Ni, Hamilton’s
Ricci flow, §6.5.

Q(S) = 2(S2 + S#) = 2 diag(λ2
1 + λ2λ3, λ2

2 + λ3λ1, λ2
3 + λ1λ2) .

So set

ψ(λ1, λ2, λ3, t) ≑ λ1 + λ2 + λ3 + λ1(log(−λ1) + log(r2 + 4t)− 3)

and consider the subset K of algebraic curvature operators defined by
imposing either the inequality

1. − 1
r2+4t ≤ λ1 < 0,

or the inequalities

2. (a) λ1 + λ2 + λ3 ≥ − 3
r2+4t and

(b) ψ(λ1, λ2, λ3, t) ≥ 0.

This set is clearly invariant under parallel translation (a direct con-
sequence of the fact that an orthonormal frame remains orthonormal
under parallel translation). We shall omit the proof that K is convex in
the fibre.8

8 See, e.g., Chow and Knopf, The Ricci
flow: an introduction, Lemma 9.5.

Observe now that the second inequality is preserved under the flow,
while the claim automatically holds under first (which implies the sec-
ond). This reduces our task to showing that the algebraic curvature op-
erator diag(λ2

1 + λ2λ3, λ2
2 + λ3λ1, λ2

3 + λ1λ2) points into K at a bound-
ary point diag(λ1, λ2, λ3) ∈ ∂K(x,t) on the {ψ = 0} ∩ {λ1 ≤ − 1

r2+4t}
component. Now, at such a point,

λ1 + λ2 + λ3 + λ1(log(−λ1) + log( 1
2 r2 + 2t)− 3) = 0,

so that the boundary gradient takes the form

Dψ|(λ1,λ2,λ3,·) =
(

2 + log(−λ1) + log(r2 + 4t)− 3, 1, 1
)

=

(
2 +

λ1 + λ2 + λ3

−λ1
, 1, 1

)
=

(
1 +

λ2 + λ3

−λ1
, 1, 1

)
.

We thus find that

Dψ|(λ1,λ2,λ3,·) · (λ2
1 + λ2λ3, λ2

2 + λ3λ1, λ2
3 + λ1λ2)

= λ2
1 + λ2

2 + λ2
3 + λ2λ3 +

λ2λ3(λ2 + λ3)

−λ1
.

This is clearly nonnegative if λ2 ≥ 0. To see that it is nonnegative
when λ2 < 0, we rewrite

λ2
2 + λ2

3 + λ2λ3 +
λ2λ3(λ2 + λ3)

−λ1
=

λ3
2

λ1
+

λ2 − λ1

−λ1
(λ2

2 + λ2
3 + λ2λ3) ,

and estimate λ2λ3 ≥ − 1
2 (λ

2
2 + λ2

3).
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Since R ≥ 0 on any compact ancient Ricci flow, replacing t by t − α

and taking α → −∞, it follows immediately from Theorem 12.2 that

Corollary 12.3. any ancient Ricci flow (M3 × (−∞, ω), g) on a compact
three-manifold has nonnegative curvature operator.

Observe, moreover, that any sequence of eigenvalues λ
j
1 ≤ λ

j
3 ≤ λ

j
3

such that

– λ
j
1 + λ

j
2 + λ

j
3 ≥ −3r−2,

– λ
j
1 → −∞, and

– −λ
j
1(log(−λ

j
1) + log(r2 + 4T)− 3) ≤ λ

j
1 + λ

j
2 + λ

j
3

satisfies

−
λ

j
1

λ
j
3

≤ 3

log(−λ
j
1) + log(r2 + 4T)− 3

→ 0 as j → ∞.

It therefore follows from Theorem 12.2 that any (not necessarily com-
pact) blow-up limit (i.e. an ancient Ricci flow obtained as in Lemma
12.1) about a finite time singularity of a Ricci flow on a compact three-
manifold has nonnegative curvature.

12.2 Self-similar solutions

Recall that a triple (Mn, g, V) is a Ricci soliton if

Rc = λg − 1
2LV g (12.2a)

for some λ ∈ R. When V = ∇ f , the triple (Mn, g, f ) is a gradient Ricci
soliton, and

Rc = λg −∇2 f . (12.2b)

As in the two dimensional case (gradient) Ricci solitons satisfy a
number of informative identities. Indeed, tracing the soliton equation
yields

R = nλ − div V (12.3a)

which for a gradient soliton becomes

R = nλ − ∆ f . (12.3b)

Taking the divergence of the soliton equation and applying the con-
tracted second Bianchi identity then yields

∆V + Rc(V) = 0, (12.4a)

which for a gradient soliton becomes

1
2∇R − Rc(∇ f ) = 0 (12.4b)
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Contracting the gradient soliton equation with ∇ f and applying (12.4b)
yields

R + |∇ f |2 − 2λ f = C , (12.5a)

where C is constant. Applying (12.3b) then yields

−∆ f + |∇ f |2 + nλ − 2λ f = C (12.5b)

Taking the difference between (12.5b) and half of (12.5a) yields

−∆ f + 1
2 |∇ f |2 − 1

2 R − λ f = C − nλ . (12.5c)

As in the two-dimensional setting, (12.5c) is the Euler–Lagrange
equation for a certain constrained energy functional. (The proof is
the same as that of Proposition 11.5).

Proposition 12.4. Given any compact Riemannian manifold (Mn, g) and
any λ ∈ R, define, for any smooth function f ,

F( f ) ≑
ˆ

Mn

(
1
2
[
|∇ f |2 + R

]
+ λ f

)
e− f dµ . (12.6)

If { fε}ε∈(−ε0,ε0)
is a smooth variation of f = f0 which satisfies the weighted

volume constraint
d
dε

ˆ
Mn

e− fε dµ ≡ 0,

then

d
dε

∣∣∣∣
ε=0

F( fε) = −
ˆ

Mn

(
∆ f − 1

2 |∇ f |2 + 1
2 R+λ f

)
h e− f dµ ,

where h ≑ d
dε |ε=0 fε. In particular, if f is a stationary point of the action

with respect to constrained variations, then −∆ f + 1
2 |∇ f |2 − 1

2 R−λ f is
constant.

Theorem 12.5. All compact shrinking Ricci solitons are gradient.

Proof. Let (Mn, g, V) be a compact shrinking Ricci soliton. We seek a
solution f to the equation9 9 Rather than the equation ∇ f =

V, which may not be possible since
(Mn, g, V + K) is also a shrinking Ricci
soliton for any Killing vector field K.

1
2LV g = ∇2 f .

Equivalently, we seek a function f such that the tensor

S ≑ Rc +∇2 f − λg

vanishes identically. Observe that

div S = 1
2∇R +∇∆ f + Rc(∇ f )

and
S(∇ f ) = Rc(∇ f ) + 1

2∇|∇ f |2 − λ∇ f
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and hence

∇
(

1
2 R + ∆ f − 1

2 |∇ f |2 + λ f
)
= div S − S(∇ f ) ,

which we may rewrite as

∇
(

1
2 R + ∆ f − 1

2 |∇ f |2 + λ f
)

e− f = div(e− f S) .

Thus,ˆ
Mn

|S|2e− f dµ

=

ˆ
Mn

g(∇(∇ f − V), e− f S) dµ

= −
ˆ

Mn
g(∇ f − V, div(e− f S)) dµ

= −
ˆ

Mn
g
(
∇ f − V,∇

(
1
2 R + ∆ f − 1

2 |∇ f |2 + λ f
) )

e− f dµ .

So it suffices to find a constant C and a function f satisfying

1
2 R + ∆ f − 1

2 |∇ f |2 + λ f = C (12.7a)

or equivalently, a function h = e−
f
2 satisfying

∆h − 1
4 Rh + λh log h = − 1

2 Ch . (12.7b)

The equations (12.7a) and (12.7b) are the Euler–Lagrange equations for
the constrained functionals

F( f ) ≑
ˆ

Mn

(
1
2
[
|∇ f |2 + R

]
+ λ f

)
e− f dµ

subject to
ˆ

Mn
e− f dµ = const.

(12.8a)

and 
G(h) ≑ 2

ˆ
Mn

(
|∇h|2 + 1

4 Rh2 − λh2 log h
)

dµ

subject to
ˆ

Mn
h2 dµ = const.

(12.8b)

respectively. We have thus reduced the problem to finding a mini-
mizer for (12.8b). This is fairly classical: first observe that, by Jensen’s
inequality, interpolation and the Poincaré–Sobolev inequality, we may
estimate, for any ε > 0,

ˆ
Mn

h2 log h dµ ≤ ε

(ˆ
Mn

|∇h|2 dµ

) 1
2
+ Cε

(ˆ
Mn

h2 dµ

) 1
2

.

Choosing ε sufficiently small, we find that

G(h) ≥
ˆ

Mn
|∇h|2 dµ − C .
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From this we deduce two things: first that G is bounded from be-
low, and second that the H1 norm is uniformly bounded along any
infimizing sequence {hj}j∈N. Since h 7→ h2 log h is continuous in H1,
it follows that a minimizer exists in H1. Smoothness of the minimizer
may be established using the de Giorgi–Nash–Moser and Schauder
estimates.

Alternatively, we may exploit the gradient flow

∂t f = div
(

e− f (∇ f − V)
)
= ∆ f +∇V f − |∇ f |2 + R − nλ .

Indeed, under this equation,

d
dt

F( f ) = −
ˆ

Mn
|S|2e− f dµ and

d
dt

ˆ
Mn

e− f dµ = 0.

So the energy decreases (strictly unless u is a stationary point of E) and
the constraint is maintained. Since the equation is parabolic, we obtain
short-time existence from any smooth (say) initial condition. Longtime
existence and smooth convergence to a stationary point of F (a min-
imizer if the initial energy is sufficiently close to the minimum) may
be obtained by exploiting estimates for the (divergence form) linear
equation

∂tu = ∆u +∇Vu + (R − nλ)u

satisfied by u ≑ e− f .

Observe now that, on the self-similarly shrinking Ricci flow (Mn ×
(−∞, 0), ϕ∗g), dϕ

dt = ϕ∗∇ f , corresponding to a gradient shrinking Ricci
soliton (Mn, g, f ),

∂t f = ∇∇ f f

= |∇ f |2

= − ∆ f + |∇ f |2 − R +
n

−2t

due to (12.3b). Writing h ≑ (−2t)−
n
2 e− f , we find that

−(∂t + ∆ − R)h = 0.

Just as in the two-dimensional setting, this is the conjugate heat

equation (and (∂t − ∆)∗ ≑ −(∂t + ∆ − R) is the conjugate heat

operator).

12.3 The differential Harnack inequality

The differential Harnack inequalities for two-dimensional Ricci flow
(Theorems 11.8 and 11.10) have the following higher dimensional gen-
eralization.
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10 Richard S. Hamilton, “The Harnack es-
timate for the Ricci flow”

Theorem 12.6 (Matrix differential Harnack inequality10). Along any
Ricci flow (Mn × [0, T), g) with positive curvature operator on a compact
manifold Mn,

MijWiWj + 2PijkUijWk + RmikjlUikUjl +
1
2t

RcijWiWj ≥ 0 (12.9)

for every time-dependent vector field W and two-form U, where

Mij ≑ ∆Rcij + 2RmikjlRckl − 1
2

(
∇i∇jR + 2Rc2

ij

)
and

Pijk ≑ ∇iRcjk −∇jRcik .

The inequality (12.9) is strict unless (Mn × [0, T), g) is an expanding soliton.
Along any ancient Ricci flow (Mn × (−∞, 0), g) with positive curvature

operator on a compact manifold Mn,

MijWiWj + 2PijkUijWk + RmikjlUikUjl ≥ 0 (12.10)

for every time-dependent vector field W and two-form U, with strict inequal-
ity unless (Mn × [0, T), g) is a steady soliton.

Sketch of the proof. Motivated by various identities which hold on ex-
panding (and steady) solitons, one considers the forms

Q(U, W) ≑ M(W, W) + 2P(U, W) + Rm(U, U)

and
P(U, W) ≑ 2tQ(U, W) + Rc(W, W) .

After many arduous computations (motivated by various identities
which hold on solitons), it is possible to obtain a suitable differential
inequality for P.

Theorem 12.7 (Trace differential Harnack inequality). Along any Ricci
flow (Mn × [0, T), g) with positive curvature operator on a compact manifold
Mn,

∂tR + 2∇VR + 2Rc(V, V) +
1
t

R ≥ 0 (12.11)

for every time-dependent vector field V, with strict inequality unless (Mn ×
[0, T), g) is an expanding soliton.

Along any ancient Ricci flow (Mn × (−∞, 0), g) with positive curvature
operator on a compact manifold Mn,

∂tR + 2∇VR + 2Rc(V, V) ≥ 0 (12.12)

for every time-dependent vector field V, with strict inequality unless (Mn ×
[0, T), g) is a steady soliton.
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Proof. Take the trace of (12.9) and (12.10).

Note that, by continuity, smooth limits of Ricci flows on compact
manifolds satisfy the differential Harnack inequality (and hence also
the rigidity case by the strong maximum principle).

Corollary 12.8 ((Integral) Harnack inequality). Along any Ricci flow
(Mn × [0, T), g) with positive curvature on a compact two-manifold,

R(x2, t2)

R(x1, t1)
≥
[

t2

t1
exp

(
d2(x1, x2, t1)

4(t2 − t1)

)]−1

for any x1, x2 ∈ Mn and any 0 < t1 < t2 < T, with strict inequality unless
(Mn × [0, T), g) is an expanding self-similar solution.

Proof. Integrate the trace differential Harnack inequality along curves
of the form t 7→ (t, γ(t)).

When Rc > 0, the differential Harnack inequality (12.12) is opti-
mized by the vector field V = − 1

2 Rc−1(∇R), giving

∂tR ≥ 1
2 Rc−1(∇R,∇R) . (12.13)

Equivalently, R(ϕτ(·, t), t + τ) is pointwise monotone nondecreasing
with respect to t for each τ < 0, where ϕτ is the solution to

dϕτ

dt
(x, t) = V(ϕτ(x, t), τ + t)

ϕτ(x, 0) = x .

Thus, the scalar curvature Rτ of the reparametrized flow {gτ
t }t∈(−∞,−τ),

where gτ
t ≑ ϕτ(·, t)∗gt+τ , is uniformly bounded on any time interval

of the form (−∞, T], and hence, in any (pointed) limit as τj → −∞, we
obtain a Ricci flow (plus Lie derivative term) for which R is constant
in t—a steady soliton!

Corollary 12.9 (Ancient solutions decompose into steady solutions).
Let (Mn × (−∞, 0), g) be an ancient Ricci flow on a compact manifold
Mn. Given any point o ∈ Mn and any sequence of times tj → −∞,
some subsequence of the pointed Ricci flows (Mn × (−∞, 0), o, gj), where
gj
(x,t) ≑ g(x, t + tj), converges locally uniformly in the smooth topology to a

steady Ricci flow.

12.4 Perelman’s functional, noncollapsing, and the pointed Nash
entropy

12.4.1 Perelman’s functional

Given a compact Ricci flow (Mn × [0, T), g), define the functional

P( f , g, τ) ≑
ˆ

Mn

[
τ
(
|∇ f |2 + R

)
+ f − n

]
(4πτ)−

n
2 e− f dµ . (12.14)
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Observe that, when τ is identified with backwards time, Perelman’s
functional P is just a multiple of the functional F of (12.6) in the
shrinking case, λ > 0 (with f replaced by f − n).

Just as in the two-dimensional setting, we find that P( f , g, τ) is
constant in time along a gradient self-similarly shrinking Ricci flow
(M, g) with f taken to be the potential function and τ taken to be
backwards time.11 11 A Riemannian analogue of Perelman’s

functional was introduced by Tobias
Holck Colding, “New monotonicity for-
mulas for Ricci curvature and appli-
cations. I”, and used to study Ricci
flat manifolds. The connection between
the two functionals was developed fur-
ther by Bustamante and Martín, “Deriv-
ing Perelman’s entropy from Colding’s
monotonic volume”.
12 Perelman, “The entropy formula for
the Ricci flow and its geometric appli-
cations”

Theorem 12.10 (Perelman’s monotonicity formula12). Let (Mn × I, g)
be a Ricci flow on a compact manifold Mn. If f and τ satisfy

(∂t + ∆) f = |∇ f |2 − R+ n
2τ ,

dτ

dt
= − 1,

then

d
dt

P( f , g, τ) = 2τ

ˆ
Mn

∣∣Rc +∇2 f − 1
2τ g
∣∣2e− f dµ (12.15)

so long as τ > 0. In particular, the Perelman entropy

µ(Mn, gt, t0 − t) ≑ inf
{

P(gt, f , t0 − t) :
1

4π(t0 − t)

ˆ
Mn

e− f dµt = 1
}

is nondecreasing for t < t0 (strictly, unless (Mn, gt0+t) is a gradient shrink-
ing soliton with potential f (·, t0 + t)).

Proof. Observe first that the function Φ ≑ (4πτ)−
n
2 e− f satisfies the

conjugate heat equation

0 = (∂t − ∆)∗Φ = −(∂t + ∆ − R)Φ .

Note also that

div(Φ∇ f ) = (∆ f − |∇ f |2)Φ
= (∆ f − 1

2 |∇ f |2 − 1
2 |∇ f |2)Φ .

Thus, after an integration by parts,

P( f , g, τ) =

ˆ (
2τ
[
∆ f − 1

2 |∇ f |2 + 1
2 R
]
+ f − n

)
Φ dµ .

So consider the function

u ≑ 2τ
[
∆ f − 1

2 |∇ f |2 + 1
2 R
]
+ f − n .

By the commutation formulae

∇t∇v = ∇∂tv + Rc(∇v) and ∂t∆v = ∆∂tv + 2g(Rc,∇2v) ,
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we find that

∂tu = ∂t f − 2
(

∆ f − 1
2 |∇ f |2 + 1

2 R
)

+2τ
(

∆∂t f + 2g(Rc,∇2 f )− Rc(∇ f ,∇ f )− g(∇∂t f ,∇ f ) + 1
2 ∂tR

)
.

By the commutation formula13 13 Recall Exercise 8.6.

∆∇v = ∇∆v + Rc(∇v) ,

we find that

∆u = 2τ
(

∆∆ f − |∇2 f |2 − g(∇∆ f ,∇ f )− Rc(∇ f ,∇ f ) + 1
2 ∆R

)
+ ∆ f .

Recalling the evolution equation (9.10) for R, we thus obtain

(∂t − ∆)u = (∂t − ∆) f − 2
(

∆ f − 1
2 |∇ f |2 + 1

2 R
)

+ 2τ
(

∆(∂t − ∆) f − g
(
∇(∂t − ∆) f ,∇ f

)
+|Rc|2 + 2g(Rc,∇2 f ) + |∇2 f |2

)
= − 2(∆ f − |∇ f |2) + n

2τ − 2(∆ f + R)

+ 2τ

(
div(Φ∇(∂t − ∆) f )

Φ
+ |Rc +∇2 f |2

)

= 2τ

div
(

Φ
[
∇
(
∂t − ∆ − 1

τ

)
f
])

Φ
+
∣∣Rc +∇2 f − 1

2τ g
∣∣2
 .

We conclude that

d
dt

P( f , g, τ) =
d
dt

ˆ
uΦ dµ

=

ˆ [
Φ(∂t − ∆)u − u(∂t − ∆)∗Φ

]
dµ

= 2τ

ˆ ∣∣Rc +∇2 f − 1
2τ g
∣∣2Φ dµ .

12.4.2 Noncollapsing of volume at the scale of the curvature

Roughly speaking, a sequence of Riemannian manifolds (Mn
j , gj) is

said to collapse if some sequence of neighbourhoods Uj ⊂ Mn
j and

scales λj can be found such that (Uj, λjgj) resemble a lower dimen-
sional manifold as j → ∞. One precise way to quantify this is to ask
for a sequence of points pj ∈ Mn

j such that

injgj
(pj) sup

Bj injgj
(pj)

(pj)

|Rm|
1
2 ≤ j−1 , (12.16)

where injg(p) denotes the injectivity radius of (Mn, g) at p—the
radius of the largest ball in (Tp Mn, gp) on which the exponential map
is a diffeomorphism.
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Note that injg |Rm| 1
2 is scale invariant. Thus, if (12.16) holds, then,

at the scale of the curvature, the injectivity radius degenerates to zero.
On the other hand, at the scale of the injectivity radius, the curvature is
tending towards zero in arbitrarily large regions, and at this scale the
regions converge to a flat space.

Perelman’s monotonicity formula yields a lower bound for volumes
at the scale of the curvature under Ricci flow.

Theorem 12.11. Let (Mn × [0, T), g) be a Ricci flow on a compact manifold
Mn. Given (x, t) ∈ Mn × [0, T) and r ≤ 1, if |Rm|2 ≤ r−2 at time t on
Br(x, t), then

volume(Br(x, t), t) ≥ κrn ,

where κ = κ(Mn, g0, T).

Proof. Set τ ≑ t0 + r2 − t and let ϕ : [0, ∞) → [0, 1] be any fixed smooth
function satisfying ϕ|[0, 1

2 ]
= 1, ϕ|[1,∞) = 0, and |ϕ′(ξ)|

ϕ(ξ)
≤ C. Define

f (x, t0) ≑ A − log
(

ϕ

(
dist(x0, x, t0)

r

))

and

u(x, t0) ≑ (4πr2)−
n
2 e− f

= (4πr2)−
n
2 ϕ

(
dist(x0, x, t0)

r

)
e−A ,

where A is chosen so that

ˆ
Mn

u(·, t0) dµt0 = 1.

Note that

A = log

(
(4πr2)−

n
2

ˆ
Br(x0,t0)

ϕ

(
d(x0, ·, t0)

r

)
dµt0

)

≤ log
(
(4π)−

n
2

volume(Br(x0, t0), t0)

rn

)
.

Thus, upper bounds for u will imply lower bounds for the volume
ratio.
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Observe that

P(gt0 , f (·, t0), r2)

=

ˆ
Br(x0,t0)

(
r2(R2 + |∇ f |2) + f − n

)
u dµt0

≤
ˆ

Br(x0,t0)

[
r2
(

n
r2 +

C
r2

)
− log

(
ϕ

(
dist(x0, x, t0)

r

))
+ A − n

]
udµt0

= C + A −
ˆ

Br(x0,t0)
log
(

ϕ

(
dist(x0, x, t0)

r

))
u dµt0

= C + A −

´
Br(x0,t0)

log
(

ϕ
(

dist(x0,x,t0)
r

))
ϕ(dist(x0,x,t0))

r dµt0´
Br(x0,t0)

ϕ(dist(x0,·,t0))
r dµt0

≤ C + A + C′ volume(Br(x0, t0), t0)

volume(B r
2
(x0, t0), t0)

≤ C′′ + A

due to the Bishop–Gromov inequality. The claim follows since, by the
monotonicity of µ,

µ(Mn, g0, t0 + r2) ≤ µ(Mn, gt0 , r2) ≤ P(gt0 , f (·, t0), r2)

and t0 + r2 ≤ T.

12.4.3 The heat kernel

Recall that the (classical) n-dimensional heat kernel K is given (for
x, y ∈ Rn and t > s) by

K(x, t, y, s) ≑ (4π(t − s))−
n
2 e−

|x−y|2
4(t−s) .

Figure 12.3: Euclidean heat kernel dif-
fusing heat away from (x0, t0), via
(x, t) 7→ K(x, t, x0, t0), and into (y0, s0),
via (y, s) 7→ K(y0, s0, y, s).

It satisfies the heat equation in the (x, t) variables for fixed (y, s) and
the conjugate heat equation in the (y, s) variables for fixed (x, t); it
converges in the distributional sense as t ↘ s to the Dirac distribution
centred at y, when y is fixed, and as s ↗ t to the Dirac distribution cen-
tred at x, when x is fixed. As such, it provides the representation

formulae

u(x, t) =
ˆ

Rn
K(x, t, y, s)u(y, s) dL(y) for t > s

for any distributional solution u to the heat equation, and

v(y, s) =
ˆ

Rn
v(x, t)K(x, t, y, s) dL(x) for s < t

for any distributional solution v to the conjugate heat equation. In
particular, the heat kernel satisfies the reproduction formula

K(x, t, y, s) =
ˆ

Rn
K(x, t, ξ, τ)K(ξ, τ, y, s) dL(ξ) for t > τ > s .
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It turns out that the heat equation also admits a kernel on any com-
pact Riemannian manifold,14 and, in fact, along any compact Ricci 14 Chavel, Eigenvalues in Riemannian ge-

ometry.flow.
15 Guenther, “The fundamental solution
on manifolds with time-dependent met-
rics”

Theorem 12.12 (The heat kernel along a Ricci flow15). Associated to any
compact Ricci flow (Mn × I, g) is a unique function K (of pairs of spacetime
points (x, t) and (y, s) subject to t > s) satisfying the following properties:

1. For any (y, s) ∈ Mn × I,

(a) the function (x, t) 7→ K(x, t, y, s) satisfies the heat equation,

(b) K(·, t, y, s) → δy in the distributional sense as t ↘ s.

2. For any x, y ∈ Mn, K(x, t, y, s) =
´

Mn K(x, t, ξ, τ)K(ξ, τ, y, s) dµgτ (ξ)

for t > τ > s.

3. For any (x, t) ∈ Mn × I,

(a) the function (y, s) 7→K(x, t, y, s) satisfies the conjugate heat equation,

(b) K(x, t, ·, s) → δx in the distributional sense as s ↗ t.

4.
´

K(x, t, y, s) dµgs(y) = 1 for all x, t and s.

In particular, K provides the representation formulae

5. u(x, t) =
´

Mn K(x, t, y, s)u(y, s) dµgs(y) for all t > s for any distribu-
tional solution u to the heat equation, and

6. v(y, s) =
´

Mn v(x, t)K(x, t, y, s) dµgt(x) for all s < t for any distribu-
tional solution v to the conjugate heat equation.

Due to the fourth property, it is natural to introduce the probability
measures

dν(x0,t0),t ≑ K(x0, t0, ·, t) dµgt .

12.4.4 The pointed Nash entropy of Hein and Naber

Given any (x0, t0) ∈ Mn × R, we define the pointed Nash en-
tropy

16 for t < t0 by 16 Hein and Naber, “New logarithmic
Sobolev inequalities and an ϵ-regularity
theorem for the Ricci flow”.

N (x0,t0)
(t) ≑ (4π(t0 − t))−

n
2

ˆ
f(x0,t0)

(·, t)e− f(x0,t0)
(·,t)dµgt −

n
2

, (12.17)

where f(x0,t0)
is the logarithmic fundamental solution to the

conjugate heat equation based at (x0, t0); I.e.,

K(x0, t0, x, t) = (4π(t0 − t))−
n
2 e− f(x0,t0)

(x,t) .

This definition is natural in view of the Euclidean asymptotics17 17 See, e.g. Chow, S.-C. Chu, et al., The
Ricci flow: techniques and applications. Part
III. Geometric-analytic aspects.
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f(x0,t0)
(x, t) ∼ d2(x0, x, t0)

4(t0 − t)
,

∣∣∇ f(x0,t0)
(x, t)

∣∣2 ∼ d2(x0, x, t0)

4(t0 − t)2 ,

∆ f(x0,t0)
(x, t) ∼ n

2(t0 − t)

(12.18)

as (x, t) → (x0, t0).

Theorem 12.13. Along any Ricci flow (Mn × I, g), for any (x0, t0) ∈ Mn ×
R,

− d
dt

(
(t0 − t)N (x0,t0)

(t)
)
= P( f(x0,t0)

, gt, t0 − t) (12.19)

for t < t0. Thus,
d2

dt2

(
(t0 − t)N (x0,t0)

(t)
)
≤ 0 (12.20)

for t < t0. Moreover,

N (x0,t0)
(t) → 0 as t → t0 . (12.21)

It follows that
N (x0,t0)

(t) ≥ µ(gt, t0 − t) . (12.22)

Sketch of the proof. Since (4π(t0 − t))−
n
2 e− f(x0,t0)

(x,t) satisfies the conju-
gate heat equation,

d
dt

N (x0,t0)
=

ˆ
(∂t − ∆) f(x0,t0)

dν(x0,t0)

=

ˆ (
2∆ f(x0,t0)

− |∇ f(x0,t0)
|2 + R− n

2(t0 − t)

)
dν(x0,t0)

= −
ˆ (

|∇ f(x0,t0)
|2 + R

)
dν(x0,t0)

− n
2(t0 − t)

.

Thus,

− d
dt

(
(t0 − t)N (x0,t0)

)
= (t0 − t)

ˆ (
|∇ f(x0,t0)

|2 + R
)

dν(x0,t0)
− n

2

+

ˆ
f(x0,t0)

dν(x0,t0)
− n

2

= P( f(x0,t0)
, gt, t0 − t) .

This proves (12.19). The inequality (12.20) then follows from Perel-
man’s monotonicity formula (12.15). The limit (12.21) follows from the
aforementioned asymptotics for the logarithmic fundamental solutions
to the conjugate heat equation. We may now conclude that

N (x0,t0)
(t) ≥ P( f(x0,t0)

, gt, t0 − t) .

The inequality (12.22) follows.
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12.5 Perelman’s L-geometry

In this final (singularly voluminous) section of the chapter, we shall
present a parabolic comparison-geometric perspective to Ricci flow,18 18 In fact, the framework can be applied,

to some extent, to more general metric
deformations, and one can sometimes
think of the super Ricci flow condi-
tion

dgt

dt
+ 2Rcgt ≥ 0

introduced by McCann and P. M. Top-
ping, “Ricci flow, entropy and optimal
transportation” as playing the role of
Ricci curvature lower bounds in Rieman-
nian comparison geometry.

which is due to Perelman.19 It arises naturally out of the consideration

19 Perelman, “The entropy formula for
the Ricci flow and its geometric appli-
cations”.

of Perelman’s functional, and replaces the Riemannian length func-
tional/distance with a kind of spacetime length functional/distance.

12.5.1 A Harnack inequality for the conjugate heat equation

The function

u ≑ 2τ
[
∆ f − 1

2 |∇ f |2 + 1
2 R
]
+ f − n

= 2τ
[
−∂t f + 1

2 |∇ f |2 − 1
2 R
]
+ f

which appears (after an integration by parts) in Perelman’s functional
is reminiscent of the terms which appear in the differential Harnack
inequality for the heat equation.20 20 See Exercise 12.4.

Theorem 12.14. Along a Ricci flow (Mn × I, g), for any (x0, t0) ∈ Mn ×R,
the logarithmic fundamental solution to the conjugate heat equation based at
(x0, t0) satisfies, for τ ≑ t0 − t > 0,

2τ
(

∂t f(x0,t0)
+ 1

2

[
R−|∇ f(x0,t0)

|2
])

− f ≥ 0. (12.23)

In particular,

(∂t − ∆)
(

τ
[

f(x0,t0)
− n

2

])
≥ 0. (12.24)

Sketch of the proof. Define

w ≑ 2τ
(

∆ f(x0,t0)
+ 1

2

[
R−|∇ f(x0,t0)

|2
])

+ f − n .

Since v ≑ (4πτ)−
n
2 e− f(x0,t0) satisfies the conjugate heat equation, the

product vw can be shown to satisfy the inequality21 21 Cf. the proof of Theorem 12.10.

(∂t − ∆)∗(vw) = −2τ
∣∣∣Rc+∇2 f(x0,t0)

− 1
2τ g
∣∣∣2 v .

The claim then follows from the maximum principle (applied in
backwards time) since

vw → 0 as t → t0 ,

which is a consequence of the heat kernel asymptotics (12.18).

Integrating the differential Harnack inequality along spacetime curves
yields a Harnack inequality.
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Corollary 12.15. Along a Ricci flow (Mn × I, g), for any (x0, t0) ∈ Mn ×
R, the logarithmic fundamental solution to the conjugate heat equation based
at (x0, t0) satisfies, for any t2 < t1 < t0

2
√

τ(t2) f (x0,t0)
(x2, t2)− 2

√
τ(t1) f(x0,t0)

(x1, t1)

≤ inf
γ

ˆ τ(t2)

τ(t1)

√
τ

(
R(γ(τ), t0 − τ) +

∣∣∣∣dγ

dτ
(τ)

∣∣∣∣2
gt0−τ

)
dτ , (12.25)

where τ(t) ≑ t0 − t and the infimum is taken over regular curves γ :
[τ(t1), τ(t2)] → Mn with γ(τ(t1)) = x1 and γ(τ(t2)) = x2.

Proof. Given a spacetime curve γ : I → M with γ(τ1) = x1 and
γ(τ2) = x2, the Cauchy–Schwarz inequality and the differential Har-
nack inequality (12.23) yield

d
dτ

(√
τ f(x0,t0)

(γ(τ), t0 − τ)
)

=
√

τ

(
1
τ

f(x0,t0)
+ 2g(∇ f(x0,t0)

, γ̇)− 2∂t f(x0,t0)

)∣∣∣∣
(γ(τ),t0−τ)

≤
√

τ

(
1
τ

f(x0,t0)
+ |∇ f(x0,t0)

|2 + |γ̇|2 − 2∂t f(x0,t0)

)∣∣∣∣
(γ(τ),t0−τ)

≤
√

τ
(
|γ̇(τ)|2gt0−τ

+ R(γ(τ), t0 − τ)
)

,

where γ̇ ≑ dγ
dτ . Integrating yields

2
√

τ(t2) f(x0,t0)
(x2, t2)− 2

√
τ(t1) f(x0,t0)

(x1, t1)

≤
ˆ τ(t2)

τ(t1)

√
τ
(

R(γ(τ), t0 − τ) + |γ̇(τ)|2gt0−τ

)
dτ .

Optimizing with respect to γ yields the claim.

12.5.2 The L-functional

Given t0 ∈ R, we are led to consider the functional

Lt0(γ) ≑
ˆ τ2

τ1

√
τ

(∣∣∣∣dγ

dτ

∣∣∣∣2
gt0−τ

+ R(γ, t0 − τ)

)
dτ , (12.26)

which is reminiscent of the Dirichlet energy functional.22 The resem- 22 Recall that the Dirichlet energy of
a curve γ : I → Mn in a Riemannian
manifold is given by

E(γ) ≑
1
2

ˆ b

a

∣∣∣∣ dγ

dr

∣∣∣∣2 dr .

The critical points of E are arclength
parametrized geodesics; indeed,

1
2(b−a) length2(γ) ≤ E(γ)

with equality precisely when the
parametrization is proportional to ar-
clength. See, for example, Klingenberg,
Lectures on closed geodesics.

blance is even more apparent if we parametrize by the distance-like
parameter r =

√
τ, for then

Lt0(γ) =

ˆ r2

r1

1
2

∣∣∣∣dγ

dr

∣∣∣∣2
gt0−r2

+ 2r2 R(γ, t0 − r2)

 dr , (12.27)

where rj ≑
√

τj.
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Continuing the analogy, the L-geodesics—critical points of the
functional L amongst variations with fixed endpoints—should play a
role in a “Ricci flow spacetime” akin to that of geodesics in a Rieman-
nian manifold. If t < t0, then the infimum

L(x0 ,t0 )
(x, t) ≑ inf

γ
Lt0 (γ)

of Lt0 (γ) amongst regular curves γ : [0, t0 − t] → Mn joining points
γ(0) = x0 and γ(t0 − t) = x should provide a kind of distance be-
tween the “events” (x0 , t0) and (x, t) after division by twice the square
root of backward time. This quantity,

ℓ(x0 ,t0 )
≑

1
2
√

τ
L(x0 ,t0 )

,

is called the reduced distance.

Example 23. On the static Ricci flow (Rn × (−∞, ∞), gRn ), for any
t0 ∈ (−∞, ∞) and γ : [0, τ ] → Rn ,

Lt0 (γ) =

ˆ τ

0

√
τ

∣∣∣∣ dγ

dτ

∣∣∣∣2 dτ =
1
2

ˆ √
τ

0

∣∣∣∣ dγ

dr

∣∣∣∣2 dr

is just the usual Dirichlet energy. So the L-geodesics are the parametrized
straight lines: γ(τ) = x0 +

√
τ v⃗, |⃗v| ̸= 0. Along such a curve,

Lt0 (γ) = 1
2

√
τ |⃗v|2 and v⃗ = γ(τ)−x0√

τ
, so

L(x0 ,t0 )
(x, t) =

|x − x0 |2
2
√

t0 − t
and ℓ(x0 ,t0 )

(x, t) =
|x − x0 |2
4(t0 − t)

. ■

Note that Corollary 12.15 implies that

f(x0 ,t0 )
≤ ℓ(x0 ,t0 )

,

where f(x0 ,t0 )
is the logarithmic fundamental solution to the conjugate

heat equation based at (x0 , t0). This yields the heat kernel estimate23 23 Compare this with the heat kernel esti-
mate on compact Riemannian manifolds
of Li and Yau, “On the parabolic kernel
of the Schrödinger operator”.

K(x0, t0, ·) ≥
(
4π(t0 − t)

)− n
2 e−ℓ(x0,t0) .

Example 23 shows that equality holds on static Euclidean space.

12.5.3 First variation of L

Proposition 12.16 (First variation of L). Given any t0 ∈ (α, ω), let γ :
[τ1, τ2] → Mn, 0 ≤ τ1 < τ2 < t0 − α, be a spacetime curve along a Ricci
flow (Mn × (α, ω), g). For any variation {γε}ε∈(−ε0,ε0)

of γ0 = γ,

d
dε

∣∣∣∣
ε=0

Lt0(γε) = g(γ(τ),t0−τ)

(
1

2
√

τ

dγ

dτ
, V
)∣∣∣∣τ2

τ1

(12.28a)

−
ˆ τ2

τ1

2
√

τ g
(

γ∇τ
dγ

dτ
+

1
2τ

dγ

dτ
+ 2Rc

(
dγ

dτ

)
− 1

2
∇R, V

)∣∣∣∣
(γ(τ),t0−τ)

dτ.
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where V ≑ d
dε

∣∣∣
ε=0

γε.

Equivalently (after reparametrizing by r =
√

τ),

d
dε

∣∣∣∣
ε=0

L(γε) = g(γ(r),t0−r2)

(
dγ

dr
, V
)∣∣∣∣r2

r1

(12.28b)

−
ˆ r2

r1

g
(

γ∇r
dγ

dr
+ 4rRc

(
dγ

dr

)
− 2r2∇R, V

)∣∣∣∣
(γ(r),t0−r2)

dr.

Proof. If we define ω : (r1, r2) × (−ε0, ε0) → Mn by ω(r, ε) ≑ γε(r),
then

∇ dω
dε

dω

dr
= ∇ dω

dr

dω

dε

and

d
dr

[
gt0−r2

(
V, γ′)] = 4r Rct0−r2(V, γ′) + gt0−r2

(
γ∇rV, γ′)

+ gt0−r2
(
V, γ∇rγ′) ,

where γ′ ≑ dγ
dr and γ∇ denotes the pullback connection. Thus,

d
dε

∣∣∣∣
ε=0

L(γε)

=
d
dε

∣∣∣∣
ε=0

ˆ r2

r1

(
1
2

∣∣∣∣dω

dr

∣∣∣∣2 + 2r2 R

)
dr

=

ˆ r2

r1

(
g
(

γ∇rV, γ′)+ 2r2∇V R)
)

dr

=

ˆ r2

r1

(
∂r
[
g
(
V, γ′)]− g

(
V, γ∇rγ′)− 4r Rc(V, γ′) + 2r2∇V R

)
dr

= g(V, γ′)
∣∣r2
r1
−
ˆ r2

r1

(
g(V, γ∇rγ′) + 4r Rc(V, γ′)− 2r2∇V R)

)
dr ,

where we have suppressed the fact that the calculations are carried out
along the spacetime curve r 7→ (γ(r), t0 − r2). The equation (12.28b)
follows. A straightforward change of variables then yields (12.28a).

So the L-geodesics are characterized by the differential equation

γ∇τ
dγ

dτ
+

1
2τ

dγ

dτ
+ 2Rct0−τ

(
dγ

dτ

)
− 1

2
∇Rt0−τ = 0 (12.29a)

or, equivalently, the equation

γ∇r
dγ

dr
+ 4rRct0−r2

(
dγ

dr

)
− 2r2∇Rt0−r2 = 0. (12.29b)

Note that, even though the equation (12.29a) is singular at τ = 0,
the equation (12.29b) is not. So we can always find a (unique) Lt0 -
geodesic γ emanating from (x0, t0) if we prescribe the initial velocity
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dγ
dr (0) = limτ→0 2

√
τ dγ

dτ , and γ will depend continuously on the data
(x0, t0, v).

Observe that

d
dr

1
2

gt0−r2

(
dγ

dr
,

dγ

dr

)
= gt0−r2

(
∇r

dγ

dr
,

dγ

dr

)
+ 2r Rct0−r2

(
dγ

dr
,

dγ

dr

)
= 2r2∇ dγ

dr
Rt0−r2 −2r Rct0−r2

(
dγ

dr
,

dγ

dr

)
.

Thus, if Mn is compact and the Ricci flow defined on [α, t0], then the
geodesic may be extended until r2 = τ reaches t0 − α. Accordingly, we
define the L-exponential map at (x, t) for τ < t0 − α by24 24 We may interpret L expτ as a map on

the spatial tangent bundle via (x, t, v) 7→
L expτ

(x,t) v.L expτ
(x,t) v ≑ γ(τ) ,

where γ is the unique solution to (12.29a) satisfying γ(0) = x and
limτ→0

√
τ dγ

dτ (τ) = v.
Observe that, as r → 0, the Lt0 -geodesic equation (12.29b) tends

to the geodesic equation for the metric gt0 . Thus, by the continuous
dependence of solutions to (12.29b) on the coefficients of the equation,

L expτ
(x0,t0)

(
v

2
√

τ

)
→ exp(x0,t0)

v

and
2
√

τL(x0,t0)
(x, t0 − τ) → dist2

gt0
(x, x0) (12.30)

as τ → 0.
By adapting the Riemannian theory, one may establish properties

of L-geodesics which are analogous to properties of their Riemannian
counterparts.25 In particular, given any (x0, t0), (x1, t1) ∈ Mn × I with 25 The analogy is not perfect, however;

as an example, observe that L expτ
(x,t)

may not map the zero vector to x, due
to the inhomogeneous term 1

2∇Rt−r2 in
(12.29a)—diffusion causes the base point
to move, unless it is a critical point of
R(·, t).

t1 < t0, a minimizing Lt0 -geodesic can be found joining x0 = γ(0) to
x1 = γ(t0 − t1).26

26 See, e.g. Kleiner and Lott, “Notes on
Perelman’s papers”, §17; cf. e.g. Chavel,
Riemannian geometry, §I.6-I.7.

We also have the following analogue of the Riemannian identity
|∇r| = 1 for distance functions r(x) ≑ dist(x, x0) (which should be
compared with the differential Harnack inequality (12.23) for the con-
jugate heat kernel).

Proposition 12.17. Along a Ricci flow (Mn × I, g) on a compact manifold
Mn, for any (x0, t0) ∈ Mn × I,

∂τ L(x0,t0)
+

1
4
√

τ
|∇L(x0,t0)

|2 −
√

τ R ≥ 0, (12.31)

and hence

2τ
(

∂τℓ(x0,t0)
− 1

2

[
R−|∇ℓ(x0,t0)

|2
])

+ ℓ(x0,t0)
≥ 0, (12.32)

in the viscosity sense for τ > 0.
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Proof. Given any (x, t) ∈ Mn × I with t < t0, we can find a minimizing
Lt0 -geodesic γ joining x0 = γ(0) to x = γ(t0 − t). Given any v ∈
Tx Mn, let {γε}ε∈(−ε0,ε0)

be a variation of γ0 = γ with γε(0) = x0 and
d
dε

∣∣
ε=0γε(τ) = v. If φ(x, t) is a smooth function that satisfies φ ≤

L(x0,t0)
in a small forwards27 neighbourhood of (x, t) with equality at 27 I.e. backwards with respect to τ.

(x, t), then

φ(γε(t0 − t), t) ≤ L(x0,t0)
(γε(t0 − t), t) ≤ Lt0(γε) ,

with equality when ε = 0, and hence, by (12.28b),

0 =
d
dε

∣∣∣∣
ε=0

(φ(γε(t0 − t), t)−Lt0(γε))

= ∇v φ(x, t)− gt
(
γ′, v

)
where γ′ ≑ dγ

dr . Since v may be freely chosen, we conclude that

∇φ(x, t) = γ′(√t0 − t
)
= 2

√
t0 − t γ̇(t0 − t) , (12.33)

where γ̇ ≑ dγ
dτ . On the other hand, if we set γε(τ) ≑ γ( t0−t

t0−t+ε τ), then
d
dε

∣∣
ε=0γε = −γ̇ and hence, for small ε > 0,

φ(x, t + ε) ≤ L(x0,t0)
(x, t + ε)

≤
ˆ t0−t−ε

0

√
τ

(∣∣∣∣dγε

dτ

∣∣∣∣2
gt0−τ

+ R(γε, t0 − τ)

)
dτ ,

and hence

0 ≥ d
dε

∣∣∣∣
ε=0

(
φ(x, t + ε)−

ˆ t0−t−ε

0

√
τ

(∣∣∣∣dγε

dτ

∣∣∣∣2
gt0−τ

+ R(γε, t0 − τ)

)
dτ

)
= ∂t φ(x, t) +

√
t0 − t

(
|γ̇|2gt

+ R(x, t)
)

− 2
ˆ t0−t

0

√
τ

(
gt0−τ (∇τγ̇, γ̇) +

1
2
∇γ̇ Rt0−τ

)
dτ .

(12.34)

Since, by the L-geodesic equation,

∂τ

[√
τgt0−τ (γ̇, γ̇)

]
=

√
τ
(

1
2τ gt0−τ (γ̇, γ̇)

+ 2 Rct0−τ (γ̇, γ̇) + 2gt0−τ (
γ∇τγ̇, γ̇)

)
=

√
τ
(

gt0−τ (
γ∇τγ̇, γ̇) + 1

2∇γ̇Rt0−τ

)
,

we conclude that

∂t φ(x, t) ≤
√

t0 − t
(

1
4(t0 − t)

|∇φ(x, t)|2 − R(x, t)
)

.

The inequality (12.31) follows. The inequality (12.43) then follows from
the fact that any lower support ψ for ℓ(x0,t0)

induces a lower support
φ = 2

√
τψ for L(x0,t0)

.



singularities and their analysis 227

12.5.4 Second variation of L

We next consider the second variation of L, and its consequences.

Proposition 12.18 (Second variation of L). Given any t0 ∈ (α, ω), let
γ : [τ1, τ2] → Mn be an Lt0 -geodesic along a Ricci flow (Mn × (α, ω), g).
For any variation {γε}ε∈(−ε0,ε0)

of γ0 = γ,

d2

dε2

∣∣∣∣
ε=0

Lt0(γε) (12.35a)

= gt0−τ

(
2
√

τγ̇, W
)∣∣τ2

τ1
+

ˆ τ2

τ1

2
√

τ
[
|γ∇τV|2 − Rm(γ̇, V, γ̇, V)

+∇γ̇Rc(V, V)− 2∇VRc(γ̇, V) + 1
2∇V∇VR

]∣∣∣
(γ(τ),t0−τ)

dτ .

where γ̇ ≑ dγ
dτ , V ≑ d

dε

∣∣
ε=0γε and W ≑ ∇ε

dγε
dε

∣∣
ε=0.

Equivalently (after reparametrizing by r =
√

τ)

d2

dε2

∣∣∣∣
ε=0

L(γε) (12.35b)

= gt0−r2
(
γ′, W

)∣∣∣r2

r1
+

ˆ r2

r1

[
|γ∇rV|2 − Rm(γ′, V, γ′, V)

+2r∇γ′Rc(V, V)− 4r∇VRc(γ′, V) + 2r2∇V∇VR
]∣∣∣

(γ(r),t0−r2)
dr ,

where γ′ ≑ dγ
dr .

Proof. As in the proof of Proposition 12.16, we define ω : (r1, r2) ×
(−ε0, ε0) → Mn by ω(r, ε) ≑ γε(r) and work with the pullback con-
nection ω∇. We begin with

d
dε

L(γε) =

ˆ r2

r1

[
g
(

ω∇r
dω

dε
,

dω

dr

)
+ 2r2∇εR

]
dr .

Thus,

d2

dε2

∣∣∣∣
ε=0
L(γε) =

ˆ r2

r1

[
g
(

ω∇ε

(
ω∇r

dω

dε

)
,

dω

dr

)
+ g

(
ω∇r

dω

dε
, ω∇ε

dω

dr

)
+2r2

(
∇ dω

dε
∇ dω

dε
R +∇ω∇ε

dω
dε

R
) ]∣∣∣∣

ε=0
dr

=

ˆ r2

r1

[
Rm(γ′, V, V, γ′) + g (γ∇rV, γ∇rV)

+g
(

γ∇rW, γ′)+ 2r2 (∇V∇VR +∇WR)
]

dr .

Recalling Exercise 8.3, we have

d
dr

[
g
(

W, γ′
)]

=
d
dr

[
g
(
∇ dω

dε

dω

dε
,

dω

dr

)]∣∣∣∣
ε=0

= 4r Rc
(
W, γ′)+ 4r∇V Rc

(
V, γ′)− 2r∇γ′ Rc (V, V)

+ g
(

γ∇rW, γ′)+ g
(
W, γ∇rγ′) .
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Applying the L-geodesic equation then yields

d
dr

[
g
(

W, γ′
)]

= 2r2∇WR + 4r∇V Rc
(
V, γ′)− 2r∇γ′ Rc (V, V)

+ g
(

γ∇rW, γ′) .

Putting this together yields (12.35b). The equation (12.35a) then
follows by changing variables.

Observe that some of the terms which appear in (12.35a) also appear
in the matrix Harnack inequality (12.9). We should try to make the
relationship more exact. To that end, we use the identity

d
dτ

[
2
√

τ Rc(V, V)
]
= 2

√
τ
(

1
2τ Rc(V, V)

+∇γ̇ Rc(V, V) +∇τ Rc(V, V) + 2 Rc(γ∇τV, V)
)

to rewrite (12.35a) as

d2

dε2

∣∣∣∣
ε=0

Lt0(γε)

= gt0−τ

(
2
√

τγ̇, W
)∣∣τ2

τ1
− 2

√
τ Rct0−τ (V, V)|τ2

τ1

+

ˆ τ2

τ1

2
√

τ
[
|γ∇τV + Rc(V)|2 − Rm(γ̇, V, γ̇, V)

+ 2∇γ̇Rc(V, V)− 2∇VRc(γ̇, V) + 1
2

(
∇V∇VR + 2 Rc2(V, V)

)
+ 1

2τ Rc(V, V) +∇τ Rc(V, V)
]∣∣∣

(γ(τ),t0−τ)
dτ .

= gt0−τ

(
2
√

τγ̇, W
)∣∣τ2

τ1
− 2

√
τ gt0−τ (V, V)|τ2

τ1

+

ˆ τ2

τ1

2
√

τ
[
|γ∇τV + Rc(V)|2 − H(γ̇, V)

]∣∣∣
(γ(τ),t0−τ)

dτ,
(12.36)

where

H(U, V) ≑ ∇t Rc(V, V)− 1
2

(
∇V∇VR + 2 Rc2(V, V)

)
+ 2∇VRc(U, V)− 2∇URc(V, V) + Rm(U, V, U, V)

− 1
2(t0−t) Rc(V, V) .

These terms are almost identical to the (suitably contracted) left hand
side of the matrix differential Harnack inequality (12.9), differing only
in that the coefficient of the final term is centred at the final time, t0,
rather than the initial time.

The second variation of Lt0 leads to an inequality for the Hessian
of L(x0,t0)

, which can be combined with the first variation identities to
obtain the following analogue of the Laplacian comparison theorem
from Riemannian geometry.
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Proposition 12.19. Along a Ricci flow (Mn × I, g) on a compact manifold
Mn, for any (x0, t0) ∈ Mn × I,

(∂t − ∆)∗
[
(4π(t0 − t))−

n
2 e−ℓ(x0,t0)

]
≤ 0 (12.37)

and
(∂t − ∆)

(
(t0 − t)

[
ℓ(x0,t0)

− n
2
])

≥ 0 (12.38)

in the viscosity sense28 for existence times t < t0. 28 We would be remiss not to be a bit
more precise about this. To wit: every
smooth φ which supports ℓ(x0 ,t0)

from
below at (x, t) in a forwards parabolic
neighbourhood of (x, t) ∈ Mn × I ∩
(−∞, t0) (backwards with respect to τ)
satisfies

(∂t − ∆)∗
[
(4π(t0 − t))−

n
2 e−φ

]
≤ 0

at (x, t), and every smooth φ which
supports ℓ(x0 ,t0)

from below at (x, t) in
a backwards parabolic neighbourhood of
(x, t) ∈ Mn × I ∩ (−∞, t0] satisfies

(∂t − ∆)
(
(t0 − t)

[
ℓ(x0 ,t0)

− n
2

])
≥ 0

at (x, t).

Proof. Given any (x, t) ∈ Mn × I with t < t0, we can find a mini-
mizing Lt0 -geodesic joining x0 = γ(0) to x = γ(t0 − t). Given any
v ∈ Tx Mn, let {γε}ε∈(−ε0,ε0)

be a variation of γ0 = γ with γε(0) = x0

and d
dε

∣∣
ε=0γε(t0 − t) = v. If φ(x, t) is a smooth function that satisfies

φ ≤ L(x0,t0)
in a small backwards neighbourhood of (x, t) with equality

at (x, t), then

φ(γε(t0 − t), t) ≤ L(x0,t0)
(γε(t0 − t), t) ≤ Lt0(γε) ,

with equality when ε = 0, and hence, by (12.36),

0 ≥ d2

dε2

∣∣∣∣
ε=0

(φ(γε(t0 − t), t)−Lt0(γε))

=
(
∇V∇V φ +∇W φ

)∣∣
(x,t) − gt0−τ

(
2
√

τγ̇, W
)∣∣τ

0 + 2
√

τ Rct0−τ(V, V)|τ0

−
ˆ τ

0
2
√

τ
[
|γ∇τV + Rc(V)|2 − H(γ̇, V)

]∣∣∣
(γ(τ),t0−τ)

dτ , (12.39)

where γ̇ ≑ dγ
dτ . Recalling (12.33), we may equate

∇W φ(x, t) = gt0−τ

(
2
√

τγ̇, W
)∣∣τ

0 .

Now, given any gt-orthonormal basis {vi}n
i=1 for Tx Mn, we can find

variation fields {Vi(τ)}n
i=1 by solving{

γ∇τVi =
1

2τ Vi − Rc(Vi) for τ ∈ [0, τ]

Vi(τ) = vi .
(12.40)

This yields the orthonormal frame
{√

τ
τ Vi(τ)

}n

i=1
along (γ(τ), t0 − τ).

(In particular, Vi(0) = 0). Applying (12.39) to variations generated by
these fields and summing the result then yields

∆φ(x, t) ≤ − 2
√

τR(x, t) + n√
τ

(12.41)

+
1
τ

ˆ τ

0
τ

3
2

(
∂τR + 1

τ R + 2∇γ̇R − 2 Rc(γ̇, γ̇)
) ∣∣∣

(γ(τ),t0−τ)
dτ .

On the other hand, recalling (12.33) and (12.34), we have (see Exercise
12.9)

|∇φ(x, t)|2 = − 4τR(x, t) + 2√
τ

φ(x, t) (12.42)

+
4√
τ

ˆ τ

0
τ

3
2

(
∂τR + 1

τ R + 2∇γ̇R − 2 Rc(γ̇, γ̇)
)∣∣∣

(γ(τ),t0−τ)
dτ
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and

∂t φ(x, t) ≤ − 2
√

τR(x, t) + 1
2τ φ(x, t) (12.43)

+
1
τ

ˆ τ

0
τ

3
2

(
∂τR + 1

τ R + 2∇γ̇R − 2 Rc(γ̇, γ̇)
) ∣∣∣

(γ(τ),t0−τ)
dτ .

Putting these together yields the inequality

(∂t + ∆)
( 1

2
√

τ
φ
)
≤
∣∣∣∇( 1

2
√

τ
φ
)∣∣∣2 − R+ n

2τ

at (x, t). The first claim follows, since any upper support, ψ, for
(4πτ)−

n
2 e−ℓ induces a lower support, φ, for L via

ψ ≑ (4πτ)−
n
2 e−

1
2
√

τ
φ .

The second claim may be established similarly, since (12.43) holds
with the opposite inequality for backwards lower supporting func-
tions.

Applying the trace differential Harnack inequality to (12.42) yields
the following useful estimate for Ricci flows with positive curvature.

Proposition 12.20. Let (Mn × I, g) be a Ricci flow with positive curvature
operator on a compact manifold Mn. Given any (x0, t0) ∈ Mn × I and any
τ0 such that t0 − τ0 ∈ I, the inequality

∣∣∇ℓ(x0,t0)

∣∣2 + R ≤
10ℓ(x0,t0)

t0 − t
(12.44)

holds in the viscosity sense for t ∈ [t0 − τ0
2 , t0].

Proof. Let φ be a smooth function which supports ℓ(x0,t0)
from below

at (x, t). Applying the trace differential Harnack inequality (12.11) to
(12.42) yields, at (x, t),

|∇φ|2 + R − 1
2τ

φ ≤ 1

τ
3
2

ˆ τ

0
σ

3
2

(
1

τ0 − σ
+

1
σ

)
Rdσ

≤ 2

τ
3
2

ˆ τ

0
σ

1
2 R dσ

≤ 2

τ
3
2

ˆ τ

0
σ

1
2

(
|γ̇|2 + R

)
dσ

=
4
τ
ℓ

=
4
τ

φ .

The claim follows.

Dropping the gradient term in (12.44), we see that (t0 − t)R is
bounded by29 ℓ(x0,t0)

. On the other hand, dropping the scalar cur- 29 This is not immediately obvious, since
(12.44) only holds (globally) in a weak
sense. It can nonetheless be deduced
from the viscosity sense. In any case,
we will restrict to regions where ℓ(x0 ,t0)

is smooth here.
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vature term, integrating (12.44) yields a bound for ℓ(x0,t0)
in terms

of distance to x0 and time until t0, at least in regions where ℓ(x0,t0)

is smooth. Indeed, if ℓ(x0,t0)
(·, t) is smooth along a minimizing gt-

geodesic30 γ : [0, τ] → Mn, τ = t0 − t joining γ(0) = y and γ(τ) = x, 30 It will be sufficient that σ 7→
ℓ(x0 ,t0)

(γ(σ), t) be piecewise C1.then, under the assumption R > 0 (so that ℓ(x0,t0)
> 0), the function

f (σ) ≑ ℓ
1
2
(x0,t0)

(γ(σ), t) is smooth for t < t0, and we may estimate

f ′ =
1
2
∇γ′ℓ(x0,t0)

|(γ,t)

ℓ
1
2
(x0,t0)

(γ, t)

≤ 1
2
|γ′|gt

∣∣∇ℓ(x0,t0)
|(γ,t)

∣∣
gt

ℓ
1
2
(x0,t0)

(γ, t)

≤
2|γ′|gt√

τ
.

Since |γ′|gt ≡
d(x,y,t)

t0−t , we find that

ℓ(x0,t0)
(x, t) ≤

(
ℓ

1
2
(x0,t0)

(y, t) +
2d(x, y, t)√

t0 − t

)2

≤ 5
(
ℓ(x0,t0)

(y, t) +
d2(x, y, t)

t0 − t

)
.

We conclude that

sup
d2(x,y,t)

t0−t ≤ρ2

[
ℓ(x0,t0)

(·, t) + (t0 − t)R(·, t)
]
≤ C(ρ, λ) (12.45)

for all t ∈ [t0 − τ0
2 , t0] and all y ∈ Mn such that ℓ(x0,t0)

(y, t) ≤ λ2 and
ℓ(x0,t0)

(·, t) is smooth in Bρ
√

t0−t(y, t).
Note that the requirement ℓ(x0,t0)

(y, t) ≤ λ2 in the estimate (12.45)
is not vacuous.

Lemma 12.21. Let (Mn × I, g) be a Ricci flow with on a compact manifold
Mn. Given t0 ∈ I, there exists, for any t ∈ I ∩ (−∞, t0), some x ∈ Mn such
that ℓ(x0,t0)

(x, t) ≤ n
2 .

Proof. If ℓ(x0,t0)
(x, t) > n

2 for all x ∈ Mn for some t∗ ∈ I ∩ (−∞, t0),
then we can find ε > 0 such that (t0 − t∗)

(
ℓ(x0,t0)

(x, t∗)− n
2
)
≥ ε for

all x ∈ Mn. But then (12.38) ensures that (t0 − t)
(
ℓ(x0,t0)

(x, t)− n
2
)
≥ ε

(and in particular (t0 − t)ℓ(x0,t0)
(x, t) ≥ ε) for all x ∈ Mn and t ∈

[t∗, t0). But this violates (12.30).
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12.5.5 L-Jacobi fields and the L-cut locus

Next, we wish to relate the bilinear form

Q(V, V) ≑
ˆ τ2

τ1

2
√

τ
[
|γ∇τV|2 − Rm(γ̇, V, γ̇, V)

+∇γ̇Rc(V, V)− 2∇VRc(γ̇, V) + 1
2∇V∇VR

]∣∣∣
(γ(τ),t0−τ)

dτ .

acting on vector fields V ∈ Γ(γ∗TM) along γ to an L2-self-adjoint R-
linear map T : Γ(γ∗TM) → Γ(γ∗TM). To that end (recalling Exercise
8.3) we apply the identity

d
dτ

[
2
√

τg(γ∇τV, V)
]
= 2

√
τ
[

1
2τ g(γ∇τV, V) + 2 Rc(γ∇τV, V)

+∇γ̇ Rc(V, V) + g(γ∇τ(
γ∇τV), V) + |γ∇τV|2

]
,

to write

Q(V, V) = 2
√

τ gt0−τ (
γ∇τV, V)|τ2

τ1
−
ˆ τ2

τ1

2
√

τg(TV, V)dτ ,

where

TV ≑ γ∇τ(
γ∇τV) + 1

2τ
γ∇τV + 2∇VRc(γ̇) + 2Rc(γ∇τV)

+ Rm(γ̇, V)γ̇ − 1
2∇V(∇R).

We conclude that, for any vector field V along γ satisfying symmetric
boundary conditions31, 31 Meaning that

2
√

τ gt0−τ (
γ∇τV, V)

∣∣τ2
τ1

= 0.Q(V, V) = −(TV, V)L2(2
√

τ dτ) .

The operator T : Γ(γ∗TM) → Γ(γ∗TM) is called the L-Jacobi

operator. A solution V ∈ Γ(γ∗T M) to the L-Jacobi equation

−TV = 0

along an L-geodesic γ is called an L-Jacobi field (along γ).
Observe that L-Jacobi fields correspond to variation fields of L-

geodesic variations. Indeed, if {γε}ε∈(−ε0 ,ε0 )
is a variation of the L-

geodesic γ = γ0 through L-geodesics γε , then, by the L-geodesic
equation (12.29a), the variation field V ≑ d

dε

∣∣
ε=0γε satisfies

γ∇τ

(
γ∇τ V

)
= γ∇τ (γ∇V γ̇)

= ∇V (γ∇τ γ̇) − Rm(γ̇, V)γ̇

= ∇V

(
1
2∇R − 1

2τ γ̇ − 2Rc(γ̇)
)
− Rm(γ̇, V)γ̇

= 1
2∇V (∇R) − 1

2τ ∇V γ̇ − 2∇V Rc(γ̇) − 2 Rc(∇V γ̇)

− Rm(γ̇, V)γ̇

= 1
2∇V (∇R) − 1

2τ
γ∇τ V − 2∇V Rc(γ̇) − 2 Rc(γ∇τ V)

− Rm(γ̇, V)γ̇ .
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We may therefore (again mirroring the Riemannian setting) charac-
terize the derivative of the L-exponential map in terms of the L-Jacobi
fields. To achieve this, we set up a geodesic variation {γε}ε∈(ε0 ,ε0 )

as
follows: start with a minimizing Lt0 -geodesic γ(τ) = L expτ

(x0 ,t0 )
u

joining γ(0) = x0 to γ(τ) = x. Given any v ∈ Tx0 Mn , we can find
a (short) gt-geodesic {ε → x(ε)}ε∈(−ε0 ,ε0 )

by solving the gt-geodesic
equation with initial data (x, v); i.e. x(ε) ≑ exp(x,t) εv. If γ is min-
imizing on [0, τ + δ) for some δ > 0, then ε0 may be chosen small
enough that a unique minimizing Lt0 -geodesic γε : [0, τ ε ] → Mn join-
ing γε(0) = x0 to γε(τ ε) = x(ε) may be found for each ε ∈ (−ε0 , ε0).
But then γε(τ) = L expτ

(x0 ,t0 )
uε for some variation {uε}ε∈(−ε0 ,ε0 )

of u0 = u. Since the kernel of the linear map T : Γ(γ∗T Mn) →
Γ(γ∗T Mn) is 2n-dimensional, we conclude that

V(τ) ≑
d
dε

∣∣∣∣
ε=0

γε(τ) = dL expτ
(x0 ,t0 )

∣∣∣
u

d
dε

∣∣∣∣
ε=0

uε (12.46)

is the unique L-Jacobi field along γ satisfying V(0) = 0 and V(τ) =

v. Since Tu(Tx0 Mn) and Tγ(τ)Mn have the same dimension, we also
find that dL expτ

(x0 ,t0 )

∣∣
u is an isomorphism.

Denote by Dτ
(x0 ,t0 )

the set of tangent vectors v ∈ Tx0 Mn which de-
fine Lt0 -geodesics σ 7→ L expσ

(x0 ,t0 )
v that are minimizing up to some

value of σ which exceeds τ. By smoothness of minimizers of Lt0 , such
geodesics uniquely minimize Lt0 up to τ, and we may thus conclude
that the restriction of L expτ

(x0 ,t0 )
to Dτ

(x0 ,t0 )
is a diffeomorphism onto

its image under L expτ
(x0 ,t0 )

(which we denote by Dτ
(x0 ,t0 )

⊂ Mn).
As in the Riemannian setting, it can be shown32 that the L-cut

32 See, e.g. Kleiner and Lott, “Notes on
Perelman’s papers”, §17; cf. e.g. Chavel,
Riemannian geometry, §III.3.

locus, Mn \ Dτ
(x0 ,t0 )

, has measure zero in Mn .

12.5.6 The reduced volume and noncollapsing

Define the reduced volume Ṽ along a Ricci flow (Mn × I , g) by

Ṽ(x0 ,t0 )
(τ) ≑

ˆ
Mn

(4πτ)−
n
2 e−ℓ(x0 ,t0 )

(·,t0−τ) dµt0−τ

for any basepoint (x0 , t0) ∈ Mn × I and t0 − τ ∈ I . Inspired by
the Bishop–Gromov volume comparison theorem33, we find that the 33 See, e.g., ibid., Proposition III.4.1.

reduced volume is monotone in τ.

Proposition 12.22. Along any Ricci flow (Mn × I, g) on a compact manifold
Mn,

d
dτ

Ṽ(x0,t0)
(τ) ≤ 0

for any basepoint (x0, t0) ∈ Mn × I, with strict inequality unless

Rc+∇2ℓ(x0,t0)
= 1

2τ g in Dτ
(x0,t0)

.
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Proof. Since L expτ
(x0,t0)

is a diffeomorphism from Dτ
(x0,t0)

to Dτ
(x0,t0)

and Mn \ Dτ
(x0,t0)

has measure zero in Mn, we may compute the re-
duced volume by pulling back to Tx0 Mn using L expτ

(x0,t0)
. Indeed,

Ṽ(x0,t0)
(τ) =

ˆ
Dτ
(x0,t0)

(4πτ)−
n
2 e−ℓ(x0,t0)

(γu(τ),t0−τ)J (u, τ)dm(u) ,

where γu(τ) = L expτ
(x0,t0)

u, J (u, τ) is the Jacobian determinant of
the coordinate change L expτ

(x0,t0)
at u, and dm denotes the Lebesgue

measure on Tx0 Mn. By (12.46), J 2(u, τ) is equal to the determinant of
the matrix whose entries are gt0−τ(Vi(τ), Vj(τ)), where {Vj}n

j=1 are a
basis for the L-Jacobi fields along γu which vanish at 0. Thus,

d
dτ

logJ (u, τ) =
1
2

d
dτ

n

∑
j=1

|Vj|2

=
n

∑
j=1

(
Rc(Vj, Vj) + g(γu∇τVj, Vj)

)
=

n

∑
j=1

(
Rc(Vj, Vj) +

1
2
√

τ
∇2L(x0,t0)

(Vj, Vj)
)

.

We may arrange that the basis {Vj}n
j=1 is orthonormal at a given choice

of τ, yielding
d

dτ
logJ = R+∆ℓ

at that point. If we write

dm̃(u) ≑ (4πτ)−
n
2 e−ℓ(x0,t0)

(γu(τ),t0−τ)J (u, τ)χDτ
(x0,t0)

(u)dm(u) ,

where χDτ
(x0,t0)

is the characteristic function of Dτ
(x0,t0)

, then, recalling

(12.34) and observing that τ 7→ χDτ
(x0,t0)

(u) is nonincreasing, we con-

clude that
d
dt

Ṽ(x0,t0)
(τ) =

d
dt

ˆ
Tx0 Mn

dm̃

≥ −
ˆ

Tx0 Mn

(
(∂t + ∆)ℓ(x0,t0)

− |∇ℓ(x0,t0)
|2 + R− n

2τ

)
dm̃

= −
ˆ

Tx0 Mn
(∂t − ∆)∗

(
(4π(t0 − t))−

n
2 e−ℓ(x0,t0)

)
dm̃

≥ 0

due to Proposition 12.19 (where it is understood that the integrands are
pulled back to Tx0 Mn via L exp). In fact, the inequality is strict unless
the test vector fields (solutions to (12.40) along γu with vi = Vi(τ))
coincide with the L-Jacobi fields Vi for each u. But then |Vi|2 ≡ τ

τ , and
hence

1
2τ

=
d

dτ

∣∣∣∣
τ=τ

1
2
|Vi|2 =

(
Rc(Vi, Vi) +∇2ℓ(x0,t0)

(Vi, Vi)
)∣∣∣

τ=τ
.
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The rigidity claim follows since u and τ are arbitrary and {Vi(τ)}n
i=1

is a basis for Tγu(τ)Mn.

The monotonicity of reduced volume yields, for admissible τ ≤ τ0,

Ṽ(x0,t0)
(τ) ≥ V(x0,t0)

(τ0)

= (4πτ0)
− n

2

ˆ
Mn

e−ℓ(x0,t0)
(·,t0−τ0) dµt0−τ0

≥ κ ,

so long as ℓ(x0,t0)
(·, t0 − τ0) can be suitably bounded from above (at

least on a set of fixed gt0−τ0 -size).
On the other hand, setting τ = r2, we can write

Ṽ(x0,t0)
(τ) = (4π)−

n
2 r−n

ˆ
Br(x0,t0)

e−ℓ(x0,t0)
(·,t0−r2) dµt0−r2 + E(τ) ,

where the “error term” is given by

E(τ) ≑
ˆ

Mn\Br(x0,t0)
(4πτ)−

n
2 e−ℓ(x0,t0)

(·,t0−τ) dµt0−τ .

Now, if R ≳ −r−2 in Br(x0, t0) × [t0 − r2, t0], then ℓ(x0,t0)
≳ −1 in

Br(x0, t0)× [t0 − r2, t0], and hence

Ṽ(x0,t0)
(τ) ≲

volume
(

Br(x0, t0), gt0−r2

)
rn + E(τ) .

Moreover, if R ≲ r−2 in Br(x0, t0)× [t0 − r2, t0], then

− d
dt

log volume(Br(x0, t0), t) ≲ r−2

and we may therefore relate

volume
(

Br(x0, t0), gt0−r2
)
≲ volume (Br(x0, t0), gt0) .

If the error term can be absorbed, then we will obtain a volume non-
collapsing estimate.

Theorem 12.23. Let (Mn × [0, T), g) be a Ricci flow on a compact manifold
Mn. Given (x, t) ∈ Mn × [0, T) and r2 ≤ t, if |Rm|2 ≤ r−2 on Br(x, t)×
[t − r2, t], then

volume(Br(x, t), t) ≥ κrn ,

where κ = κ(Mn, g0, T).

Proof. Proceeding as above, we may estimate

Ṽ(x,t)(τ) ≥ (4πT)−
n
2

ˆ
Mn

e−ℓ(x,t)(·,0) dµ0 .
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To estimate the integral from below, it suffices to estimate ℓ(x,t)(·, 0)
from above on some set of nontrivial g0-measure. To that end, choose
(in accordance with (9.13)) a time t∗ = t∗

(
n, maxMn×{0} |Rm|

)
such

that maxMn×[0,t∗ ] |Rm| ≤ 1
t∗ and (in accordance with Lemma 12.21) a

point x∗ ∈ Mn such that ℓ(x,t)(x∗, t∗) ≤ n
2 . Let α : [0, t − t∗] → Mn be a

minimizing Lt-geodesic joining α(0) = x to α(t − t∗) = x∗ and, given
any y ∈ B√

t∗(x∗, t∗), let βy : [t − t∗, t] → Mn be a minimizing gt∗ -
geodesic joining βy(t − t∗) = x∗ to βy(t) = y. Taking γ : [0, t] → Mn

to be the curve joining γ(0) = x to γ(t) = y via the concatenation of α

and βy, we find that

L(x,t)(y, 0) ≤ Lt(γ)

= Lt(α) +

ˆ t

t−t∗

√
τ
(
|β′

y|2 + R(βy(τ), t − τ)
)

dτ

≤ n
√

t − t∗ + n2
√

t
ˆ t

t−t∗

dτ

t∗
≤ C(n)

√
t ,

from which we deduce that

ℓ(x,t)(·, 0) ≤ C(n) in Br∗(x∗, t∗) ,

where r∗ =
√

t∗. Since |Rm| ≤ 1
t∗ for t < t∗, Proposition 9.6 ensures

that
Br∗/C(x∗, t) ⊂ Br∗(x∗, t∗) ,

where C = C(n, Mn, g0), at which point may conclude that

Ṽ(τ) ≥ κ(n, Mn, g0, T) .

On the other hand, proceeding as above, we may estimate

Ṽ(x,t)(τ) ≤ C
volume

(
Bρ(x, t), gt

)
rn + E(τ)

for any τ = ρ2 ≤ r2, where the constant C = C(n) depends only on the
dimension n. To estimate the error term, note first that, for any given
D > 0, the image under L expτ

(x,t) of BD = BD(0, t) (the origin centred
g(x,t)-ball in Tx Mn of radius D) will be contained in Br(x, t) when τ

is sufficiently small34 (less than τD = δr2 for some δ = δ(n, D) > 0). 34 This is a consequence of continu-
ous dependence of solutions to the L-
geodesic equation (12.29b) on the equa-
tion data. (Note that |∇Rt−τ | is bounded
by C(n)r−3 in Br(x, t) for τ ≤ r2 due
to the assumed curvature bound and the
Bernstein estimates.

Monotonicity of the integrand in the L-exponential coordinates then
yields

E(τ) ≤
ˆ

Tx Mn\BD

(4πτ)−
n
2 e−ℓ(x,t)(γu(τ),t−τ)J (u, τ)dm(u)

≤ lim
σ→0

ˆ
Tx Mn\BD

(4πσ)−
n
2 e−ℓ(x,t)(γu(σ),t−σ)J (u, σ)dm(u)

=

ˆ
Tx Mn\BD

(4π)−
n
2 e−

|u|2
4 dm(u) .
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Taking D suitably large, we may then conclude that

volume
(

Bρ(x, t), gt
)

ρn ≥ κ ,

where κ = κ(n, Mn, g0, T), so long as ρ2 ≑ τ ≤ τD = δr2. Taking
τ = τD, we now find that

volume (Br(x, t), gt) ≥ volume
(

Bρ(x, t), gt
)

≥ κρn

= κδ
n
2 rn ,

which completes the proof.

Observe that the hypothesis of Theorem 12.23 is stronger than that
of Theorem 12.11 in that the curvature bound is assumed on the whole
parabolic cylinder Br(x, t) × [t − r2, t], rather than only at the final
time. This is no detriment in practice, as such curvature bounds are
already needed in order to obtain convergence of rescaled flows. On
the other hand, it turns out that the argument of Theorem 12.23 can be
localized. This is crucial for controlling Perelman’s Ricci flow with

surgery
35. 35 See Perelman, “Finite extinction time

for the solutions to the Ricci flow on cer-
tain three-manifolds.”, “Ricci flow with
surgery on three-manifolds.” or, e.g.,
Kleiner and Lott, “Notes on Perelman’s
papers”; Morgan and Tian, Ricci flow and
the Poincaré conjecture.

12.6 Exercises

Exercise 12.1. Verify the soliton identities (12.4a), (12.4b) and (12.5a).

Exercise 12.2. Show that the triple (Rn, gRn , 1
2 λ|x|2) defines a shrink-

ing/steady/expanding soliton according to the sign of λ.

Exercise 12.3. Let (Mn, g) be a compact Riemannian manifold of di-
mension n ≥ 3. Suppose that

ˆ
Mn

h2 dµ = 1.

1. Using Jensen’s inequality, show for any γ > 0 that
ˆ

Mn
h2 log h dµ ≤ 1

γ
log
(ˆ

Mn
h2+γ dµ

)
.

2. Using the interpolation inequality for Lebesgue spaces, Young’s
inequality, and Hölder’s inequality show, for a suitable choice of
γ = γ(n) > 0, that(ˆ

Mn
h2+γ dµ

) 1
2+γ

≤ ε

(ˆ
Mn

h2∗ dµ

) 1
2∗

+ Cε

for any any ε > 0, where 2∗ = 2n
n−2 is the Sobolev conjugate of 2 and

Cε depends on n, volume(Mn) and ε.
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3. Deduce from the Sobolev inequality that

ˆ
Mn

h2 log h dµ ≤ ε

(ˆ
Mn

|∇h|2 dµ

) 1
2
+ Cε

for any ε > 0, where Cε depends on n, volume(Mn) and ε.

Exercise 12.4. Let v =
(
− 4π(t0 − t)

)− n
2 e− f : Rn × (−∞, t0] → R be a

solution to the conjugate heat equation. Show that

2τ
(

∆ f − 1
2 |∇ f |2

)
+ f − n ≤ 0,

or, equivalently,

2τ
(

∂t f − 1
2 |∇ f |2

)
− f ≥ 0,

where τ ≑ t0 − t.

Exercise 12.5. It is well known that, in dimensions n ≥ 3, the critical
points of the Einstein–Hilbert functional

H(g) ≑
ˆ

Mn
R dµ

for Riemannian metrics g on a manifold Mn are the Einstein met-
rics; i.e., those metrics satisfying

Rc = 0.

Indeed, if {gε}ε∈(−ε0,ε0
is a one-parameter family of metrics on Mn

with g0 = g and d
dε

∣∣∣
ε=0

gε = h, then (by (9.6) and (9.12))

d
dε

∣∣∣∣
ε=0

H(gε) = −
ˆ

Mn
g
(

Rc− 1
2 R g, h

)
dµ .

But, in dimensions n ≥ 3, the Einstein tensor Rc− 1
2 R g can only

vanish if Rc vanishes.

(a) Prove that, on any differentiable manifold of dimension at least
three, any metric whose Einstein tensor vanishes is Ricci flat.

All of this is to say that, while the Ricci flat metrics are the critical
points of H, the gradient flow of H is not the Ricci flow.36 36 So, instead of Ricci flow, we should

consider the Einstein flow,

d
dt

gt =
(

Rcgt − 1
2 Rgt gt

)
,

right? Wrong: this flow is not parabolic
(not even weakly), so it’s not clear where
to begin! (Changing the sign does not
help either, so don’t even bother!)

The problem term, 1
2 Rg, arises from the variation of the measure.

So consider, instead of the Einstein–Hilbert functional, the functional

F (g) ≑
ˆ

Mn
R dν ,

where ν is now some fixed measure. We may write dν = e− fε dµgε for
some family of functions fε. Set f = f0.
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(b) Show that

d
dε

∣∣∣∣
ε=0

F (gε) = −
ˆ

Mn

[
g
(

Rc+∇2 f , h
)
− h(∇ f ,∇ f )

+
(
|∇ f |2 − ∆ f

)
trg(h)

]
e− f dµ .

The cost of eliminating the scalar curvature term is four new terms
involving derivatives of f ! This does not seem like much of an im-
provement but, on the upside, we do know the variation of f :

(c) Show that
d
dε

∣∣∣∣
ε=0

fε =
1
2 trg(h) .

The term ˆ
Mn

∆ f trg(h) e− f dµ = 2
ˆ

Mn
∆ f

d
dε

∣∣∣∣
ε=0

fε dν

is reminiscent of the first variation of the Dirichlet energy. So consider

E(u) ≑ 1
2

ˆ
Mn

|∇u|2 dν .

(d) Show that

d
dε

∣∣∣∣
ε=0

E( fε) =
1
2

ˆ
Mn

[(
|∇ f |2 − ∆ f

)
trg(h)− h(∇ f ,∇ f )

]
e− f dµ .

Set
F ( f , g) ≑

ˆ
Mn

(
|∇ f |2 + R

)
e− f dµ .

(e) Deduce that

d
dε

∣∣∣∣
ε=0

F ( fε, gε) =

ˆ
Mn

g(Rc+∇2 f , h)e− f dµ .

if ( f0, g0) = ( f , g) and d
dε

∣∣∣
ε=0

( fε, gε) = ( 1
2 trg(h), h).

(f) Conclude that a solution ( f , g) to the system{
L∂t g = − 2(Rc +∇2 f )

∂t f = −
(
R + ∆ f )

(12.47)

will satisfy

d
dt
F ( f , g) = −

ˆ
Mn

∣∣∣Rc +∇2 f
∣∣∣ e− f dµ .

So the system (12.47) is the (formal) gradient flow of the functional F
(subject to the constant mass constraint).

Note that the gradient flow system (12.47) is geometrically equiva-
lent to Ricci flow coupled with a (logarithmic) conjugate heat flow.



240

(g) Show that, after pulling back by the flow of ∇ f , the gradient flow
system (12.47) becomes{

L∂t g = − 2Rc

(∂t − ∆)∗e− f = 0.

Define the Nash entropy of a pair ( f , g) by

N ( f , g) ≑ −
ˆ

Mn
f dν .

(h) Show that, along a solution ( f , g) to the gradient flow system
(12.47),

d
dt
N ( f , g) = F ( f , g) .

Exercise 12.6. Consider the gradient self-similarly shrinking Ricci flow
(Rn × (−∞, 0), g, f ), where gt = gRn is the static Euclidean metric and

f (x, t) = |x|2
−4t is the Gaussian potential. Set τ(t) = −t.

(a) Show that 2τ(∆ f − 1
2 |∇ f |2) + f − n = 0.

(b) Deduce that P( f , g, τ) ≡ 0.

(c) Deduce that N (x0,0)(t) = 0 for all (x0, t0) ∈ Rn × (−∞, ∞) and
t < t0.

37 Hein and Naber, “New logarithmic
Sobolev inequalities and an ϵ-regularity
theorem for the Ricci flow”

Exercise 12.7 (Gaussian L2-Poincaré inequality37). Consider the gra-
dient self-similarly shrinking Ricci flow (Rn × (−∞, 0), g, f ), where

gt = gRn is the static Euclidean metric and f (x, t) = |x|2
−4t is the Gaus-

sian potential, and let u be a solution to the heat equation along the
flow satisfying ˆ

Rn
u(·,−1) dν−1 = 0,

where dνt = K(0, 0, ·, t)dµgt is the heat kernel measure based at (0, 0).

(a) Show that

u(0, 0) = 0.

(b) Deduce that

ˆ
Rn

u2(·,−1)dν−1 − 2
ˆ 0

−1

ˆ
Rn

|∇u|2(·,−1)dνt = 0.

(c) Deduce that
ˆ

Rn
u2(·,−1)dν−1 ≤ 2

ˆ
Rn

|∇u|2(·,−1)dν−1 .
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(d) Conclude that any (sufficiently smooth) function u on Rn which
satisfies ˆ

Rn
u dν = 0,

satisfies ˆ
Rn

u2 dν ≤ 2
ˆ

Rn
|∇u|2 dν ,

where dν = (4π)−
n
2 e−

|x|2
4 is the Gaussian measure.

38 ibid.Exercise 12.8 (Gaussian L2-log-Sobolev inequality38). Consider the gra-
dient self-similarly shrinking Ricci flow (Rn × (−∞, 0), g, f ), where

gt = gRn is the static Euclidean metric and f (x, t) = |x|2
−4t is the Gaus-

sian potential, and let u be a positive solution to the heat equation
along the flow satisfyingˆ

Rn
u(·,−1) dν−1 = 1,

where dνt = K(0, 0, ·, t)dµgt is the heat kernel measure based at (0, 0).

(a) Show that
log u(0, 0) = 0.

(b) Deduce that
ˆ

Rn
u log u(·,−1)dν−1 −

ˆ 0

−1

ˆ
Rn

|∇u|2
u

(·,−1)dνt = 0.

(c) Deduce that
ˆ

Rn
u log u(·,−1)dν−1 ≤

ˆ
Rn

|∇u|2
u

(·,−1)dν−1 .

(d) Conclude that any (sufficiently smooth) function u on Rn which
satisfies ˆ

Rn
u dν = 1,

satisfies ˆ
Rn

u log udν ≤ 2
ˆ

Rn

|∇u|2
u

dν ,

where dν = (4π)−
n
2 e−

|x|2
4 is the Gaussian measure.

Exercise 12.9. Given t0 ∈ I, let γ : [0, τ] → Mn be a minimizing Lt0 -
geodesic along a Ricci flow (Mn × I, g) joining γ(0) = x0 to some
arbitrary point γ(t0 − t) = x.

(a) Show that

d
dτ

[
τ

3
2

(
R + |γ̇|2

)]
= τ

3
2

(
∂τR + 1

τ R + 2∇γ̇R − 2 Rc(γ̇, γ̇)
)

−
√

τ
2 (R+|γ̇|2),

where all quantities are evaluated along (γ(τ), t0 − τ).
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(b) Deduce that

τ
3
2

(
R + |γ̇(τ)|2

)
+ 1

2 L =

ˆ τ

0
τ

3
2

(
∂τR + 1

τ R + 2∇γ̇R − 2 Rc(γ̇, γ̇)
)

dτ ,

where L denotes the L-distance from (x0, t0) and the left hand side
is evaluated at (x, t).

(c) Conclude that every smooth lower support φ for L at (x, t) satisfies

|∇φ|2 + 4τR − 2√
τ

φ =
4√
τ

ˆ τ

0
τ

3
2

(
∂τR + 1

τ R + 2∇γ̇R − 2 Rc(γ̇, γ̇)
)

dτ

and

∂t φ + 2τR − 1
2
√

τ
φ ≤ 1√

τ

ˆ τ

0
τ

3
2

(
∂τR + 1

τ R + 2∇γ̇R − 2 Rc(γ̇, γ̇)
)

dτ ,

where, again, the left hand sides are evaluated at (x, t).
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Towards a classification of ancient solutions

Let (Mn × [0, T), g) be a maximal Ricci flow on a compact manifold
Mn. Suppose that T < ∞, so that lim supt↗T maxMn×{t} |Rm| → ∞. If
we choose (xj, tj) so that λ2

j ≑ |Rm(xj ,tj)
| = maxMn×[0,T−j−1] |Rm|, then

the pointed Ricci flows (Mn × Ij, gj, xj) defined by

(gj)(x,t) ≑ λ2
j g(x,λ−2

j t+tj)
, Ij ≑ [−λ2

j tj, 0]

will satisfy |Rm| ≤ 1 and |Rm(xj ,tj)
| = 1. Moreover, by Theorem 12.11,

volume(Br(x, t), t) ≥ κrn whenever |Rm| ≤ r−1 in Br(x, t) and r ≤ λj.
By the compactness theorem (Theorem 9.19), we can then find a com-
plete ancient (subsequential) limit flow (Mn × (−∞, 0], g, o), on which

1. |Rm| ≤ K < ∞;

2. If |Rm| ≤ r−1 in Br(x, t), then volume(Br(x, t), t) ≥ κrn.

In dimensions two and three, we will also have

3. Rm ≥ 0 and R > 0

due to Proposition 9.11 and Theorem 12.2 (and the fact that |Rm| = 1
at (o, 0)). But then the differential Harnack inequality will also hold1: 1 Hamilton showed that the argument

sketched in Theorem 12.6 may still be
applied when Mn is noncompact, so
long as the flow has bounded curvature
on compact time intervals. See Richard
S. Hamilton, “The Harnack estimate for
the Ricci flow”.

4. (a) Mijwiwj + 2Pijkuijwk + Rmikjluikujl ≥ 0 for all w ∈ TM and u ∈
Λ2(TM), where Mij ≑ ∆Rcij + 2RmikjlRckl − 1

2
(
∇i∇jR + 2Rc2

ij
)

and Pijk ≑ ∇iRcjk −∇jRcik;

in particular,

(b) ∂tR + 2∇vR + 2Rc(v, v) ≥ 0 for all v ∈ TM.

A good understanding of such solutions will thus provide a good
understanding of singularity formation in three-dimensional Ricci flow
on compact manifolds. Confidence that this is genuine progress to-
wards an understanding of singularity formation can be taken from
the following classical theorem of Hirschman.1

1 This is the caloric counterpart of Liou-
ville’s theorem for harmonic functions.
As for Liouville’s theorem, the hypothe-
ses are necessary—consider the solu-
tions ex1+t and |x|2 + 2nt, for exam-
ple. Note that Widder’s theorem guar-
antees that a positive solution to the heat
equation on Rn × [α, ω) can be extended
uniquely (amongst positive solutions) to
Rn × [α, ∞). See Widder, “Positive solu-
tions of the heat equation”.
2 Appell, “Sur l’équation ∂2z

∂x2 − ∂z
∂y = 0

et la Théorie de la chaleur”; Hirschman,
“A note on the heat equation”

Theorem 13.1 (Appell’s theorem2). Any positive ancient solution u to the
heat equation on Rn satisfying u(x, 0) = eo(|x|) must be constant.



244

We will present an overview of the landscape and structure of pos-
itively curved ancient solutions to Ricci flow. The proofs of many of
these results are highly technical. In such cases, we either only sketch
the arguments, or omit the proof entirely.

13.1 Ancient solutions in two space dimensions

So far, the only ancient Ricci flows we have seen in two dimensions are
(highly symmetric) solitons. Namely, the static/shrinking plane, the
shrinking sphere, and the cigar soliton (modulo quotients). There is
a further (non-soliton) example, which was discovered independently
by Fateev–Onofri–Zamolodchikov,3 King4 and Rosenau.5 3 Fateev, Onofri, and Al. B. Zamolod-

chikov, “Integrable deformations of the
O(3) sigma model. The sausage model”.
4 King, “Exact polynomial solutions to
some nonlinear diffusion equations”.
5 Rosenau, “On fast and super-fast diffu-
sion”.

Example 24 (The ancient sausage solution). The time-dependent met-
ric

g = χ2 dr2 + ψ2 dθ2 , (13.1a)

where

χ2(r, t) ≑
tanh(−2t)

1 − sin2 r tanh2(−2t)
and ψ2(r, t) ≑ cos2 rχ2(r, t) , (13.1b)

extends to a (time-dependent) metric on S2 and evolves by Ricci flow.
Indeed, ψ is smoothly odd at r = ±π

2 and, introducing the arclength
coordinate

s(r, t) ≑
ˆ r

0
χ(ρ, t) dρ ,

we find that

−K =
ψss

ψ
=

−1
sinh(−2t) cosh(−2t)

1 + sin2 r tanh2(−2t)
1 − sin2 r tanh2(−2t)

=
χt

χ
=

ψt

ψ
.

So (S2 × (−∞, 0), g) indeed satisfies Ricci flow. We also see that its
curvature is positive everywhere at all times.

Observe that, for any fixed r ∈ (−π
2 , π

2 ),

s(r, t) → 2 arctanh(tan r
2 ) and ψ(r, t) → 1

as t → −∞. So, away from the poles, the solution looks like a flat
cylinder of radius one when t ∼ −∞. (In fact, since the curvature
converges to zero away from the poles, the Bernstein estimates and
interpolation can be exploited to obtain local uniform convergence in
the smooth topology.)

On the other hand, near each pole, the sausage resembles a cigar
soliton of the same scale as the asymptotic cylinder. There are various
ways to see this; for instance, one may apply the rigidity case of the
differential Harnack inequality to obtain an asymptotic steady soliton
as explained in §12.3; this soliton will be rotationally symmetric with
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curvature limt→−∞ K(±π
2 , t) = 2 at the centre of symmetry, and must

therefore be the (unit scale) cigar (see Example 17).
One way to “derive” the ancient sausage is as follows:6 recall that 6 Ibid.

solutions u : S2 × I → R to the logarithmic fast diffusion equation

ut = ∆S2 log u − 2 (13.2)

give rise to Ricci flows via g = ugS2 . We seek a solution to (13.2)
which is rotationally symmetric. So suppose that u(r, θ, t) = u(r, t),
where (r, θ) are standard polar coordinates on S2. In that case, (13.2)
becomes

ut =
1

cos r
(

cos r(log u)r
)

r − 2

=
1

cos2 r
(log u)ξξ − 2,

where ∂ξ = cos r∂r. Setting7 v = cos2 ru (and ξ = 2 arctanh tan r
2 ), we 7 The map (r, θ) 7→ (ξ, θ) is an isometry

from ((− π
2 , π

2 ) × S1, u(dr2 + cos2 rdθ2))
to (R × S1, v(dξ2 + dθ2)).

find that v must satisfy
vt = (log v)ξξ , (13.3)

the one-dimensional logarithmic fast diffusion equation! Observe now
that any antiderivative, say V(ξ, t) ≑

´ ξ
0 v(x, t) dx, of a solution v to

(13.3) satisfies the equation

Vt = (log Vξ)ξ − C (13.4)

for some function C of t only. This does not seem much of an im-
provement, but consider the following remarkable fact (which is read-
ily verified): if (ξ, t) 7→ X(ξ + λt) and (ξ, t) 7→ Y(ξ − λt) are similarity
solutions to (13.4), then their sum is also a solution (even though (13.4)
is nonlinear!) Consider, then, the ansatz

V(ξ, t) = F(ξ + λt)− F(ξ − λt)

for some univariate function F. This will solve (13.4) if and only if
f = F′ satisfies

f ′ = λ f 2 + C f + D

for some constants C, D ∈ R. The solutions are given by

f (z) = α − β tanh(λβ(z − z0))

for α, β, z0 ∈ R, which yields the solution

v(ξ, t) = β tanh
(

βλ(ξ − λ(t − t0))
)
− β tanh

(
βλ(ξ + λ(t − t0))

)
to (13.3). Smooth extensibility to the sphere demands that β = λ−1.
The constants λ and t0 then correspond to parabolic dilations and
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time-translations, respectively. Taking t0 = 0 and λ = 2, we arrive
at

g =
tanh

(
ξ − 2t)

)
− tanh

(
ξ + 2t)

)
2

(dξ2 + dθ2)

=
tanh

(
2(arctanh tan r

2 − t)
)
− tanh

(
2(arctanh tan r

2 + t)
)

2 cos2 r
·(dr2 + cos2 rdθ2) .

Applying the addition law

tanh(x + y) =
tanh x + tanh y

1 + tanh x tanh y

recovers (13.1).
Consider now the time-dependent diffeomorphisms ϕ±(·, t) : R ×

S1 → R × S2 defined by ϕ±(ξ, θ, t) ≑ (ξ ± 2t, θ). Observe that

ϕ±(·, τ)∗g(ξ,θ,t+τ) → u±(ξ, t)(dξ2 + dθ2)

pointwise as τ → −∞, where

u±(ξ, t) ≑
1
2
(tanh(±ξ − 2t) + 1) .

For each t ∈ R, this extends to a metric on the plane (ξ = ∓∞ cor-
responding to the origin) and the convergence can be bootstrapped to
smooth convergence on compact subsets of R2 × (−∞, ∞). We leave
it to the reader to verify that the metrics g± ≑ u±(dξ2 + dθ2) are both
isometric to the unit scale cigar solution. (Indeed they must be, since
they are rotationally symmetric steady Ricci flows on the plane with
“asymptotic radius” limξ→±∞ u = 1.) ■

The ancient sausage example completes the list of two-dimensional
ancient Ricci flows!

8 S. Chu, “Type II ancient solutions to
the Ricci flow on surfaces”; Daskalopou-
los and Richard S. Hamilton, “Geometric
estimates for the logarithmic fast diffu-
sion equation”; Daskalopoulos, Richard
S. Hamilton, and Sesum, “Classification
of ancient compact solutions to the Ricci
flow on surfaces”; Daskalopoulos and
Sesum, “Eternal solutions to the Ricci
flow on R2”

Theorem 13.2 (Classification of ancient Ricci flows in two-dimensions8).
Every maximal, complete ancient Ricci flow (M2 × (−∞, ω), g) on a con-
nected surface M2 is either

– a shrinking round sphere,

– a static flat plane,

– a cigar solution,

– an ancient sausage, or

– an isometric quotient of one of the above examples.
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Sketch of the proof. Even though we consider potentially noncompact
surfaces, it can be shown that our ancient Ricci flow (M2 × (−∞, ω), g)
has nonnegative curvature, and thus positive curvature everywhere
unless it is flat.9 Moreover, if M2 is not compact, then the timeslices 9 B.-L. Chen, Xu, and Zhang, “Local

pinching estimates in 3-dim Ricci flow”.of (M2 × (−∞, ω), g) must have curvature tending to zero at infinity.
Indeed, for any t0 and any sequence of points xj such that d(xj, o, t0) →
∞, the sequence (Mn, xj, gt0) subconverges in the pointed Gromov–
Hausdorff sense to a limit space which contains a line, and hence splits
off a line. But in two-dimensions, this limit must be locally isometric to
R2. Thus, for j sufficiently large, Br(xj, t0) is close to a Euclidean ball
in the Gromov–Hausdorff sense after passing to the universal cover.
In particular, its volume (in the universal cover) is close to πr2. So
Perelman’s curvature estimate implies that K(xj, t0) ≤ Cr−2, and we
conclude that K(xj, t0) → 0.

Bounded curvature at infinity is sufficient to establish the differen-
tial Harnack inequality. By exploiting the differential Harnack inequal-
ity and a type-I vs type-II analysis, Chu and Daskalopoulos–Šešum
were able to show that the cigar is the only possibility in the noncom-
pact case.

The compact examples were classified by Daskalopoulos–Hamilton–
Šešum. The key ideas are a monotonicity formula,

d
dt

ˆ
S2

(
|∇S2

v|2
v

− 4v

)
dµS2 ≤ 0,

for the pressure function v ≑ u−1 of g = ugS2 , and an analysis of
the backwards limits of solutions to the equation

vt = v2(∆S2 log v + 2) .

13.2 Noncollapsing ancient solutions with positive curvature
operator

Let us refer to an ancient solution to Ricci flow satisfying properties
1.–4. at the beginning of this chapter as a κ-solution.

13.2.1 A nontrivial example

So far, our only examples of ancient solutions are either solitons with
a high degree of symmetry (obtained by reduction to an ode) or the
ancient sausage solution (an explicit non-soliton solution obtained by
imposing an ad hoc ansatz on the logarithmic fast diffusion equation).
Perelman provided the first truly “parabolic" (in the sense of pde

methods) construction of an ancient Ricci flow.10 10 Perelman, “Ricci flow with surgery on
three-manifolds.”
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11 Steeden are the producers of the
iconic Australian Rugby League football
(which is more oval than a European
football and less pointy than a North
American football). Evidently, I am
a Rugby League fan; followers of the
Rugby Union may prefer the “ancient
Gilbert”; followers of Australian Rules
Football may prefer the “ancient Sher-
rin”. Followers of American or Canadian
football should consider orbifolds.

Theorem 13.3 (The ancient Steeden11). There exists a non-round ancient
Ricci flow (S3 × (−∞, 0), g) which has positive curvature and on which
O(3)× O(1) acts by isometries.

Sketch of the proof. The idea is to take a limit of “very old” solutions
constructed by evolving suitable initial data. We begin by evolving a
sequence of (O(3)× O(1)-invariant) smoothly capped cylinders Ck =

S2 × [−k, k] of radius one and length 2k. When k = 0, the solution is
the round sphere of radius one, which shrinks to a point after time
∼ 1. For other values of k, Ck still shrinks to a point in time ∼ 1
(since R ∼ 1 at the initial time), becoming round in the process (in
accordance with Hamilton’s theorem). After translating time, we can
arrange that the final time is t = 0. By the trace Harnack inequality
(Theorem 12.7) and the linear distance distortion estimate (Proposition
9.7), it can be shown that the “perigee” and “apogee” take a fixed time
to decrease by 1/2. So we can parabolically rescale so that, for k ≥ 1,
the “eccentricity” is ∼ 2 and the diameter is ∼ 1/2 at time t = −1,
and that the initial time αk goes to −∞ as k → ∞. Since the volumes
are uniformly controlled from below, Perelman’s curvature estimate
(Theorem 9.21) and the Bernstein estimates ensure that the curvature
and its derivatives are uniformly bounded along the sequence. We can
now take a limit using the compactness theorem. Since we ensured
that the eccentricity is ∼ 2 at time −1, the limit cannot be the shrinking
sphere.

13.2.2 Structure of noncollapsing ancient solutions with positive cur-
vature

The following two theorems, established by Perelman,12 are key tools 12 Perelman, “The entropy formula for
the Ricci flow and its geometric appli-
cations”.

in the analysis of κ-solutions.

Theorem 13.4. Let (Mn × (−∞, 0], g) be a κ-solution. If Mn is noncom-
pact, then the asymptotic curvature ratio

13 13 This number is independent of the
choice of point x0.

R(Mn, g0) ≑ lim sup
dist(x,x0,0)→∞

R(x, 0)dist2(x, x0, 0)

is infinite.

Sketch of the proof. Suppose, contrary to the claim, that R(Mn, g0) <

∞. Consider the rescaled flow (Mn × (−∞, 0], λ2gλ−2t). Note that at
time zero, the rescaled metrics (Mn, λ2g0) always limit to some metric
cone (C, d, o) as λ ↘ 0 in the Gromov–Hausdorff sense. Due to the
curvature bound (and noncollapsing) the limit and the convergence
will be smooth away from the tip, o. But since the radial direction
must be a null eigenvalue of Rc, we deduce (as before) that the limit
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splits off a line. But this is only possible if the limit cone is flat, and
this violates positive curvature on the original flow (by Toponogov’s
theorem).

Corollary 13.5. Let (Mn × (−∞, 0], g) be a κ-solution. If Mn is non-
compact, then there are points xj ∈ Mn and scales λj such that (Mn ×
(−∞, 0], xj, gj), (gj)(x,t) ≑ λ2

j g(x,λ−2
j t) converges to a κ-solution which splits

off a line.

Sketch of the proof. Since the asymptotic curvature ratio is infinite, we
can find points xj ∈ Mn such that

d2
j ≑ 10R(xj, 0)dist2(xj, x0, 0) → ∞ .

In particular, dist2(xj, x0, 0) → ∞. By point-picking, we can find
yj ∈ B2dj/

√
R(xj ,0)

(xj, 0) that R(yj, 0) ≥ R(xj, 0) and R ≤ 2R(xj, 0) in

Bdj/
√

R(yj ,0)
(yj, 0). Since dj → ∞, the pointed rescaled flows (Mn ×

(−∞, 0], yj, Qjg(·,Q−1
j t)) converge locally smoothly to a limit κ-solution.

But (since yj → ∞) this solution must contain a line, and hence split
off a line.

In particular,

Corollary 13.6. all two-dimensional κ-solutions are compact.

This fact of course agrees with the classification of two-dimensional
ancient solutions described above.

Perelman’s second key observation is the vanishing of the asymptotic
volume ratio.

Theorem 13.7. Let (Mn × (−∞, 0], g) be a κ-solution. The asymptotic

volume ratio
14 14 This number is independent of the

choice of point x0.

V(Mn, g0) ≑ lim sup
r→∞

volume(Br(x0, 0))
rn

is zero.

Sketch of the proof. If n = 2, then Mn is compact, and the claim is true.
So suppose that the claim is true for some dimension n ≥ 2 and let
(Mn+1 × (−∞, 0], g) be a noncompact κ-solution. By Corollary (13.5),
(Mn+1 × (−∞, 0], g) splits off a line at infinity after rescaling. The
claim then follows from the inductive hypothesis, since, by the Bishop–
Gromov volume comparison theorem, volume(Br(x)) ≥ Vrn+1, which
is invariant under rescaling, and hence passes to the limit.

One consequence of Theorem 13.7 is that, in a κ-solution, the curva-
ture and the normalized volume control each other. Using this fact, in
conjunction with Theorem 13.7, the following precompactness prop-
erty is established by a contradiction argument.
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15 Perelman, “The entropy formula for
the Ricci flow and its geometric applica-
tions”. See also Kleiner and Lott, “Notes
on Perelman’s papers”, §46.

Theorem 13.8 (Precompactness of the space of three-dimensional non-
compact κ-solutions15). Given any κ > 0, the space of three-dimensional
noncompact κ-solutions is compact modulo scaling: if (Mk × (−∞, 0], gk, pk)

is a sequence of pointed three-dimensional noncompact κ-solutions and λk ≑√
Rk(pk, 0), then a subsequence of the sequence of pointed, rescaled κ-solutions

(Mk × (−∞, 0], g̃k, pk), where (g̃k)t ≑ λ2
k(gk)λ−2

k t, converges locally uni-
formly in the smooth topology to a κ-solution.

13.2.3 Noncollapsing ancient solutions in three space dimensions

Perelman established the following characterization of κ-solutions in
three dimensions16 by an intricate contradiction argument. 16 Perelman, “The entropy formula for

the Ricci flow and its geometric appli-
cations”.Theorem 13.9. Every connected oriented three-dimensional κ-solution is one

of the following.

1. A shrinking round spherical space form;

2. A shrinking round cylinder or finite quotient;

3. A C-component: an S3 or RP3 whose diameter, curvature and volume are
all bounded uniformly (between C−1 and C) after rescaling to normalize
any one of them;

4. A C-capped ε-tube (after removing one C-cap and rescaling, it is ε close to
a unit round cylinder of length ε−1); or

5. A doubly C-capped ε-tube.

Sketch of the proof. After blowing down (taking the limit of λ2g(·,λ−2t)
as λ ↘ 0 about points x∗(t) of bounded ℓ(x0,0)(·, t)-distance to a fixed
x0 using (12.45)) we see an “asymptotic shrinker” (since the reduced
volume will be constant on the limit).17 17 See Perelman, “The entropy formula

for the Ricci flow and its geometric ap-
plications”, Proposition 11.2 or Kleiner
and Lott, “Notes on Perelman’s papers”,
Proposition 39.1.

The only asymptotic shrinking solitons are finite quotients of shrink-
ing round spheres or cylinders, so every solution of sufficiently large
normalized diameter is made up of ε-tubes and regions of uniformly
bounded diameter.

Any example which is not a shrinking cylinder or quotient must
satisfy Rm > 0. By the soul theorem, such examples must be either
compact or diffeomorphic to R3; using the compactness of the space of
κ-solutions, it can be shown that a noncompact example with Rm > 0
must be C-capped.

A similar argument shows that a compact example either has uni-
formly bounded diameter, or is a doubly-capped ε-tube. In every case
Rm > 0, so Hamilton’s theorem implies that the manifold is diffeo-
morphic to a spherical space form. The uniformly bounded diameter
components are either round or C-components.
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In fact, there is now a complete list of such solutions.

18 S. Angenent, Brendle, et al., “Unique
asymptotics of compact ancient solu-
tions to three-dimensional Ricci flow”;
Brendle, “Ancient solutions to the
Ricci flow in dimension 3”; Brendle,
Daskalopoulos, and Sesum, “Unique-
ness of compact ancient solutions to
three-dimensional Ricci flow”

Theorem 13.10 (Angenent–Brendle–Daskalopoulos–Šešum18). Every κ-
solution in three dimensions is one of the following:

1. a static/shrinking R3.

2. a shrinking sphere.

3. a shrinking cylinder.

4. a radio-dish soliton.

5. an ancient Steeden.

6. an isometric quotient of one of the above.

13.3 Further examples of ancient solutions with positive cur-
vature operator

There are a great many further examples19 of ancient Ricci flows, even 19 The below list is not exhaustive.

under the assumption of positive curvature.

20 Fateev, “The duality between two-
dimensional integrable field theories
and sigma models”

Example 25 (The ancient hypersausage20). The time-dependent metric

g = χ2(r, t) dr2 + ψ2(r, t) dθ2 + φ2(r, t) dω2

defined on (r, θ, ω) ∈ (0, π
2 )× S1 × S1 for t ∈ (−∞, 0) by

χ2(r, t) ≑
cosh(−4t) sinh(−4t)

[cos2 r + sin2 r cosh(−4t)][sin2 r + cos2 r cosh(−4t)]
(13.5a)

ψ2(r, t) ≑
cos2 r sinh(−4t)

sin2 r + cos2 r cosh(−4t)
(13.5b)

φ2(r, t) ≑
sin2 r sinh(−4t)

cos2 r + sin2 r cosh(−4t)
(13.5c)

extends to S3 and satisfies Ricci flow. Mapping (0, π
2 )× S1 × S1 into

S3 ⊂ R4 = C × C via the Hopf map (r, θ, ω) 7→ (cos r eiθ , sin r eiω),
we see that g is invariant under the induced action of U(1)× U(1). It
admits a further nontrivial isometric Z2-action induced by

(r, θ, ω) → (π
2 − r, ω, θ).

Introducing the orthonormal basis e1 = χ−1∂r, e2 = ψ−1∂θ , e3 =

φ−1∂ω, the curvature operator is diagonalized, with diagonal compo-
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nents

sec(e1 ∧ e2) = −ψss

ψ

=
1

sinh(−4t)

(
2

cos2 r + sin2 r cosh(−4t)
sin2 r + cos2 r cosh(−4t)

− 1
cosh(−4t)

)
(13.6a)

sec(e1 ∧ e3) = − φss

φ

=
1

sinh(−4t)

(
2

sin2 r + cos2 r cosh(−4t)
cos2 r + sin2 r cosh(−4t)

− 1
cosh(−4t)

)
(13.6b)

sec(e2 ∧ e3) = −ψs φs

ψφ
=

1
cosh(−4t) sinh(−4t)

, (13.6c)

where

s(r, t) ≑
ˆ r

0
χ(ρ, t) dρ .

Since the function

r 7→ cos2 r + sin2 r cosh(−4t)
sin2 r + cos2 r cosh(−4t)

is nondecreasing for r ∈ [0, π
2 ], we find that

sec(ei ∧ ej) ≥
1

cosh(−4t) sinh(−4t)

for each i ̸= j. In particular, g has positive curvature. Since it is not on
the list from Theorem 13.10, its volume must collapse (relative to the
scale of the curvature) as t → −∞. Indeed, as t → −∞,

χ(r, t) → 1
sin r cos r

, ψ(r, t) → 1 and φ(r, t) → 1

for any r ∈ (0, π
2 ) and hence, for any point o on, say, the Clifford torus

{p ∈ S3 : r(p) = π
4 } = {( 1√

2
eiθ , 1√

2
eiω) : (θ, ω) ∈ S1 × S1} ,

we have

max
Br(o,t)

R(·, t) ∼ 0 but volume(Br(o, t), t) ∼ 8π2r

as t → −∞ for any large r.
Finally, let us rewrite the hypersausage as

g = sinh(−4t)

(
dr2 + cos2 r dθ2

sin2 r + cos2 r cosh(−4t)
+

dr2 + sin2 r dω2

cos2 r + sin2 r cosh(−4t)

)
.

Consider the new coordinate ξ defined in (2τ, ∞) for a given τ < 0 by

tanh ξ−2τ
2 = tan r

2 .



towards a classification of ancient solutions 253

Under this transformation, the hypersausage metric at time t + τ is
given by

gt+τ = sinh(−4(t + τ))

(
dξ2 + dθ2

sinh2(ξ − 2τ) + cosh(−4(t + τ))

+
dξ2 + sinh2(ξ − 2τ) dω2

1 + sinh2(ξ − 2τ) cosh(−4(t + τ))

)
.

Observe that, as τ → −∞,

sinh(−4(t + τ))

1 + sinh2(ξ − 2τ) cosh(−4(t + τ))
=

tanh(−4(t + τ))
1

cosh(−4(t+τ))
+ sinh2(ξ − 2τ)

→ 0,

1
1 + sinh2(ξ − 2τ) cosh(−4(t + τ))

→ 1

and21 21 Recall the hyperbolic “angle sum” for-
mulae

sinh(2T) = 2 sinh(T) cosh(T) ,

cosh(2T) = cosh2(T) + sinh2(T) ,

and

sinh (X + T)

= sinh(X) cosh(T) + cosh(X) sinh(T).

sinh(−4(t + τ))

sinh2(ξ − 2τ) + cosh(−4(t + τ))

=
2 tanh(−2(t + τ))

[sinh(ξ + 2t) + tanh(−2(t + τ))cosh(ξ + 2t)]2+ 1 + tanh2(−2(t + τ))

→ 2

[sinh(ξ + 2t) + cosh(ξ + 2t)]2 + 2

=
1

1 + 1
2 e2(ξ+2t)

.

We conclude that

gt+τ → dξ2 + dθ2

1 + 1
2 e2(ξ+2t)

+ dω2

as τ → −∞ (locally uniformly in the smooth topology since the cur-
vature is bounded on compact time intervals), which we recognize as
a fixed time-translation of the standard cigar metric.

Similarly (or by the isometric Z2 action),

gt+τ → dη2 + dω2

1 + 1
2 e2(η+2t)

+ dθ2

locally uniformly in the smooth topology, where for a given τ < 0
η ∈ (−2τ, ∞) is defined by

eη−2τ = tan r
2 . ■

In fact, the hypersausage is part of a one-parameter family of (geo-
metrically distinct) ancient Ricci flows on S3.
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22 Bakas, Kong, and Ni, “Ancient solu-
tions of Ricci flow on spheres and gener-
alized Hopf fibrations”

Example 26 (Twisted ancient hypersausages22). For each k ∈ (−1, 1)
and λ > 0, define a function ξ : (−∞, 0) → R by

−4λ−2(1 − k)(1 + k)t = ξ − k
2

log
cosh ξ + k sinh ξ

cosh ξ − k sinh ξ
.

The time-dependent metric23 23 Juxtaposition of forms denotes the
symmetric tensor product.

g = χ2(r, t) dr2 + ψ2(r, t) dθ2 + φ2(r, t) dω2 + 2υ(r, t)dθ dω

defined in Hopf coordinates (r, θ, ω) ∈ (0, π
2 )× S1 × S1 for t ∈ (−∞, 0)

by

χ2(r, t) ≑
λ2 sinh ξ cosh ξ

A(r, ξ)B(r, ξ)

ψ2(r, t) ≑
λ2 cos2 r tanh ξ

(
sin2 r cosh2 ξ + cos2 r

√
cosh2 ξ − k2 sinh2 ξ

)
A(r, ξ)B(r, ξ)

φ2(r, t) ≑
λ2 sin2 r tanh ξ

(
cos2 r cosh2 ξ + sin2 r

√
cosh2 ξ − k2 sinh2 ξ

)
A(r, ξ)B(r, ξ)

υ(r, t) ≑
−kλ2 cos2 r sin2 r tanh ξ sinh2 ξ

A(r, ξ)B(r, ξ)
,

where

A(r, ξ) ≑ cos2 r + sin2 r
√

cosh2 ξ − k2 sinh2 ξ

B(r, ξ) ≑ sin2 r + cos2 r
√

cosh2 ξ − k2 sinh2 ξ ,

extends to S3 and satisfies Ricci flow.
The parameter λ corresponds to parabolic rescaling. Taking λ =

1, the solution corresponding to k = 0 is the ancient hypersausage
described in the previous example. For each k ̸= 0, the examples
corresponding to ±k are isometric, but otherwise the members of the
family are all geometrically distinct. Indeed, as t → −∞, the restriction
of g to the principal domain converges to

g−∞ =
1

1 − k2

(
dr2

sin2 r cos2 r
+ dθ2 + dω2 − 2kdθ dω

)
,

which is isometric to the standard metric on R × S1
1 × S1

1√
1−k2

. ■

Maximally twisting the ancient hypersausage yields a further ex-
ample.

24 ibid.Example 27 (The ancient Hopf fibration24). Setting λ = 1 and taking
k → 1 in the hypersausage family yields another ancient solution on
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S3. Noting that ξ 7→ −8t as k → 1, we see that the limit metric takes
the form

g = χ2(r, t) dr2 + ψ2(r, t) dθ2 + φ2(r, t) dω2 + 2υ(r, t)dθ dω

with

χ2(r, t) ≑ sinh(−8t) cosh(−8t) (13.7a)

ψ2(r, t) ≑ cos2 r sinh(−8t) cosh(−8t)
(

1 − cos2 r tanh2(−8t)
)

(13.7b)

φ2(r, t) ≑ sin2 r sinh(−8t) cosh(−8t)
(

1 − sin2 r tanh2(−8t)
)

(13.7c)

υ(r, t) ≑ − cos2 r sin2 r sinh(−8t) cosh(−8t) tanh2(−8t) . (13.7d)

This example is related to the Hopf fibration S1 ↪→ S3 → S2. To see
this, we introduce the coordinates

R ≑ 2r , Θ ≑ θ + ω , Ω ≑ θ − ω ,

with respect to which the Hopf map is given by(
cos R

2 ei Θ+Ω
2 , sin R

2 ei Θ−Ω
2

)
7→
(

sin R e2iΩ, cos R
)

;

so the fibres are parametrized by Θ. Defining the one-forms

X ≑ sin Θ dR − sin R cos Θ dΩ ,

Y ≑ cos Θ dR + sin R sin Θ dΩ ,

Z ≑ dΘ + cos R dΩ ,

the ancient Hopf fibration may be expressed as

g =
1
4

(
sinh(−8t) cosh(−8t)

(
X2 + Y2

)
+ tanh(−8t)Z2

)
.

The first term arises from the standard metric on the base space, S2:

X2 + Y2 = dR2 + sin2 R dΩ2 ,

while the second term may be viewed as a connection one-form on the
total space, since

dZ = −X ∧ Y .

Note that the fibres all have the same length, 2π tanh(−8t), and
collapse at the scale of the curvature as t → −∞. ■

The ancient Hopf fibration generalizes25 to a family of “explicit” 25 Bakas, Kong, and Ni, “Ancient solu-
tions of Ricci flow on spheres and gener-
alized Hopf fibrations”.

ancient Ricci flows on the total spaces S2m+1 of the higher dimensional
Hopf fibrations S1 ↪→ S2m+1 → CPm. Further analogous “fibration-
compatible” examples exist on the total spaces of the quaternionic and
octonionic Hopf fibrations S3 ↪→ S4n+1 → HPn and S7 ↪→ S15 → S8,
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respectively. More generally, it is known that a compact homogeneous
space admits a collapsing ancient homogeneous Ricci flow if and only
if it is the total space of a homogeneous torus bundle. All known ho-
mogeneous examples are invariant under a corresponding torus action
(this is known to be necessary under certain assumptions) and, after
appropriately rescaling, collapse the torus fibres as time tends to mi-
nus infinity and Gromov–Hausdorff converge to an Einstein metric on
the base.26 26 Buzano, “Ricci flow on homoge-

neous spaces with two isotropy sum-
mands”; Cao and Saloff-Coste, “Back-
ward Ricci flow on locally homogeneous
3-manifolds”; Krishnan, Pediconi, and
Sbiti, “Toral symmetries of collapsed an-
cient solutions to the homogeneous Ricci
flow”; Pediconi and Sbiti, “Collapsed an-
cient solutions of the Ricci flow on com-
pact homogeneous spaces”; Sbiti, “On
the Ricci flow of homogeneous metrics
on spheres”.

The ancient hypersausage may be viewed as a three-dimensional
analogue of the ancient sausage solution on S2; it is not known at
present whether or not there exist ancient hypersausages on higher
dimensional spheres (i.e. positively curved ancient solutions on Sn

which collapse a Tn−1).
The following pair of examples do not arise from “cohomogeneity

one” structures and provide a different generalization of the ancient
sausage.

27 The four dimensional case is treated
explicitly by Buttsworth, “SO(2) ×
SO(3)-invariant Ricci solitons and an-
cient flows on S4”.

Example 28 (Generalized Steedens27). Perelman’s construction gener-
alizes to spheres Sn of any dimension n ≥ 3 and any bisymmetry class
O(k)×O(n + 1− k), k = 3, . . . , n. These examples have positive curva-
ture and their volume does not collapse at any scale as t → −∞. ■

Note that, while the symmetry groups O(k) × O(n + 1 − k) and
O(ℓ) × O(n + 1 − ℓ) agree (up to a congruence of Sn ⊂ Rn+1) when
ℓ = n + 1 − k, the two corresponding examples in the above construc-
tion are not congruent (since, for instance, the blow-down of the exam-
ple with symmetry group O(k)× O(n + 1 − k) is the shrinking cylin-
der (Sk−1 × Rn−k × (−∞, 0),−2(k − 2)tgSk−1 ⊕ gRn−k )). This begs the
question of the whereabouts of the “missing” example: the one corre-
sponding to the symmetry group O(2)×O(n − 1) (whose blow-down
should be {pt} × Rn−1).

28 Bourni, Buttsworth, et al., “Ancient
Ricci flows of bounded girth.”

Example 29 (The ancient pancake28). For each n ≥ 3, there is an
O(2)× O(n − 1) invariant ancient Ricci flow

g = χ2(r, t)dr2 + ψ2(r, t)dθ2 + φ2(r, t)gSn−2

on (−π
2 , π

2 ) × S1 × Sn−2 which extends to a Ricci flow on Sn with
positive curvature (where O(2)× O(n − 1) acts in the standard way).
This example is not the shrinking sphere. Indeed, its “girth” h(t) ≑
2π max ψ(·, t) satisfies h(t) = 1 − o(1) as t → −∞. Nor is g con-
gruent to the ancient hypersausage in case n = 3, since its “radius”
r(t) ≑ max φ(·, t) satisfies r(t) = −2t + o(−t) as t → −∞.

This example is constructed by extending the time t = −R slice
of the (O(2) × O(1)-invariant) ancient sausage solution on S2 to an
O(2)× O(n − 1)-invariant metric on Sn, evolving this metric by Ricci
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flow to obtain, after time-translation, an “old-but-not-ancient” Ricci
flow (Sn × [−αr, 0), g) which shrinks to a round point at time zero in
accordance with Hamilton’s theorem, and (after establishing a number
of uniform-in-R estimates) taking a limit as R → ∞. ■

Shrinking and steady solitons are “trivial” examples of ancient Ricci
flows. The gradient shrinking solitons with nonnegative curvature op-
erator are relatively easily classified.

29 Munteanu and J. Wang, “Positively
curved shrinking Ricci solitons are com-
pact”

Theorem 13.11 (Munteanu–Wang29). Every n-dimensional gradient shrink-
ing soliton with nonnegative curvature operator is either:

1. a flat Rn,

2. a compact symmetric space,

3. an orthogonal product of a k-dimensional compact symmetric space with
Rn−k for some k = 2, . . . , n − 1, or

4. an admissible30 isometric quotient of one of these. 30 I.e. compatible with the shrinker po-
tential.

In dimension three, there are only the “obvious” ones: the shrinking
sphere, the shrinking cylinder, shrinking Euclidean space, and admis-
sible quotients.

On the other hand, there are a great many steady soliton examples.
An important family of examples in the positive curvature setting are
the flying wings.31 31 So named, by Richard Hamilton, for

their resemblance to the Northrop and
Grumman “Flying Wing” aircraft.
32 Lai, “A family of 3D steady gradient
solitons that are flying wings”

Example 30 (Flying wings32). For every n ≥ 3 and each θ ∈ (0, π
2 ),

there is an O(2)× O(n − 2) invariant steady soliton on Rn which has
positive curvature and girth ∼ 2π. It is asymptotic to an Sn−3 family of
cigar hyperplanes “tilted through angle θ” (in the sense that the metric
cone at infinity is the round cone of dimension n − 1 with exterior
angle 2θ). ■

Figure 13.1: Northrop–Grumman YB-49

“flying wing”. United States Air Force,
USAF Series YB-35, YB-35A, and YB-49
Aircraft, AN 01-15EAA-4.

The flying wing family interpolates between a hyperplane of cigars
(θ = 0) and the radio-dish (θ = π

2 ). There is also a family of entire
analogues of the flying wings, for which the radio dish plays the role
of the cigar.
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33 Lai, “A family of 3D steady gradient
solitons that are flying wings”

Example 31 (Noncollapsing wings33). For every n ≥ 4 and each pair
of numbers 0 < λ < µ satisfying λ + (n − 1)µ = 1, there is an
O(n − 1)×O(1) invariant gradient steady soliton on Rn which is non-
collapsed with positive curvature operator, and has Ricci curvature
equal to diag(λ, µ, . . . , µ) at its “tip” (critical point of its potential func-
tion). ■

A more thorough investigation of Ricci solitons in low dimensions
may be found in Chow, Ricci solitons in low dimensions.

There is also a family of examples which interpolate between the
generalized ancient Steedens, constructed by Haslhofer.

34 Haslhofer, “On κ-solutions and canon-
ical neighborhoods in 4d Ricci flow”

Example 32 (Deformed Steedens34). There exists a one-parameter fam-
ily of noncollapsing ancient Ricci flows on S4 with positive curvature
operator that are “only” O(3) × O(1) × O(1)-invariant. The blow-
down of each member of the family is the shrinking cylinder (S2 ×
R2 × (−∞, 0),−2tgS2 ⊕ gR2). These examples are produced by a care-
ful modification of Perelman’s construction, and conjecturally com-
plete the list of κ-solutions in dimension four.35 ■ 35 See ibid., Conjecture 1.3.

A good classification of ancient solutions is thus a very difficult
problem in general, even under the assumption of positive curvature.
The three dimensional case may be within reach, however.

13.4 Exercises

Exercise 13.1. Suppose that (ξ, t) 7→ X(ξ + λt) and (ξ, t) 7→ Y(ξ + λt)
are solutions to (13.4). Show that (ξ, t) 7→ X(ξ + λt) +Y(ξ + λt) is also
a solution to (13.4).

Exercise 13.2. Given λ, C, D ∈ R, find all solutions to the equation

f ′ = λ f + C f + D

by separating variables.

Exercise 13.3. Show that the eternal time-dependent metric on R × S1

defined by
g(ξ,θ,t) =

1
2 (tanh(ξ − 2t) + 1)(dξ2 + dθ2)

extends to R2 (upon identifying {ξ = −∞} with a point) and is iso-
metric to the standard cigar. Hint: consider the variable r = arcsinh eξ .

Exercise 13.4. Verify equations (13.6). Deduce that the metric defined
by (13.5) does indeed satisfy Ricci flow and has positive curvature op-
erator.

Exercise 13.5. Prove that the only shrinking soliton metrics on Sn,
n ≥ 2, with nonnegative curvature operator are the shrinking round
metrics, t 7→ 1

2(ω−t) gSn .



Epilogue

And how did I get onto the Ricci flow? Well, that has to do with Jimmy
Carter and the oil crisis. I had bought a nice water ski boat on Lake
Cayuga, but it was taking all this money to fill the gas tank. So I had to
get something going for my NSF [research proposal] and started think-
ing about the Ricci flow; I thought about it for a while and it sounded
like it might go somewhere. So, I sent that in for my NSF proposal and
this was the first time I got rejected. And I think I know why—because
after Yau talked to me; he said: “Oh, when I first heard your idea about
the Ricci flow, I thought you were a madman.” I thought that was the
nicest compliment I ever had!

I didn’t know much geometry at the time, and I was trying to imitate
Eells–Sampson where they have a Dirichlet energy. So, I wanted to take
an integral of the first derivative of the metric squared and minimize
that. And that wasn’t working because I finally found out that in any
sort of invariant sense, the first derivative of the metric was zero (the
covariant derivative). But then one day I had this bright idea—what if
there were such a thing? What would I do next? And I figured I’d in-
tegrate by parts and get the d/dt of the metric is something that would
be two derivatives of the metric. And I say, “Oh, the only thing that’s
intrinsic about two derivatives in metric is the curvature.” And then I
thought, “Well, which curvature?” You got scalar curvature, Ricci cur-
vature, Riemannian curvature... the scalar curvature didn’t have enough
indices, the Riemannian curvature had too many, and the Ricci curva-
ture was just right. It looked like the metric. So, I wrote down d/dt of
the metric is the Ricci curvature. I computed out the evolution of the
Riemannian curvature, and I realized it was a backwards parabolic equa-
tion. So, I thought, “Okay, I’ll just put in d/dt of the metric is minus the
Ricci curvature.” And then I put a two in to get rid of the unpleasant
one half and started working on that.

And then I knew that the Riemannian curvature was evolving via a
nice parabolic type equation, and the Ricci curvature [too], and I made
a curious decision to start working on three dimensions instead of two.
One person was to say, “Well, you should start on two and if you can’t
do that, you should give up.” But see, I was always quite vain, and I
thought, well, I should do something better than just reprove the 100-
year-old [uniformization] theorem. So, I had read this thing in Eisenhart
that said that in three dimensions you can capture all the curvature from
the Ricci curvature, and I thought, “Oh, well, that sounds like a good
place to start.” Which turned out to be a lucky guess, because positive
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Ricci curvature in three dimensions is in some ways stronger than posi-
tive scalar in two dimensions. It kind of has more constraints to it. So,
then I started working on it and the real breakthrough came one day
when I had a girlfriend who was teaching at Gettysburg College; the
only thing to do in Gettysburg was to walk around the cemeteries—and
I think it was raining that day and you couldn’t even do that! So, I just
cranked on and I got two good estimates and came up with that good
theorem and I kind of got it started. I mean, back then it seemed nearly
impossible that you could actually do Poincaré with it. But, you know, a
lot of success in math is being lucky, being in the right place at the right
time, and trying the right thing.

– R. Hamilton, And Quiet Goes the Ricci Flow: A Conversation with
Richard Hamilton.
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κ-solution, 247

L-
cut locus, 233

exponential map, 225

geodesic, 223

Jacobi equation, 232

Jacobi field, 232

Jacobi operator, 232

ode comparison principle, 22,
150

ancient
Hopf fibration, 254

hypersausage, 251

twisted, 254

pancake, 125, 256

paperclip, 116

polytope, 127

sausage, 244

Steeden, 122, 125, 248, 256

ancient solution, 74, 98, 158,
188

Andrews’ inequality, 202

Appell’s theorem, 115, 243

arrival time, 123

asymptotic curvature ratio, 248

asymptotic Gaußian area ratio,
108

asymptotic volume ratio, 249

blow-down, 118, 250

canonical vector field, 16, 145

chord-arc constant, 83

cigar soliton, 141

circumscribed radius, 82, 111

collapsing, 78, 109, 191, 216

conformal flow, 179

conjugate heat equation, 74,
105, 187, 212

conjugate heat operator, 74,
105, 188, 212

curvature vector, 63

curve shortening flow, 63

Dirichlet Energy, 222

Einstein
flow, 238

manifold, 140

metric, 238

tensor, 238

Einstein–Hilbert functional,
238

entire (convex ancient mean
curvature flow), 121

entropy
Chow–Hamilton, 182

Firey, 67

Gage–Hamilton, 65

Huisken, see Huisken
functional

Nash, 65, 182, 240

Nash (pointed), 219

Perelman, 191, 215

eternal solution, 166



272

expander, 11

exscribed
curvature, 82, 110, 111

radius, 111

first variation formula
for area, 28

for enclosed volume, 30

for volume, 155

flying (hyper)wing, 126, 127,
257

merging, 127

Gage–Hamilton theorem, 89

Gaußian area ratio, 108

Gauss curvature, 142, 179

Gauss image, 64

Gauss map parametrization,
65

Gaussian measure, 241

Grayson’s theorem, 91

Grim Reaper, 13

Hamilton’s inequality, 203

harmonic coordinates, 138

Harnack inequality
differential, 74, 75, 106, 188,

190, 213

integral, 74, 76, 107, 188, 189,
214

heat kernel, 218, 219

homogeneous space, 143

Hopf fibration, 254

Huisken functional, 76, 107

injectivity radius, 192, 216

inscribed
curvature, 79, 110

radius, 78, 110

isoperimetric constant
planar curve, 86

surface, 192

isotropic curvature, 176

Jacobi equation, 30

Kato’s inequality, 54

logarithmic fast diffusion
equation, 180

maximal solution, 33, 161

maximum principle
strong, 22, 150

tensor, 23, 151

vector bundle, 152

weak, 21, 149

mean curvature, 7

mean curvature flow, 7, 17

linearized, 15

neckpinch, 97, 205

degenerate, 97, 205

noncollapsing
area, 196

chord-arc, 83

exterior, 82, 110

interior, 79, 110

isoperimetric, 87, 193

volume, 196, 217, 235

normal bundle, 17

null eigenvector condition, 23,
151

Perelman’s functional, 190, 215

pinched
hypersurface, 57

three-manifold, 177

potential function, 71, 103, 184

pressure function, 247

proper immersion, 37

pullback bundle, 16

quarter pinched
sectional curvature, 176

sphere theorem, 176

differentiable, 176
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radio-dish, 14, 142

reduced distance, 223

reduced volume, 233

representation formula
conjugate heat equation

along a Ricci flow, 218

heat equation, 218

heat equation along a Ricci
flow, 218

reproduction formula, 218

Ricci flow, 137, 145

linearized, 143

Ricci-de Turck flow, 144

rotator, 10

second fundamental form, 7

self-similar solution
expanding, 11, 140

homothetic, 11, 140

rotating, 10

shrinking, 11, 140

steady, 139

translating, 9

shrinker, 11

shrinking

doughnut, 14

sphere, 12, 141

Simons’ identity, 20

spatial tangent bundle, 17, 144

Stampacchia iteration, 49

super Ricci flow, 221

support function, 65

time-dependent
connection, 17, 145

immersion, 16

metric, 17, 144

vector field, 17, 146

vertical vector field, 152

time-dependent vertical vector
field, 23, 151

translator, 10

trumpet, 39, 111

turning angle, 64

parametrization, 64, 65

twisted sphere, 60

theorem, 60

vertical vector field, 23, 151,
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