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0. Introduction

There are important differences between the theories of finite-dimensional and infinite-
dimensional Lie algebras.

First, for finite-dimensional Lie algebras, there are strong classification theorems. As
a result, if you encounter a finite-dimensional Lie algebra, then, by all probability, you
can find full information about it (like name, commonly used notation, description of the
root system and representations, etc.) in various books, not speaking of the Internet. On
the contrary, if an infinite-dimensional algebra arises on your way, then chances are that
it is new. By this reason, a book or a lecture course dedicated to infinite-dimensional
Lie algebras is forced to be concentrated on some particular examples (which may be
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important by some reasons). Here we will deal mainly with Kac-Moody and Virasoro Lie
algebras (although there exist other classes of infinite-dimensional Lie algebras with well
developed representation theories, for example infinite limits of classical finite-dimensional
Lie algebras, or Lie algebras of vector fields).

Second, there exists a very rigid correspondence between finite-dimensional Lie al-
gebras and Lie groups. From some point of view, the theory of finite-dimensional Lie
algebras has no independent value: it is just an auxiliary counterpart of the Lie groups
theory. These arguments become less convenient in the infinite-dimensional case. To begin
with, not every infinite-dimensional Lie algebra corresponds to an infinite-dimensional Lie
group. Groups, in particular Lie groups, usually arise as groups of symmetries. But in the
infinite-dimensional case, we often consider rather Lie algebra of infinitesimal symmetries
than Lie group of symmetries; it is quite common in the quantum physics, for example.

1. Generalities
1.1. Main objects.

1.1.1. Lie algebras we consider. If the other is not stated, our ground field usually
will be C (or, if you prefer, any algebraically closed field of characteristic 0). Actually,
almost all Lie algebras that we will consider will be complexifications of real Lie algebras.

Let g be a Lie algebra. A representation of g (aka a module over g or a g-module) is a
vector space V with a linear map p: g — End V such that p([g, h]) = p(g)op(h)—p(h)op(g).
When possible, we abbreviate [p(g)](v) to gv.

Regarding the Lie algebra g we always assume the existence of a vector space decom-
position g = n_ @ h @ ny into the sum of three Lie subalgebras of g with the following
properties: [h,h] = 0 (that is, b is commutative), [h,ne] C ny (in all our examples,
= ng); usually, dim b is finite; it is called the rank of g. These assumptions imply that
h @& ny is a Lie subalgebra of g and that the projections h & ny — bh are Lie homo-
morphisms. A characteristic example: g = {matrices},h = {diagonal matrices},ny =
{(upper and lower) triangular matrices}.

Later we will impose further conditions on the decomposition g =n_ & H S n,, but
for the construction below they are not needed.

1.1.2. Verma modules. Let A € h*. Then there arises a one dimensional h-module
Cx = {C\ = C, hz = A(h) - z}. The projection h & ni — h makes Cy a (still one-
dimensional) module over h @ ny (g2 = 0 for g € n;). By definition, the Verma module
(of type A) is
g
Indf)@ﬂ+ C)\,

the induced g-module (explanations are given in Section 1.1.3 below).
1.1.3. The explanation of Ind.

1.1.3.1. First informal explanation of Ind. Let b C a be a pair of Lie algebras,
and let V' be a b-module. How to extend this b-module structure to a a-module structure?
Indeed, if v € V and g € a — b, then where is gv? Mathematicians know how to deal with
this situation: just introduce the notation gv and append this gv to V. (This reminds a
known Riussian children’s poem: “it is very easy to build a house: just draw it and live in
it!”)



But there arises a difficulty. It is possible that, say, g,¢’ € a—b, but ¢’ —¢g € b. So, the
difference between appended gv and ¢g’v should be equal to the existing (¢’ — g)v. Dealing
with this requires some reasonable factorization. Then, certainly, we will have to apply
elements of a — b to these appended gv, and so on. Fortunately, there exists a construction
in algebra, which provides a formalization of the operation of inducing.

1.1.3.2. The enveloping algebra of a Lie algebra. Let g be a Lie algebra.
Consider the tensor algebra T'(g) = Cogd(g®g)®. .. = B, -, ®™g (with the multiplication
®; in the definition of T'(g), g participates as a Vector space, not as a Lie algebra). Let
I C T(g) be a two-sided ideal generated by all ¢’ ®¢”" —¢" @49 —[¢',9"] € g®(gg) C T(g).
The quotient U(g) = T(g)/I is the universal enveloping algebra of g. It is a unitary
associative algebra.

A matter of notations: the image of g1 ® ... ® g, in U(g) is denoted as ¢ ... ¢gn.
Obviously, if g # 0, then dim U(g) = co. There is a way of describing a basis in U(g).

PrOPOSITION 1.1. Let g1, 92,93, --. be a (finite or infinite) ordered basis in g. Then
monomials

form a basis in U(g).

Proof. The fact that monomials (1) span U(g), is obvious: we can reorders letters in
a monomial gj, ...g;, at the expense of shorter monomials:

i -+ GieTiusr -+ Gin = Yir -+ Giwea e -+ - Yin T Gin - - [9i> Gjnsa ) -+ G -
S~ S—— = S—— = S——

The fact that monomials (1) are linearly independent may seem obvious, but actually
it is not. This fact is called the Poincaré-Birghoff-Witt theorem (briefly, PBW), and its
one-page long proof is contained in all major textbooks on Lie theory. I will not prove it
here but will often use it (usually, implicitly).

PBW has a basis-free statement. Let U, (g) C U(g) be a subspace spanned by mono-
mials of length < n. Then

C-1=Uy(g) CUi(g) CUs(g) C...CU(g)

is a multiplicative (U;(g)U;(g) C Uit;(g)) filtration. Consider the map o,:5"(g) —
Un(g) CU(a), onlg192---gn) = Symm(g1gz .. gn)-
PropoSITION 1.2. (PBW). The composition

S™(g) 2 Un () 225 U, (2) /U1 (g)

1S an 1somorphism.
COROLLARY 1.3. U(g) has no zero divisors.

Proof. If 0 # a,0 # b € U(g) and p, ¢ are maximal integers with a € U,(g),b € Uy(g),
then the image of ab in SPT9g = U,+4(g)/Up+q—1(g) is the product of the (non-zero) images
of a and b in SP(g) and S7(g) and hence ab # 0.
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ProPOSITION 1.4. (Tautology) A g-module is the same as a (left) U(g)-module in
the sense of usual module theory.

1.1.3.3. A rigorous definition of Ind. The operation of inducing becomes a habit-
ual operation of a ring extension (the most known example of which is the complexification
of real vector spaces):
Ay, _
Indg V' = U(a) Du(b) %

(here V is a left U(b)-module, U(a) is a two-sided U (a)-module, hence a left U(a)-module
and a right U(b)-module; thus, U(a) @) V' is a left U(a)-module).
There exists a “dual” operation of “co-inducing,”

Coindg V = Homy q(U(b),V),

which turns a right b-module into a left a-module. It is unlikely that we will ever need
this operation.

1.1.4. A deviation for the algebra fans. Those who do not belong to the com-
munity described in the title may skip this section.

There exist less explicit, but more spectacular, descriptions of universal enveloping
algebras and, separately, the operations of inducing and co-inducing in the language of the
category theory. Let C and D be categories, and F:D — C and G:C — D be functors.
Suppose that for every pair of objects A € Ob(C), B € Ob(D) there exist a bijection

ta,B:C(FB,A) = D(B,GA)

natural with respect to A and B (that is, diagrams induced by morphisms of C and D are
commutative). Then F' is called left adjoint to G and G is called right adjoint to F'.

Many famous mathematical constructions (some of them are not obvious) can be
described very briefly in the language of adjoint functors. For example, completion of
metric spaces is just a functor from the category M of metric spaces 11 into the category of
complete metric spaces M is just the left adjoint to the embedding M = M.

Let Lie be the category of Lie algebras and Ass be the category of (unital) associative
algebras. There is a natural functor Ass — Lie, which assigns to an associative algebra
the Lie algebra with the same space and the operation [A, B] = AB — BA. The fact is
that this functor possesses a right adjoint, and this right adjoint assigns to a Lie algebra
its universal enveloping algebra (this is Exercise 6.2).

Another popular notion of the category theory (in some sense, more general than that
of adjointness) is the notion of an initial (a terminal) object of a category. For a fixed

b-module V' consider the category of a-modules, which contain V' as a b-submodule. Then

Ind%1 V' is an initial object of this category. Similarly Coindg V' is a terminal object of the

category of a-modules equipped with a b-projection onto V.

1.2. More about Verma modules.

1.2.1. The structure of Verma modules. As a U(n_)-module, M(\) is a free
module with one generator, which we denote as vy or simply v and call a vacuum vector.
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Notice that Cv is the n_-module C (see Section 1.1.2), from which M (\) was obtained by
inducing; it has to be contained in M (A) by the construction of inducing (Sections 1.1.3
and 1.1.4). As a g-module, M (\) has additional properties:

hv = X(h)-v for h € b, go =0 for g € ny.

These properties determine M (\) as a g-module. Indeed, to compute g(g; ... g,v) (where
g € gand g1,...g, € n_), we move, using the commutation relations, g from left to the
right, and when it reaches v we apply it to v, using the rules above (see the example in
Section 1.2.3 below).

An important remark: a non-zero module homomorphism ¢: M () — M (A) must be

an embedding. Indeed, if p(v,) = avy, o € U(n_), then ¢(Bv,) = Bawy which is not zero,
if « #0, 8 # 0 since U(n_) has no zero divisors (see Section 1.1.3.2).

1.2.2. Why Verma modules are important. Let V be an arbitrary representation
of g. A non-zero vector w € V is called a singular vector of type A\ € b*, if n,w = 0 and
hw = A(h) - w for every h € h. Example: v, is a singular vector of M) of type A. Natural
conditions which we are going to impose on g and V' will guarantee the existence of singular
vector(s) in V' (see Proposition 1.8). For a singular vector w € V of type A, there arises
a module homomorphism M(A) — V, v — w. The image of this homomorphism is a
submodule of V', and if V is irreducible, then V' becomes an image of M (), hence the
quotient of M (\) over the maximal proper submodule of M (). In particular, if M () is
irreducible, then V' = M (\). This gives a classification of all irreducible representations
of g (satisfying the natural conditions promised above); these irreducible representations
appear labeled by h* (these labels are called highest weights).

This shows the importance of two problems.

Problem (1). For which A is M (\) reducible?
Problem (2). If M () is reducible, then what is its maximal submodule # M (\)?

Problem (1) has been solved for all major cases, and we will discuss the solution in
these lectures. Problem (2) is solved only partially (this part being considerable). We will
also discuss some results of this kind.

1.2.3. An example; s((2) as always. The Lie algebra sl(2) is 3-dimensional and is

spanned by
0 0 1 0 0 1
=) elo =10 o)

[h,€]=2€, [huf]:_va [67f]:h;

sl(2)=(C-f)e(C-h)@e(C-e)=n_dhdn,.
Let A € h* = C (we identify A € h* with A(h) € C). The Verma module M () has a basis

7



{f"v|n=0,1,2,...}. Action of s[(2):

F(f"o) = " s

h(f™) = hff" v = fhf" v —2f" = fPhf" 20 —4f v = ...
= f"hv —2nf"v = (A — 2n) f"v;

e(f"v = fef" to+hf o= fref" v+ fRf " Pu+ hf o=,
= ffev+ " tho+ " 2hfv+ ...+ hf"
=A+A=2)+ A=) +...+A=2(n—1))f" v
=[nA—nn—D]f"tv=nA—(n—1)f" tv.

A submodule L of M(\) must be also an h-submodule. Since our basis in M () consists
of eigenvectors of h, L must be spanned by a subset of the basis. Since L must be
invariant with respect to f, it must contain, together with a f™v, all f™v with m > n.
Thus, L is spanned by f"v, f"* 1o, f**20,.... The case n = 0 is not interesting (then
L = M())). Otherwise, f"1v ¢ L, and ef™v = n(\ — (n — 1)) f"1v must be zero, that
iS,)\Zn—1=>)\€ZZo.

We see that the Verma module M () is reducible if and only if A is a non-negative
integer. Hence, irreducible sl(2)-modules containing singular vectors are: (1) Verma mod-
ules M () with A ¢ Z>¢; (2) quotients M (n — 1)/L where n is a positive integer and L
is the submodule of M (n — 1) constructed above. The latter is n-dimensional, has a basis
v, fu,..., f*1v such that ev = 0, f(f* 1v) = 0.

It is not hard to prove that every finite-dimensional sl(2)-module contains a singu-
lar vector. (Indeed, if V' is a finite-dimensional s[(2)-module, then h:V — V has an
eigenvector, let it be v, hv = Av. Then hev = ehv + 2ev = (A + 2)ev, and, similarly,
h(e?v) = (A + 4)e?v, h(e3v) = (A + 6)e?v,.... Since h:V — V has finitely many eigen-
values, some e*v should be zero, and the last non-zero e*v is a singular vector.) Thus,
our classification covers, in particular, all finite-dimensional modules, and we get a well
known result: for every dimension, there is precisely one isomorphism class of irreducible
representations of s[(2).

Notice also that there are s[(2)-modules without singular vectors. The easiest example
can be obtained from the formulas above by adding a constant to the coefficient at ef"v.
For A\, u € C, let K(\, p) be the vector space with the basis v,,, n € Z and the structure of
an sl(2)-module defined by the formulas

hv, = (A4 2n)vy,,
fvn = Un-1,
evp = (=nA+n+1) + p)on g

It is possible to make this formulas more symmetric with respect to the parameters by a
notation change. Namely, let J(«, 3) be the vector space with a basis v,,, n € Z with

hvy, = (Qn +a— ﬁ)vrn
ev, = (@ +n)v,41,

fvn = (ﬁ - n)vn—l-

8



If v is not an integer, then the module J(«, #) does not contain singular vectors; if neither
a, nor f3 is an integer, then the sl(2)-module J(a, 3) is irreducible. For more properties of
the sl(2)-modules J(a, ) and K (A, ), see Exercise 6.4.

1.2.4. Final remarks. (1) It is not hard to extend these results to sl(3), s((4), etc.
We will do much more.

(2) We will show (under some natural conditions imposed on g) that the module M ()
is reducible if and only if it contains a singular vector not in Cv (equivalently: not of type
A) — see Proposition 1.8 in Section 1.3.3.

1.3. Roots and weights.
It is time to formulate further restrictions on Lie algebra and modules considered.

1.3.1. Roots. Let g be a Lie algebra and § be its finite-dimensional commutative
subalgebra (that is, [h,h'] = 0 for all h, h' € b).
For 0 # a € h*, we put

ga ={9€g/|[h,gl=a(h)-gforall heh}.

If go # 0, then we call a a root (of g), call g, a root space, and call non-zero vectors from
go root vectors. The dimension of the space g, is called the multiplicity of the root o and
is denoted as mult . The set of all roots is denoted by A.

Obviously, if a,a’ € A and g € ga, g € go, then either [g,¢'] =0, or a + o’ € A and
[9:9'] € ga+ar- (Indeed, [h,[g,g'l] = [[h, g, '] + [, [k, g']] = (a(h) + &' (h))[9,9'].)

Our main assumption (“diagonalizability of h”) is that dim g, < oo for all & € A and

g:h@@ga- (2)

a€EA

REMARK. It follows from the condition (2) that b is a maximal commutative subal-
gebra of g, that is, it is not contained in a bigger commutative subalgebra. Indeed, let
[h,5] = 0 and let h involve a non-zero component in some go. If a(h) # 0, then [h, A
cannot be 0.

Let ¢ be the center of g (that is, {c € g | [¢,g] = 0 for all g € g}). Two things are
obvious: first, ¢ C b (follows immediately from (2)); second, any root is zero on ¢. In other
words, roots are elements of (h/c)* C h*. We put dimbh — dim ¢ = n.

A further assumption says that every g, is contained either in ny or in n,. Accord-
ingly, the root « is called positive or negative, and the set of positive (negative) roots is
denoted as A4 (A_). Thus

ny = @ Ja-

aEA L

The two sets Ay and A_ are supposed to be symmetric to each other: {a € A} } <

{—ae A_}.
A positive root « is called simple, if it is not the sum of two positive roots. In all
our examples below, there will exist n = rankg simple positive roots, aq,...,a,, and

every positive (negative) root is a positive (negative) integral linear combination of simple
positive roots.



We will also use notation A for the set of roots with multiplicities, that is, every root
a appears in A dim g, times. We also will use notations A, A_ in a similar sense.

More notations: A (A4, A_) is the set of all (all non-negative, all non-positive) integral
linear combinations of aq, ..., a,.

Obviously, ¢ = () Ker .
i=1

ExAMPLE. Let g = gl(n 4+ 1) = {all complex (n + 1) x (n + 1) matrices} and h =
{diagonal matrices}. Then ¢ = {scalar matrices} and the notation n matches the same
notation above. The roots are «j, (i # j), o;j(diag(A1,...,An+1)) = A — Aj. The space
Ja,; is one-dimensional and consists of all matrices with all entries, except (possibly) the
(ij)-entry, are zeroes. We declare the roots o; = @ j+1, ¢ = 1,...,n simple. Then

. (l/z'-l—...-|-aj_1, ifi<j
Oél‘j— o T f>
aj —...— oy, ifi>j.

Thus, positive (negative) roots are «;; with i < j (¢ > j) and ny (n_) is the space of
strictly upper (lower) triangular matrices.

1.3.2. Weights. Let g be as above and A be a g-module. For a 8 € h*, we set
Ag={a € A|ha=p(h)-aforall heb},

and if Ag # 0, we call 5 a weight of A; the spaces Ag are called weight spaces. (Thus,
roots of g and zero are weights of the adjoint representation of g in itself.) We will usually
assume that dim Ag < oo for all 5 and that A satisfies the h-diagonalizbility condition,

A= P 4 (3)

pe{weights}

PROPOSITION 1.5. If a g-module A satisfies the diagonalizibity condition (3), then
every submodule B of A satisfies this condition. More exactly: B = EBB(B NAg).

Proof. Let b € B. Then b = aj + ...+ a where a; € Ag,, all 3; are different. Choose
an h € b such that all 5;(h) (with ; # 0) are different from 0. Then for all N,

Wb =hNay 4+ ...+ hNar = Bi(W)Nay + ... + Br(h)*ay € B,

which implies a; € B for all i (except, possibly, a; with a; € Ay, but this a; is also in B,
because a1 + ...+ ai € B).

PROPOSITION 1.6. Ifa € Ag and g € g, then ga € Agyq.
Proof. For h € b,

h(ga) = g(ha) + [, gla = g(B(h)a) + (a(h)g)(a) = (B(h) + a(h))ga.

COROLLARY 1.7. The set of weights of a Verma module M(\), A\ € b* is A+ A_.
Moreover, M(\)x = Cuy.

10



Proposition shows that for any weight 8 of A, the sum B= & A, is a (non-zero)
YEB+A
submodule of A. Thus, if A is irreducible then B should be equal to A, which means that

all the weights of A are contained in some lattice 5+ A C h*.

1.3.3. Modules virtually nilpotent over n;. A g-module A is called virtually
nilpotent over ny, if for every a € A there exists a k£ > 0 such that g1 ...gra = 0 for all
91, ---, 9k € ng. For example, finite-dimensional modules are virtually nilpotent over n, .

PROPOSITION 1.8. Verma modules are virtually nilpotent over n,.

Proof. This follows from Corollary 1.7. Indeed, for a u € A_, there exists a k such
that p+ Ay + ...+ A\ ¢ A_ for any non-zero Ay,..., Ay € AL. Hence, if a € M(N)r4,,
then g1 ...gra =0 for any ¢1,...,9r € n4.

PROPOSITION 1.9. Let A be a virtually nilpotent over ny g-module with at least one
non-zero weight space Ag (for example, satisfying the diagonalizibility condition). Then A
contains a singular vector. Moreover, if Ag # 0, then there is a singular vector of type
B+ a witha € Ay.

Proof. Take a non-zero a € Ag and choose a kK > 0 as in the definition of the
virtual nilpotency. We choose this £ minimal possible, so if £ > 0, then there exist
91y --,9k—1 € ny such that g1 ...gx—1a # 0 (if k£ = 0, then a is a singular vector itself).
Without loss of generality, we may assume that every g; (1 <i < k — 1) belongs to some
g, with v; € Ay, Then b =g¢1... 9510 € Agya, a =71+ ... + -1 € A; and gb =0
for every g € ny. Hence, b is a singular vector of type 8 + a.

Now, let us prove a proposition promised in Section 1.2.4.

PROPOSITION 1.10. A Verma module M(\) is reducible if and only if it contains a
singular vector not in Cuvy.

Proof. If M () contains a singular vector w of type # A, that is of type A + «, 0 #
a € A_, then there arises a non-zero homomorphism (hence an embedding, this is not
important now) M (A + ) — m(\) whose image is a non-zero submodule of M (\) which
is contained contained in @  M()N)p and hence does not contain vy; hence M () is

BEAa+A_

reducible. Conversely, if M(\) contains a proper submodule L, then L must be virtually
nilpotent over np (since M () is) and hence contain a singular vector. This singular vector
cannot be proportional to vy, because vy generates the whole M (\).

2. Kac-Moody algebras,

definition, examples, and rough classification
2.1. Definition.

There are several more or less equivalent definitions of Kac-Moody algebras and several
possible levels of generality. Our definition is close to that from the original work of Kac
[1], and our level of generality is somewhat above average. We begin with a “simplified”
definition, which will be slightly modified below, in Section 2.3.2. We will show there that
this modification will almost not affect the material preceding it.

2.1.1. Generators and relations. We assume fixed some n x n matrix A = ||a;;|
which will be called the Cartan matrix. The diagonal entries of A are all equal to 2, all
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the non-diagonal entries are non-positive integers. The matrix will be assumed irreducible
in the sense that it cannot be made block-diagonal (with non-zero blocks) by applying the
same permutation to rows and columns. Also we suppose that the matrix is symmetrizable

in the sense that there exist non-singular integral diagonal matrix D such that A = DA™
symH sym __ aﬂ

where the matrix A%™ = ||a A = is symmetric. In other words, there are non-
i

zero integers dy, ..., d, such that d;a;; = d;a;; for all ¢,j. An additional assumption that

d; are positive integers with ged(dy,...,d,) = 1 (which we impose) makes these numbers

unique. The symmetrizability condition implies that the entries a;;, a;; are zeroes or non-
zeroes simultaneously.
Our Lie algebra will have 3n (linearly independent) generators

€1y vlnihiy o hn f1,00, fn

(these notations may remind of our description of s[(2); no wonder, the whole construction
below is a sort of generalization of that description), satisfying the following relations.

(1) [hi, byl =

(2) [huej] = azjej§

(3) [hi, f] = az’jfji

W iesl={5 77

(5) [ei,[---,leisej]...] =0, if k > —a;;
NI

(6) similar to (5) for f’s.
The Lie algebra g is called a Kac-Moody algebra and is sometimes denoted as g(A).
The number n is called the rank of g(A).

REMARK. In the most general definition of Kac-Moody algebras the Cartan matrix is
just arbitrary complex n X n matrix; sometimes it is supposed to be symmetrizable. Main
difficulty arising in this general approach is that relations (5) and (6) must be reformulated
in a form which is far from being explicit.

2.1.2. Decomposition g(A) =n_ & hdn,. Subalgebras of g(A) generated, respec-
tively, by f1,..., fn, by h1,...,hy, and by eq,...,e, are denoted by n_, b, and n+.

PROPOSITION 2.1. The Lie algebra g(A) is the direct sum of Lie subalgebras n_, b,
and ny, and all the properties stated in Section 1.1.1 hold. (Certainly, b is just the n-

dimensional commutative Lie algebra spanned by hq, ..., hy,.)

Proof. It follows from the Jacobi identity that if a Lie algebra g is generated by a
system {g1, go, . . ., gn } then it is spanned by monomials of the form [g;,, [gis, [ - -, 93] - - -]]]5
for which we use a shorter notation [g;, , gi,, - - - » g,,] (for example, [[a, b], [c,d]] = [a, b, ¢, d]—

[b, a, c,d]. The Jacobi identity takes the form

[h7glag2> s 7gn] - [[hagl]vg27 C 79”] + [gla [h792]7g37 cee 7gn] +...+ [91> -y 9n—1, [h,gn“
From this identity and relations (1) - (4) above, we obtain
[hi,ejl, “eey ejk] = (aijl + ...+ aijk)[ejl, “eey ejk],

12



similar for [, fi,,-- -, fils

[fi,ejl, .. .,ejk] = (5ij1 [hz, €jgs - ,ejk]+5ij2 [ejl,hi,ejg, ey ejk] +4.. -+(5ijk [ejl, - 7ejk717hi]’

and similar for [e;, fj,,..., fj.]. Using these equalities, we can transform (moving from
the right to the left) any monomial [g1,...,gx|, where every g; is one of the generators
€1y---y€n,h1,...hy, f1,..., frn to the sum of elements of n_, h and n,..

2.1.3. Center of g(A). We do not assume that the matrix A is non-degenerate;
moreover, it will be degenerate in the most important for us cases. In the degenerate case,

the algebra g(A) has a non-zero center ¢(A): it consists of linear combinations ), k;h; for
which Zz k:iaij =0 for all j

2.2 Examples.

2.2.1. sl(3). Let A= [_i _;} Since the matrix A is non-degenerate, the Lie
algebra g(A) is generated by eq,es, h1, ho, f1, fo while ny is generated by eq, es with rela-
tions [e1, [e1,e2]] = 0, [e2, [e2,€1]] = 0. This implies .that n, is spanned by ey, ea, [e1, €3],

and hence dimn, < 3; similarly, dimn_ < 3, and hence dim g(A) < 8. Let us show that
actually dim g(A) = 8 and g(A) = s1(3). For this purpose, we identify in sl(3) six elements
which we will denote again by ey, e, hy, ho, f1, fa:

01 0 0 0 0 1 0 0 00 0
61:000,62:001,h1:0—10,h2:01 0,
0 0 0 0 00 0 0 0 00 —1

0 0 0 0 0 0]
fi=|1 0 0f,fe=|0 0 0
0 0 0 0 1 0]

An immediate check shows that these elements present a system of generators for sl(3)
and satisfy all relations imposed in Section 2.1 (with A as above). Hence, if we assign to
e1,e2,h1, ha, f1, f2 € g(A) the elements of s[(3) bearing the same notations, we will obtain
a homomorphism g(A) — sl(3) which is onto since it covers all the generators and is 1-1
since dim sl(3) = 8.

2 -1
-2 2
2). Also A is non-degenerate, hence g(A) is generated by ey, €2, hy, ha, f1, f2, and n is gen-
erated by e1, ea. The relations now are [eq, [e1,e2]] = 0, [ez, [e2, [e2,€1]]] = 0 which implies
that ny is spanned by eq, e, [e1, €3], and [es, [e2,€1]] (We notice that | [eq, [e2, [e2,e1]]] =
[le1,e2], [e2,e1]] + [e2, [e1, [e2,€1]]] = 0). Hence, dimny < 4 and dimg(A) < 10.

Actually, the Lie algebra g(A) is isomorphic to the Lie algebra so(5,C) of (complex)
skew-symmetric 5 x 5 matrices. To prove this, we need to specify in so(5,C) 6 matrices,
which we again denote by ey, ez, h1, ha, f1, fa. We use the notation Dy, (1 < k < ¢ <5) for
the skew symmetric 5 x 5 matrix ||a;;|| with axe = —ag, =1 and a;; = 0 if {7, 5} # {k, (}.
We put

2.2.2. s0(5). Let A = } . Obviously, A is symmetrizable (with dy = 1, da =

e1 = D15+iDas5, ea = D3s+iDys, hy = 2iD12, hy = 2iD3y4, f1 = D15—1D25, fo = D35—1Dys.
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It is easy to check that these eq,eq, hy, ha, f1, fo generate so(5) and satisfy all the
relations of g(A). This provides a homomorphism of g(A) onto so(5) and this is an isomor-
phism, since dimg(A) < 10 = dimso(5). (We leave the details to the reader as Exercise
6.6.)

2.2.3. Go. Let A= [_g _;] Again, A is symmetrizable (with d; = 1, dy = 3)
and non-degenerate, g(A) is generated by ey, es, h1, ha, f1, f2, and ny is generated by e, o
with the relations [e1, [e1,e2]] = 0, [ea, [e2, [e2, [e2,e1]]]] = 0. It is not hard to show that

n, is spanned in this case by 6 vectors:

e1, e, [e1, e2], [ea, [ea, e1]], [e2, [e2, [e2, e1]]], [e1, [e2, [e2, [e2, €1] ] ]].

Hence, dimny <6 and dimg(A) < 14.

It is not hard to prove (Exercise 6.7) that actually dimg(A) = 14 and g(A) is the
exceptional Lie algebra G,. To do this, it is even not necessary to know what G is.
Using elementary tools from the Lie theory one can prove that there exists (up to an
isomorphism) only four simple (non-commutative) complex Lie algebras of dimension < 14:
s((2),s((3),s0(5), and one more Lie algebra of dimension 14 (which is denoted as G2). Hence
this 14-dimensional algebra is g(A).

2 =2
-2 2
and this center is 1-dimensional and spanned by hy + hs. Hence, the Lie algebra g(A)/c(A)
is generated by eq,es, h, f1, fo where h is represented by hy or —hs. For the reader’s
convenience sake, we list all the defining relations for these generators:

2.2.4. A}]. Let A= . This matrix is degenerate, thus g(A) has a center,

e1, f1] = h, [e2, fo] = —h, [e1, fa] = [e2, f1] =0,

[h, 61] = 261, [h,eg] = —262, [h,fl] = —2f1, [h, fg] = 2f2,
[61’ [617 [61’62”] =0, [627 [627[62761”] =0, [fla [f17 [flaf2”] =0, [f2’ [f27 [f27f1”] =0

We will construct an infinite-dimensional Lie algebra which is isomorphic to g(A)/c(A).
This is the Lie algebra s[(2) ® C[t,t71]; the elements of this Lie algebra are 2 x 2 matrices
{pn(t) p12(t)

p21(t) —p1i(t)
powers allowed (differently, polynomial functions in C* = C — {0}). We will single out 5
elements of this Lie algebra:

0 1 0 0 1 0 0 0 0 t!
e1:|i0 0:|762:|:t O:|,h:|i0 _1:|7f1:|:1 O:|7f2:|:0 0‘|

It is easy to check that these matrices generate sl(2) ® C[t,t~!] and satisfy all the above
relations. This gives a homomorphism ggo(A) — sl(2) ® C[t,t™!]) which is onto since it
cover all generators.

Actually, this homomorphism is an isomorphism (it is Exercise 6.8). The Kac-Moody
algebra of this example has a canonical notation Al.

} whose entries are complex polynomials in one variable ¢ with negative
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and there is a one-dimensional center ¢(A); it is spanned by 2h; + hy. As before, the Lie
algebra g(A)/c(A) is generated by eq,es, h, f1, fo where h is represented by 2h; or —hs,
and the relations are

2.2.5. AZ. Let A= . As in Section 2.2.4, the matrix A is degenerate,

le1, f1] = h/2, [ea, f2] = —h, [e1, f2] = [e2, f1] = O,

[h,e1] = 4eq, [h, ea] = —2ea, [h, f1] = —4f1,[h, f2] = 2f2,

Here is a construction of an infinite-dimensional Lie algebra isomorphic to g(A4)/c(A).
This is the Lie algebra of 3 x 3 matrices ||p;;(¢)|| whose entries belong to C[t,¢!] with the
following additional properties:

P11(t) + p22(t) + p33(t) = 0; pi;(t) = —pji(—1).

In other words, elements of this Lie algebras are finite sums A;t* where A, are traceless
3 x 3 matrices and in addition to that every matrix Ay is symmetric, if k£ is odd, and
skew-symmetric, if £ is even. The commutator is given by the usual formula. Let

1 0 i -1 0 i
es=10 0 0| -t i=1] 00 0f-t71
i 0 —1 i 0 1
0 1 0 0 0 2i 0 —1 0
€y — -1 0 1 ,h: 0 0 O ,fgz 1 0
0 —i 0 —2i 0 0 0 —i 0

Again, it is not hard to check that these eq, ..., fo generate our Lie algebra and satisfy the
above relations, so there arises a homomorphism of g(A)/c¢ onto Lie algebra constructed.

Actually, this is an isomorphism (Exercise 6.9).

The canonical notation for the Lie algebra of this example is A3.

2.3. Roots.

2.3.1. Grading. Kac-Moody algebras of rank n have a natural n-grading (that
is, a grading by n integers): g(A) = Z 0(A)k, ...k, Namely, we assign degrees to

E1,..kon
generators:

degh; = (0,...,0),dege; = (0,...,0,1,0...,0),deg f; = (0,...,0,-1,0...,0))
j

J

This gives rise to our grading: go,..0 = b, monomials [ej,,...,e;, | with ) dege;, =
(k1,...,kn) span g(A)g, ... k,, while monomials [f;,,..., f;. ] with >_deg f;, = (k1,..., k)
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span g(A)k, ... k,. Thus ny is the sum of g(A)x, .. x, with all k1,..., k, non-negative (and
not all zero), and n_ is the sum of g(A)x, ..., with all kq,..., k, non-positive. If the set
ki,...,ky contains both positive and negative numbers, then g(A)x, .. x, =0.

According to formulas in Sections 2.1.1 and 2.1.2, for every g € g(A)k, ... k.., [Pi, 9] =

)

(Zj aijk]) g. Thus, according to the definition in Section 1.3.3, every g € g(A)x, ...k, 18

a root vector corresponding to the root h; — ) a;;k;. However, an inconvenience appears
in the case, when g(A) has a nontrivial center: vectors in different spaces g(A)k, .. ., -
9(A)x; ..k, can correspond to the same root (this happens when >, (k; — k})a;; = 0 for
all 7). Thus, if we follow the definition of Section 1.3.1, we have to admit that the root
spaces may be not the individual spaces g(A)k, ... k,, but the sums of two or more such

spaces.

2.3.2. A modification of the construction of g(A). To avoid this inconvenience,
we have to modify the definition of the Kac-Moody algebra. Our modification will not
affect the parts ny and n_, but will expand the part h. The new h will be a direct sum of
the old h and a copy of ¢(A). Thus, the new h we contain linearly independent hq, ..., hy,,
and also vectors cy, .. ¢, for every sequence /1,...,¢, such that ), ¢;a;; = 0 for all j.
From now on, we use the notation § for this expanded space. The relation (1) in Section
2.1.1 is expanded to the statement that all the commutators in (expanded) h are zeroes,
the relations (2) - (6) remain unchanged, and two new relations appear:

(7) lees,...ens €5] = £jey;
(8) [cer,.ens 5] = =15 fj.

Hence, for g € 9(A)k,,....kn» [Cor,....0,59] = <Z]~ kz’@') g-

Notice that in the case of non-degenerate matrix A our modification does not change
anything.
We introduce simple positive roots aq,...,a, € b* by the formulas

a;(h;) = aij,o(ce,,..0,) = 4;.

Obviously, aq, ..., a, are linearly independent.

POROPOSITION 2.1. Roots of g(A) are precisely non-zero integral linear combinations
kioy + ...+ kpay, such that g(A)k, ..k, # 0. Moreover, g(A)g, ...k, Is the root space of
the root kyay + ... + kpa,.

Proof. Indeed, for « = kyay + ... + kpon, and g € g(A)ky,.. ks [Riy 9] = Zj a;;jkj =
a(hi)g and [cqy,. 0, 9] = (Zj k‘ﬂj) 9= alc,...0,)9-

Sometimes, in particular, in Section 2.3.2, we will abbreviate the notation o = ka1 +
vt kpay to ki, .. k.

n

2.3.3. Root systems for the examples in Section 2.2. Constructions of the five
Kac-Moody algebras of rank 2 in Section 2.2 contain the explicit description of bases, which
can be regarded as descriptions of system of roots in the sense of the previous section. Here
they are:

Roots of s1(3): (0,1),(1,0),(1,1); (0,—1),(—1,0), (-1, —1).
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Roots of so(5): (0,1),(1,0),

Roots of Go: (0,1),(1,0), (1,
(—1,-3), (=2, —3).

Roots of A}: (0,1) and (k,k — 1), (k, k), (k,k+1) for k=1,2,...; (0,—1) and (k, k +
), (k k), (k,k—1) for k=—-1,-2,..;

Roots of A3: (0,1), (k,2k — 1), (k,2k), (k,2k + 1) for k = 1,2,3,4,5,6,..., and
(k,2k — 2),(k,2k + 2) for k = 2,4,6,...;(0,-1), (k,2k + 1), (k,2k), (k,2k — 1) for k =
~1,-2,-3,—4,-5,—6,..., and (k, 2k +2), (k, 2k — 2) for k = —2, —4, -6, . ..

1,0), (—1,-2).
0,-1),(-1,0),(-1,-1),(-1,-2),

ko
ko o o
ko
o o
o o o
. ok ki . . ki
o o o
o o
s(3)
o o
50(5)
Go
ko O,
'
o o
/
/
o, 0
7
o]
/
/
kQ O/IO
7
o o o o
7 /
o o o 0,0
4 s
o g o o]
z ’
o o S o
/
. o k1 R G k1
7
'
o o o/
4 /
o o o o}
7
o o o o.)/o
/
o o /@' o
1 7
Al o0
/
g
s
o,/o
'
@ ©
D A2
.10

These root systems are displayed on the diagrams above. Roots are marked with light
dots. All root spaces have dimension 1. The origin (0,0) is not a root, and we mark it
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with a heavy dot.
(The meaning of the flashed symmetry lines will be explained later.)

2.4. A rough classification of Kac-Moody algebras.

Roughly, the set of Kac-Moody Lie algebras may be divided into three big classes.

Crass 1. If the matrix A%Y™ is positive definite (and only in this case), the algebra
g(A) is finite-dimensional. This class of Kac-Moody Lie algebras is the same as the class
of complex simple Lie algebras, and their Cartan matrices are listed in all major reference

books on Lie theory (Bourbaki gives a reliable information). For example, the Cartan
matrix of sl(n + 1) is the n x n matrix

-9 1 -
-1 2 -1
-1 2
-1
-1 2

Our examples in Sections 2.2.1 - 2.2.3 belong to this class.

Crass 2. If the matrix ASY™ is “almost positive definite,” which means that one
eigenvalue is zero (thus, the matrix is singular) and all other eigenvalues are positive, then
the algebra g(A) is called an affine Lie algebra.

The class of affine Lie algebras is, in turn, divided into two subclasses (of which the
second is conveniently omitted in the Wikipedia articles on Kac-Moody algebras as well
as on Affine Lie algebras).

SUBCLASS 2.1. For a finite-dimensional simple Lie algebra g = g(A), the Lie algebra
g Clt,t7 Y is g(A)/c where A is obtained from A by adding one row and one column
(as the last row and column) so that det A = 0 and A satisfies all the requirements for
a Cartan matrix (it is not difficult to prove that these conditions determine A uniquely).
For example, if g = sl(n), n > 2, then A is the n x n matrix

T2 -1 17
1 2 -1
-1 2

. .o =1

1 1 2]

The algebra A} belongs to this class.

SUBCLASS 2.2. Let again g be a finite-dimensional simple Lie algebra, and 7: g — g be
a non-trivial automorphism of a finite order: 7" = id. Example: A — —A" for sl(n), n > 3.
(By the way, all such automorphism are classified, and with one exception, r = 2; the
exception is an automorphism of order 3 of 0(8).) Then

r—1

g =D g. where g, = {g € g | 7(g) = exp(2ris/r)g}
s=0
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(this is a vector space decomposition; of the summands, only go is a subalgebra, all the
rest are modules over gg). Then
@ 9k mod rtk

k=—o0

is a Lie subalgebra of g® C[t,t™!], and this Lie algebra is a goo(A) for some Cartan matrix
A of the type considered. The algebra A3 belongs to this class.

REMARKS. (1) In some work, the term Kac-Moody algebra is used in a restricted
sense: the authors mean affine algebra. Sometimes, this term is used even in a more
narrow sense: it is used as a name of the algebra A}.

(2) There are only two affine algebras of rank 2: Al and A3. We can add that there
are precisely 6 affine algebras of rank 3. We leave the proof to the reader, (it is Exercise
6.10); here we restrict ourselves to the list of their Cartan matrices:

2 -1 -1 2 0 -1 2 -1 0 2 -1 -1 2 0 -2 2 =2
-1 2 -1 0 2 -1 -2 2 =2 -3 2 0 0 2 =2 -1 2
-1 -1 2 -2 =2 2 0 -1 2 0 -1 2 -2 -1 2 0 -2

Crass 3: all the rest. The following is true for all g(A) in this class: the dimensions

Dk fd Z dimg(A>k1a1++kna

grow exponentially as k — +o0o. Traditionally, these Kac-Moody algebras are regarded as

less appealing; the situation may be changing, however. For your entertainment, I show
) . 2 -1 .

on the next page the “root diagram” for g(A4) with A = 5 2} ; on the diagram, the

circles correspond to the roots kiaq + koo, the numbers in the circles are dimensions of

the corresponding root spaces.

3. The determinant formula.

3.1 The Shapovalov form.

3.1.1 How much does M()\) depends on A7 Let M(A) be a Verma module over
the Kac-Moody Lie algebra g(A) where A\ € h*, and let \; = A(h;). As a vector space,
M(X) does not depend on A at all: it is the same as U(n_). Moreover, basically, M(\)
depends only on the n complex numbers Ay, ..., A,; more precisely, if A(h;) = N (h;) for all
i, then the actions of f;, h;, and e; in M () and M ()\’) are the same, and all the difference
between M(\) and M()') lies in the action of the elements, added to b in Section 2.3.2.
Indeed, both modules are spanned by g; ...gnv where g; € n_. To apply a g € ny to
g1 ...9nv we push g through ¢;...gnx, and at each step we either switch g with a g; or
replace both by the commutator [g, g;]. This process depends on A only at the last moment,
when g, or its commutator with some g;’s reaches v.
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At this step, we take the h-component of the survivor and apply it to v; but this com-
ponent arises from commutators of elements of n, and n_, and it is a linear combination
of h;’s.

The additional structure in M (), which is generated by the action of the expanded
g(A) is the decomposition into weight spaces. In particular, Cvy = M(A), and, forn € Ay,
U(n-)—yon = M(Ar—y.

The arguments above show that the problems of reducibility, of the description of
submodules, etc. are equivalent for the modules M(A) and M (X') with A(h;) = X' (h;) for
all 4.

In particular, the reducible modules M () correspond to A’s from a subset of the space
C™(A1,...,An); our goal is to describe this subset.

3.1.2. The construction of the Shapovalov form. We will need for this construc-
tion two things: a projection 5:U(g(A)) — U(h) (the latter is the symmetric, that is, poly-
nomial, algebra of ) and an involution o: g(A) — g(A). The projection S is determined by
the obvious canonical isomorphism U(g(A4)) = U(n_) ®c U(h) ®c U(ny) and (also canon-
ically defined “augmentations” U(ny) — C. The involution o is defined by the relations
o(e;) = fi,o(fi) = €0 |h: id. Tt is an anti-automorphism: olg, '] = —[o(g),0(q")] =
lo(g"),0(g)]. Obviously, for any n = (k1,...,kn), 0(U(g(A)),) = U(g(A))—,. Notice in
addition that S oo = (.

Now, for z,y € U(g(A)) set F(x,y) = S(o(x)y). This F is a bilinear (obviously) sym-
metric (F(y,z) = Bo(y)z) = Blo(o()r)) = Blo(@)olo®)) = Alo()y) = Flz,y) form
on U(g(A)) with values in U(h). It is called the Shapovalov form. It will be instrumental
in studying Verma modules.

Notice that if x € U(n_)_,,y € Un_)_,r, and n # 7/, then F(z,y) = 0. By this
reason, the Shapovalov form F is determined by its restrictions to the root spaces U(n_)_,,.
We denote this restrictions as F;,.

3.1.3. Why is the Shapovalov form so important? Consider a Verma module
M(X) and suppose that it is reducible, that is, there is a submodule 0 # A % M(X). An

important remark: A # M()\) = AN Cvy, = 0. We already know (Section 3.1.1) that A is
graded, that is,

A= P Ax_y, where Ay, = ANU(n_)_,va.
neAy

Suppose now that for some non-zero x € n_, now zvy € Ay_,. Take an arbitrary y €
U(n_)_, and consider o(y)zvy. On one hand, this should be an element of A (since A
is a submodule). On the other hand, o(y)zvy should be an element of M(A\)r_,4y, =
M (M) = Cuvy. Because of our “important remark” above, this must be zero: o(y)zvy = 0.
But o(y)zvy = A(F,(y,z))vy, thus A(F,(y,z)) = 0, and since this holds for an arbitrary
y € U(n_)_,, this means that € Ker(\ o F};), in particular that the complex-valued
symmetric bilinear form A o F}, is degenerate, has a zero determinant. We get a strong
necessary condition of a reducibility of M (\): if M ()) is reducible, then det(Ao F})) = 0 for
some n € A. Moreover, this condition is also sufficient, because of the following obvious
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statement:

Z Ker(\ o F,)ux
neAL
is a submodule of M (\) (not containing vy ).

Thus, the reducibility problem for Verma modules is reduced to the computation of
(zeroes of ) det(A o F})) = A(det F,)). And in fact, this computation was completed more
than 30 years ago. The result of this computation is the determinant formula, which we
will explore in Sections 3.2 and 3.3. Now, for a better understanding of the Shapovalov
construction, we will make this computation in a couple of easiest cases.

3.1.4. First examples of the computation of Ao F,,. Let n = oy, x =y = e;.
Then
zo(y)vn = e fivn = fieivy +hivyn = A;.
N
0
Thus, Ao F,,(e;,e;) = \;.
Let now n = a; + o (i # j), © = e;e;j,y = e;je;. Then

zo(y)on = eiejfifiun = eifie;fiun = Aje; fivy = Nidjua.
——— ——

)\j’l}k Aiva

Thus, Ao Fy, 1q,(eiej,eje;) = AiAj. Now let z = y = e;e;. We have:

zo(y)va = eiejfjfivn = ei(fie; + hj) fiva
= e; f;j fiejuon+e; fi hjun —ajie; fivn = Ni(Xj — aji)v.
~~ N ~——

0 )\jv)\ Aiux

Thus, )\O Fai+aj (€i€j, eiej) = )\’L()\j — ajz-), and, by 7 < j, /\ o Fai+aj (6]'67;, 6]'67;) = )\]()\z —
a;;). From this,

Ai(Aj — aji) Aidj

det(Ao Fy,qa;) = Aid;j Ai(Ai — aij)

= )\i/\j(aija]‘i — aijA; — aji)‘j)'

3.2. The determinant formula; the statement and examples.

3.2.1. The statement. The statement below contains several new notations. They
will be explained immediately after the statement.

THEOREM 3.1. (Shapovalov [2] for the finite-dimensional case, Kac and Kazhdan [3]
for the general case.) Up to a non-zero factor,

o m(a Oé> P(n—ma)-mult(a)
det F = [T ] (ha + p(ha) — T) .

acAL m=1

(The non-zero factor appears because the determinant of a quadratic form depends
on the choice of a basis; we will never mention it below.)
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Explanation of the notation. (1) For a positive root o = k1o + ... + kpa, € Ay, we
n

set hy, = Z d—ihi (the integer d; are diagonal entry of a matrix D that diagonalizes A, see
i=1

Section 2.1.1). (2) p is an element of h* such that p(h;) = 1 for all i; thus p(hy) = E T
i=1 i

(3) We define an inner product in the space spanned by «;’s by the formula (a;, ;) =

a;;" = %. In particular, (o, a) = Z %kikj. (4) The Kostant partition function P: A —
i,
Z>q is defined by the formula P(¢) = dimU(ny)¢. In particular, P(0) = 1, P(¢) = 0, if
¢ ¢ Ay. (5) mult(a) is the multiplicity of the root «, that is, dim g(A),.
It should be noted, that for a fixed n the product in the formula has finitely many
factors, since n — ma € Ay only for finitely many pairs m, a.
For a specific A € h*, we can compute det(\ o F})) in terms of A\; = A(h;):

detro F) = [T 1 <)\(ha)—|—p(ha)— m<(;7oz>

QEA+ m=1

) P(n—ma)-mult(a)

) n 3 il o P(n—ma)-mult(cx)
= I1 I (X ey =75
N d; " 2

acAL m=1 \i=1

With the results of Section 3.1.3, this means that reducible Verma modules M ()
correspond to points (A,...,A,) belonging to a countable union of hyperplanes

b0, 1) - i)

n
i=1 "
taken for all positive roots o and positive integers m (for such a pair, we certainly can find

an 1 such that P(n —ma) > 0; take, for example, n = ma).
Before proving the determinant formula, let us consider some examples.

3.2.2. Examples.
3.2.2.1. sl(n+1). In this case, the rank is n and the non-zero entries of the Cartan
matrix are
2, ifi=y,
Qi = e |- .
J -1, if|i—j|=1
The positive roots are a;; = a; + @41 + ... +a;, 1 <i <j <n, (see Section 2.3.4, Class

1) and (a;j;,a;;) = 2 for all 7,j. Indeed, d; = ... = d,, = 1 (since the Cartan matrix is
symmetric) and

<a¢+ai+1+...+aj,aj—|—ai+1—|—...—|—ozj>
= (ai,a,i)+...+<0zj,0zj>+2<ai,ai+1>—{—...+2<aj_1,aj>
:g+...+%—g—...—%=2

g

-
j—i+1 j—i
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the equations of the hyperplanes of reducible Verma modules are A;+...+Xj+(j—i+1) =
m, that is, \; + ...+ A; € Z>;_;. In the case n = 1, this corresponds to the result of
Section 1.2.3. For n = 2, these hyperplanes are the lines

M =01,23...:2=0123 .. A+d=-1012,...

(See the picture below.)

A2

A1

3.2.2.2. A}l. In this case, n = 2,a11 = azs = 2,a12 = a1 = —2,d; = dy = 1. The
positive roots are kay + (k — 1)awe, (k—1)a; + kas, kaq + kas (k> 0) (see Section 2.3.3).
Independently of k, the inner square of the first two is 2, the inner square of the third is 0
(A is singular!). The equations of the lines corresponding to reducible Verma modules are

(m c Z>0)

k)\1+(]€—1))\2—|—2k'—1—m:0,
(k=DM +kXo+2k—1—m =0,
AM+A+2=0
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Notice that the lines corresponding to the roots kaq + kas are all the same, independently
of k and m: A\; +A2+2 = 0 (we mark this line as “singular” at the picture). The other lines
fill densely the half-plane A\; + A2 > —2 and form a nowhere dense set in the complementary
half-plane. The two drawings on the previous page show these lines for £k < 3 and £ < 5.

REMARK. The singular line appears by the following reason. The root o = kiaq +
...+ kpay, has a zero inner square, (o, o) = 0, if and only if k1hy + ... + k,h, belongs to

the center ¢. (This is Exercise 6.11.) Moreover, all elements of A proportional to « are
n

k;
roots with zero inner squares, and the hyperplanes Z d—()\z +1) =
i=1
3.2.1) are the same for all these roots and all m. Our “singular line” provides an example
of such “hyperplane.”

mio @) (see Section

3.3. Proof of the determinant formula.

The main ingredients of the proof (and the understanding) of the determinant formula
are:

(1) invariant (Killing) form;

(2) the Casimir operator.

3.3.1 Invariant form. In the classical finite-dimensional theory, the notion of the
Killing form is one of the most important. The fact is, that for a simple finite-dimensional
Lie algebra g there exists a unique, up to a non-zero multiple, non-degenerate symmetric
invariant bilinear form ( , ); the invariance means ([g, hl, k) = (g, [h, k]) for all g, h,k € g.
The most common construction is (g, h) = tr(ad g o ad h) where adg:g — g is h — [g, h]
(the uniqueness can be easily deduced from the simplicity of g). In the infinite-dimensional
case, however, this construction does not work (no trace!). Still the notion of the Killing
form is naturally extended to the Kac-Moody case.

Let A,g(A),b,... mean the same as before.

PROPOSITION 3.2. There exists a non-degenerate symmetric invariant bilinear form
(, ) on g(A) with the following additional properties:

(1) the form is non degenerate on b and on g, @ g—o for every o € Ay ;

(2) (80,88) = 0, if a4+ 3 # 0;
(3) (hi,h) = diai(h) for allh € h,i=1,...,n < (ha,h) = a(h) for alla € A,h €.

Before proving the proposition, we list two corollaries with brief comments.

Qg sym
COROLLARY 3.3. <hl,h]> = diaji = djaz-j; <hai, haj> = d—j = 73
Since (, ) is non-degenerate on b, it gives rise to an inner product on h*: if ', n” € b*
and n'(h) = (W', h), n”(h) = (k" h) for any h € b, then (n',n") = (W',h") = n/(h”) =

" (W),
COROLLARY 3.4. (n,a) = n(hy) for every n € h*, a € A.

In particular, (a;, a;) = (ha,,ha;) = a3 . This corresponds to the definition given
in Section 3.2.1.
COROLLARY 3.5. If g € 0,9 € 9—a, @ € Ay, then [g,9'] = (9,9 ) ha-

This shows that the space [gq, g—o] C b has dimension 1.
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Proof of Corollary 3.5. For h € b, ([g,9'],h) = (9,[9", h]) = a(h){g.9") = {(g,9")ha, h)
which means that [g,¢'] = (g, ¢')ha, since ( , ) ]h is non-degenerate.

Proof of Proposition 3.2. First, we define (, ) on h. Let ho C b be the subpace of b
with the basis hy, ..., h,; choose a complimentary subspace: h = ho @ €. Condition (3) of
Proposition determines (, ) on ho®bh. In addition to that, put (, ) = 0 on £ this determines
the form on h, and it remains to check that it is non—degenerate Let (h h) = 0 for all
h € b. Then (ha,,h) = a;(h) = 0 for all 4, and hence h € ¢ C by, h = > uiha,,u; € C.
Hence (h,h) = > ui(ha,,h) = >, ai(h) = 0 for all h € b, hence >, u;a; = 0, hence
u; = 0 for all 4, and hence h = 0.

Let gy = b Okiar+.. +k,a, and let g(N) = &P gr. First, we ex-
kit...+kn=N _N<M<N

tend our definition of ( , ) from go = h to g(1) by taking (e;, f;) = d;d;; (this must
be so by Corollary 3.5). To check the invariance, at this stage, we need only to check
that ([e;, h], f;) = (e, [h, f5]). But [e;, hg] = —akies, [hi, 5] = —ax;fj, [eircey,..0,] =
liei,[ce, .0, fi] = —¢; f; (we use notations from Section 2.3.2). If j # ¢, then (e;, f;) = 0,
and hence <[6i, h],fj> = <6i, [h, f]]> =0. If j = i, then <[€i, h], fj> = <6i, [h,f]]> = —a;m-di
for h = hy, and ([e;, ], f;) = (e, [h, f;]) = —lid; for h=cy,,.. 4, -

Now let us show how to extend the definition of (, ) from g(N —1) (N > 1) to g(IV).
We only need consider the case when the factors are z € g_n and y € gy. We can write
y = >_.[u;,v;] where each u; and each v; lies in some gps with 0 < M < N. We put:

<x7y> = Z<[$7ui]avi>a

i

and the only thing that requires a proof is that this sum does not depend on the choice
of a presentation y = ) [u;,v;]. To do this, let us choose a similar presentation for x:
x = ) ;[uf,vi]. Using the invariance of (, ) on g(N — 1) and the definition of the Lie
algebra we can write:

> Az, uilvi) = Z([[ i vl wal, vi) = Z([uy[vyui]] vi) = D, [, il vi)

¢ (2]

- - Z U],UZ b ] ,U’L + Z 'U,],Ul 9 ]] U’L>
= v 7uz Uz u y Uil (U5, Uy
Z [J +Z J ] [] ]>

i,
= Z uf, ([0, wil, vl + [, [0, vll) = >, [vf, [us, oill) = (wl, [vf, y])
We see that the equality > . ([z,w;],vi) = . ; (u}, [v},y]) holds for any presentations y =

>iluis vil, @ =37 [uf, vi]; hence, neither of these expressions depends on either of these
presentations.

3.3.2. Casimir operator. Another important notion of the finite-dimensional the-
ory is the Casimir operator. Algebraically speaking, for a (finite-dimensional, simple) Lie
algebra g, we determine the center of the universal enveloping algebra U(g). If v € U(g) is a
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central element, then for any g- (that is, U(g)-) module M, the transformation v: M — M
is a module homomorphism. Moreover, any module homomorphism f: M — N commutes
with v : f(yz) = vf(x). It turns out that the center of U(g) is quite ample: it is, actually,
isomorphic to a polynomial algebra of n = rankg variables. This center is important,
among other things, in geometry and topology (more specifically, in the theory of charac-
teristic classes). But there is one central element which is instrumental in representation
theory; the transformation corresponding to this element is called the Casimir operator.

The construction of it is very simple: if ¢1,...,gn is a basis in g and ¢*,...,¢" is a
dual basis (with respect to the Killing form), then v = ", g;¢°. For example, h?+2ef+2fe
is a central element of U(sl(2)); you can transform it into, say 2h + h? + 4 fe.

How to generalize it to the infinite-dimensional case? Immediately, we encounter a
difficulty: the sum will be infinite. Still, let us try. Let {u;} and {u’} (i = 1,...,dimb) be
dual (with respect to (, )) bases of h; and {e,} and {e* .} (i =1,...,dim g, = mult o) be
dual bases of g, and g_, where « is a positive root. Then the expression Y > . e’ e’
is infinite, but not hopeless: it can be applied to any g(A)-module M , which is virtually
nilpotent over n,: for every element of this module only finitely many summands of this
infinite sum will produce non-zero images. (Informally, we are generalizing to the infinite-
dimensional case rather the expression 2h+h?+4fe than h?+2ef+2fe — see the discussion
of the case of sl(2) several lines above.)

To pass to a precise definition, we need one more notation: define p* € § by the
requirement (p*, h) = p(h) (see Section 3.2.1 for the definition of p; thus, (p*, h;) =1 and
(p*,Cglmgn> = 0). Put

dimh mult o
Q=2p"+ Z u'u; + 2 Z Z el Eu-
=1 (XGA+ =1

Recall that although € cannot be considered as an element of U(g), it determines an
operator in an arbitrary virtually n;-module, in particular, a Verma module, over g.
PROPOSITION 3.6. Q commutes with the action of U(g(A)).

Proof. We need to prove that {2 commutes with any generator of g.
Commuting with b is obvious. Indeed, p* and u;,u’ belong to h themselves, so they
commute with any A € . Furthermore,

[hy el qen] = [hieloleq + el o[h, el] = (—a(h) + a(h))e'—ae, = 0.

[0 g7

Let us prove now that {2 commutes with e; (the case of f; is absolutely similar, and
we will not consider it.) First,

[P, ej] = aj(p*)e; = (p*, ha,)e; = p(ha,)e;

(the first of the equality above follows from the definition of a root, since e; € gq,; the
second equality follows from Part (3) of Proposition 3.2; and the last equality follows from
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the definition of p*). Second,

[Z u'u;, ej] =Y (W'luise] + [u',ejlui) = Z(Oéj(ui)uiej + o (u')eju;)

%

—E Q; uluejﬁ-g ozj uzej E a] 043 uZ €;

E/—/ ~

ha haj <aj7aj>

= (2h04j - <aj>aj>) €j

(we used the fact that o and h,, correspond to each other with respect to the isomorphism
h <> b* induces by (, ); this is implied by Corollary 3.4).

It remains to compute the commutator [}, > e e
following

LEMMA. Let a,f € A and z € gg—o. Then, in U(g(A)),

“,ej]. For this, we need the

mult o mult 8
Z ez—a[z7 efx] = Z [61—67 z]e,zb’
i=1 =1

Proof of Lemma. We will prove more: in g(A4)_, ® g(4)3,

mult mult 3

Z ey ® [z, el] = Z e’ 5,2] ® €.
i=1

=1

Take arbitrary e € g, and f € g_g. Then

<ze e®f> Skl ) = S ek 1,2

= <Z<€_a7 e) oz’[faz]> (e, [f:2])-

In a very similar way,

<Z[ei_5,z] ®e%,e® f> = ([z, €], f)-

i

Hence, the two sides of our equality have the same inner product with an arbitrary e ® f,
hence, they are equal.

Now, let us turn to Y., >, [e” e, e;]. We have:
mult o mult o mult 8
Do Felache] = 30 3 elalehe]+ 30 3 [hpele
acAy 1=1 acAL =1 BeAL i=1
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But [eg, ej} = 0, whenever o+ ¢ is not a root. So, for the first sum, we may assume that
a+aj is a root. But then our Lemma for z = e; shows that the summand in the first sum,
which corresponds to a cancels with the summand in the second sum, which corresponds
to B = o + «;. This cancellations kills the first sum altogether; what remains in the

second sum? Again, [ei_ﬁ,ej] = 0, if =B + «; is not a root or zero; the latter happens

if 8 = a;. And the summand corresponding to this 3 is all that survives the cancellation
in the second sum. The space g, is one-dimensional, for it basis we can take eaj = ej.

1

What is the “dual basis” in g_,,? Since (f;, e;) = d;, we have to take el_aj = d—fj. And
J

this is our final result:

mult «

1
Z Z €_a a’ il = [6];05.7'76.]’]6(];(]‘ = _Ehjej - _h’ajej'
J

acAy i=1

It remains to combine all the computations:

[, e;] = 2[p", €] +Z[uu,,ea +ZZ o, e

= 2p(ha,)e; + (2haj — (o, ozj))ej — 2hq,ej =0,

2
since (ay, o) = a3} = = 2p(ha,)-
J

This completes the proof of Proposition 3.6, and with that, constructing the Casimir
operator.

3.3.3. Casimir operator and singular vectors.

PROPOSITION 3.7. Let a virtually ny-nilpotent module contain a singular vector w of
the type A € b*. Then Quw = (A + 2p, M)w

Proof. Since w is a singular vector of the type A, ew = 0 for every e € n, and
hw = A(h)w fort every h € h. Hence

Quw = (2p* —l—Zuuzw— (2X(p +Z)\ AMug))w = (A + 2p, \w.

<Pv ) (AA)

COROLLARY 3.8. In the Verma module M (\), the operator Q) acts as the multiplication
by (A +2p, \).

Indeed, Quy = (A 4 2p, A)vy, and vy generates the whole module.

Let us now return to det A o F;. This determinant equal to zero if and only if M(\)
has a proper submodule with a non-zero intersection with M (A)x_,,, which means, in turn,
that M () contains a singular vector w Of the type A— 3 where 5 € Ay and n— 5 € AL UO.
Thus, on one side Quw = (A + 2p, \)w (since w € M (X)) and, on the other side, QW =
(A= B+ 2p, A — B)w by Proposition 3.7. We arrive at the equality

A+20,0) = (A= 5+20,A-5),
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which, after cancellations and division by 2, becomes

-+ 5,8) = 5(6.8).

In other words, this means that det A o F;, = 0 if and only if there exists a 3 € A such

1
that n — 8 € AL U0 and (A + p,3) = §(B,B>.
COROLLARY 3.9. det A o F}, is the product of a certain amount of expressions (\ +

1
p, By — 5(6, B) (some of them may be repeated several times).

It remains to specify those § (with their multipliciies), which actually appear in A o
det F},. For this purpose, we compute the “leading term” of det F},.

The theorem we are proving that the factors of det A o F;, are precisely the products
ma where m is a positive integers and € A,. This is what we expect to obtain.

3.3.4. The leading term of the determinant. Since all the entries of the matrix
of the Shapovalov form F;,, and hence det F;), belong to C[h1, ..., hy], we can speak of the
highest total degree (“leading”) term of det F,.

PROPOSITION 3.10. (Shapovalov in the finite-dimensional case; but the proof in
general case is the same.) Up to a constant non-zero factor, the leading term of det F,, is

H ﬁ hglult(a)P(n—ma) )

OCGA+ m=1

Remark. This shows that every linear factor that occurs in det F,, must be of the
form h,, + a constant for some positive root «; this shows, in turn, that for every factor of
det F}, detected in Section 3.3.3, 8 must be proportional to some positive root .

Proof of Proposition 3.10. Order in some way the positive roots of g(A): A, =
{B1, B2, 83, ..} and choose a basis b}, ... ,bfi in gg, (where d; = dimgg,). This gives us
a basis in U(ny ), in which every vector has a form b;" ...b7* where B;, + ... + 8, = 7,
i < ... <5 1 <p, <d;, and py < pyt if 4, = iy41. For the basis in (g)_p, dual
to our basis in gg, we use the notation c}, ... ,cfi (with the same d; as before). Thus,
[bfa z] = Opghg;-

Let us now compute the matrix entry of the form F) corresponding to the vectors
A bq‘. For this purpose, we take b}'...b/°c]' ...ci' € U(g) and push b}°

'Ls’ J .]1 Jt
through ¢ ... c¥ Flrst b;® either goes through cf, or both bp * and ¢!' are replaced by

the commutator [bf °, C ] T he latter is either a root vector in n_ or anjelement of h, or a
root vector in n+ In the first case we stop here, in the other cases we push bp ° or what we
got, through ¢! 45 and so on, to cjt Possible results of the whole travel: (1) no h appears,
bf; disappears (so s decreases by one) and the number t of root vectors in n_ stays the
same or decreases; (2) one h appears (at the end of the Word) s decreases by one, and ¢
decreases by one or more. Then we push in the same way bp *~ ', and so on.

The final result will be the sum of an amount of terms of which only those make

contributions into the value of F;), which are pure elements of U (h) (do not contain anything
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from ny). Also, as we will see, we will be interested only in the cases with ¢ < s. In these
cases, the maximal number of /’s is s, and it arises only if ¢ = s and b{! ... ]! is the same
as by’ ...b7*. The “diagonal” matrix entry will be hg, ...hg, .

We refer to s as the length of the basis vector b} ... bf:. Ifn="Fkoa +...+kpon,
then the lengths of the basis vectors vary form k = k; + ...+ k,, to 1 (which occurs only
if 7 itself is a root). We sort the basis vectors by their lengths (in the decreasing order).
Then the matrix of F}, falls into blocks:

E—1] Fro—ip | Fo—1k—1|Fr—1k—2

kE—2| Frok |Fr—2k—1|Fr—2k—2

We want to detect the highest degree term(s) of the determinant of this matrix. All
the diagonal entries of the block Fj; have degree k, and all the other entries of the whole
matrix have degrees < k. So, the diagonal entries of FJ; must be taken for the term of the
highest degrees. Because of this, no entries from the blocks Fji, i < k can participate in
our term of the determinant. Throughout the blocks Fj_q ;j < k — 1, only the diagonal
entries of Fj_1 ;1 have degree k — 1, all the other entries have degrees < k — 1. Thus,
we have to include these diagonal entries into the highest degree term of the determinant.
Continuing in this way, we find that we have to include into the highest degree term the
diagonal entries of Fj_2 32, of Fj,_3%_3, and so on.

We arrive at the following result. The highest degree term of det F;, is the product of
the diagonal entries of the matrix of F,,. From this, we can derive the explicit form of this
highest degree term:

k
H H (hﬁil e h,BiS ). (4)

=1 p1 Ps
s BiBile
basis of U(M4)y,

To complete the proof of Proposition 3.10, we need to calculate the number of h,’s in
the product (4). For m =0,1,2,... and v = 1,2,..., mult «, denote by Py, the set of the
elements of our basis of U(ny ), which contain precisely m factors el and set P¥ = card P.
It is clear that P} does not depend on w and that for any u there is a 1 — 1 correspondence
between P, UPy, 1 UP}, o, U... and the standard basis of U(n),—ma (just remove from
every element of P}, UPY . 1 UPY o, U... m factors ef, and we will obtain the basis of

o
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Uny)p—ma). Thus, P(n —ma) = Z Pj'. Tt is clear also that the number of occurrences
j=m

of e throughout the whole basis of U(n.),, is

ZmP#L: Z ZPJU: ZP(n—ma).
m=1 m=1

m=1j=m

Since the result of this computation does not depend of u, the total amount of €1, . . ., emulte

throughout the Whole basis of U(n,, which is the same as the amount of factors h, in the
product (2 Z Z mult(a) P(n — ma).
€A+ m=1
This completes the proof of Proposition 3.10, and, hence, the proof of Theorem 3.1.

Now we pass to our last subject concerning the Kac-Moody algebras.

3.4. Structure of Verma modules over Kac-Moody algebras.

I will present here, without proof, one more result from the Kac-Kazhdan paper [3].
It concerns the structure of the Verma module M () over the Kac-Moody algebra g(A).
Recall that M(\) contains the maximal submodule I(\) # vy (which is the sum of such
submodules of M(\)), and the quotient L(A) = M(X)/I(A) is irreducible; moreover, this
construction provides all irreducible virtually n-nilpotent g(A)-modules.

We use the term subquotient of a module A all modules of the form B/C where B D C
are submodules of A.

THEOREM 3.11 [3]. The module L(u) is (isomorphic to) an irreducible subquotient
of M(X) if and only if there exists a sequence fB1,...,Bx of positive roots of g(A) and a
sequence of positive integers ny,...,ni such that A\ —pu=n161 + ...+ niPr and

1 .
A+p—nifr—...— ni—lﬁi—l)(h/ji) = in,<ﬁiaﬁi>a i=1,...,k.
A stronger version of this theorem is due to I. Bernstein, I. Gelfand, and S. Gelfand
[4].

The proof requires an additional tool from the Lie theory, the so-called Jantzen filtra-
tion, and this is why I refrain from proving it here.

3.5 Explicit formulas for singular vectors.
Suppose that a A € h* satisfies the equation

<<)\—|—p,a)—i— m<§’o‘>) =0

for just one pair a,m. In this case, there exists a singular vector in M (A)x_ma, and it
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is often useful to have a more or less explicit description of this vector®*. However, this
description almost never exists. Below we discuss a rather enigmatic formula from the
article of Malikov, Feigin, and myself [5].

3.5.1. An example: the case of A}. (See Section 2.2.4.) Consider a Verma
module M (A1, A2) where A\; and A, satisfy the equation kA; + (K — 1) 2 +2k—1—m = 0;
a parametric equation of the line determined by this equation is

Alzm—l—(k—l)t, )\gz—m—l—l—kt.

PROPOSITION 3.12. For X\ as above,

m—4(k— m+(k— m—~+(k— m—(k— m—(k—
' +( 1)tf2 +( 2)tf1 +k=3)t 1 ( 2)tf1 ( Dtv,\ (5)
18 annihilated by e; and es.

REMARK. Strictly speaking, this expression makes sense only if all the exponents
m + jt, |j| < k — 1, are non-negative integers. However, we will be able to extend the
applicability of Proposition 3.12 to all positive integers m, k and all ¢ € C.

LEMMA 1. For any g, h in any Lie algebra the following holds:

_hsg+u;< )hs “I...[lg, R, h], .. .h).

u

Proof of Lemma 1. Induction with respect to s:

s s s S s—u
gh*™t = gh hzhgh+2()h [ [g,hl, R, .. W]
u>1 u

u

= h*Tlg 4+ h¥[g, h] + Z (Z) RSHu [ g, h], R, ... A]

= —
+ ()h “u[...[[g. R, A, ... ]
; T

* Imagine, for example, that some g-module has a singular vector w of type A\. Then w
is annihilated by any element of n; and the action of h on w is determined by A. But is it
possible that gw = 0 for some non-zero g € n_, or even € U(n_)? We know that if M (\)
is irreducible then it is not possible at all, and if M ()) is reducible, then it is possible
only if gw is contained in the maximal proper submodule of M (A). Singular vector in
M(X)x—p, 0 # n € Ay generates a submodule in M ()) isomorphic to M (A —n). Thus, a
knowledge of singular vectors in M () is important for studying all representations of g,
not necessarily Verma modules.
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( >h8+1 “I...[[g,R], R],...h]
)}f“ D1 [[g,h], h],...R]

—
u+1

:h8+1g+u§K) ( )]hs““.. g, h,hl,...h]

u

=htlg+ Y <S Z 1)h$+1_“[...[ (g, h], b, ... R]

u>1

— hs+1g+ (O) hs+1 1 Z
u>1

A similar formula exists for switching ¢° with h":

ght =3 (i) (Dht—“gs—“czw(g, h) (6)

w,v>0

LEMMA 2.

where Quy(g,h) is a polynomial of commutators of g and h (not depending of s and
t). These polynomials satisfy the conditions Quo(g,h) = 1, Quo(g,h) = 0, if u > 0,
Qov(g,h) =0, ifv >0, and, for u,v > 0,

Quo(9.1) = [Quo1(g. 1), +Z() 19219 7] 1) Quro1 (9 ).

w>1
w

These properties determine Quy(g, h) uniquely.

The proof is straightforward (although it requires a lengthy computation); we leave it
to the reader. As well, we leave to the reader the proof of the following corollary of Lemma

2.

COROLLARY 3.13. If[g...,[g,[g,R]]...] =0 and u > pv, then Q, (g,h) = 0. Simi-
—_———
p+1
larly, if [h ... [k, [k, g]]...] =0 and v > qu, then Q. ,(g,h) =0.
————
q+1

It is clear that the polynomial Q. (g, h) has the degree u in g and the degree v in h.
A simple computation (based on Lemma 2) shows that

Qul(g7 h) :[g' © [ga [gah]]]v le(g=h> = [h c [h7 [hvg”]

QQQ(Q: h) = [ [97 [gv h] ]7 h] + 2[97 h]2
A beginning of the formula (5) for u < 2,v < 2 looks as follows

gsht — htgs + Stht_lgs_l[g,h] + (S

2) th™'g*~>[g, g, ]|

ey ) ttonlnl+ (3) ()22 oo} + 2oy + .
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REMARK. It is obvious that the sum in the right hand side of the formula (6) is finite

(u < s,v <t),if s and t are positive integers. It may be less obvious, but is also true that

the sum is finite If s is a positive integer and [g.. ., [g, [g, h]]...] = 0: in this case, according
—_———

p+1
to Corollary 3.13, @ (g,h) = 0 if v > pu; hence, non-zero summands in (6) may appear
only if u < s and v < 2u(< 2s). (Certainly, in this remark you can simultaneously swap
U v, g h)

Our goal is to legalize considering monomials g1 ¢52 ... ¢S where ¢1,92,...,9s are
elements of some Lie algebra (some of which can be the same) and ay, s, ..., as are com-

plex numbers. We will try to transform such an expression to an element of the universal
enveloping algebra by means of formulas like (6). It may work, if the total degree of every
g; in this monomial is a positive integer. Then we can get an expression where all expo-
nents are integers. However, even in this case, we can arrive at monomials with negative
exponents; moreover, it may happen that the result will be rather an infinite series, like
this: > glfl_“l .. .gft_“tRuhmM (91,-..,9¢+) where R, . ,, are commutator
ul,uz,...,utGZZO
polynomials. We hope that all undesirable terms will vanish (because, maybe, of relations
in our Lie algebra), and if it happens, we say that our monomial g7 ¢5? ...¢% “makes
sense”. We will see that this is not impossible, and the monomial (5) is an important

example of a monomial that does make sense.

Proof of Proposition 3.12. The computations below will be based on the following
formulas (which are obvious, but also follow from Lemma 1):

J

o [frataff T hi—ala =0T i =0, [ ST =20 i G =,
il _{fﬁei, it "= e 2agy it 2a ()

We want to prove that 61f{nﬂk_l)tfgmﬂk_mtf{nﬂk_?’)t e f;n_(k_mtf{n_(k_l)tv,\ =0.

For this purpose we take the e; through all the f’s, using the formulas above. There are
the following possibilities. First, our e; can reach safely the right end; in this case we
get an expression ending with e;v) which is zero; done with this possibility. Second, e;

can interact interact with some f{nﬂk_s)t. Then e; turns into hy, 1m+(k_s)t turns into

{'H(k_s)t_l, and there arises a coefficient (m + (k — s)t). After that, the newborn hy
continues moving right, and the following things can happen. First, this hy can interact
once more with the same f," Jr(k_s)t_l; then h; disappears and there arises an additional
factor —(m + (k — s)t — 1) (see formulas (7)). Second, ur h; can interact with some

i ;;(g_s/)t; then again h; disappears and there arises the additional factor £2(m + (k —
s)t)(m + (k — s')t), where the sign is +, if s’ is odd and —, if s’ is even (see formulas

(7) again). Third, our h; can safely reach vy and interact with this vy and produces an
additional factor A;.

Let us combine now all the above computations. What we obtain, is the monomial
ffw(k_l)tfzm_(k_mt . f{n_(k_s)t_l . f;l_(k_Q)tf{n_(k_l)tv)\ times m — (k—s)t and times
the following sum:
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(2k—1)—(s+1)+1

+A1

Thus, the coefficient at f;"TF= Dt gr=(k=2)t - pm=(k=s)i=l  pm=(k=2)t gm=(k=DL,,
in ey fr U DE (k=) pme(k=8)t - pme(k=2)t pm= (b=t 56\ —m+ (k— 1)t +1 which
is zero by our condition on \’s.

Hence e fi" =Dt gt (k=2)t gmet(h=3)t - pm=(k=2)t pm=(k=Dt),  — 0. Similar facts

for eo, and fy, fo are proved similarly. This completes the proof of Proposition 3.12.
We can now formulate the first main result concerning A}.

THEOREM 3.14 [5]. The expression

m—+(k—1 m+(k—2 m+(k—3 m—(k—2 m—(k—
F(m,k:,t) = fi +( )tf2 +( )tfl +( )t . "f2 ( )tfl (k—=1)t

makes sense for any m,k € Z~g and anyt € C. If \y =m—1—(k—1)t, Ao = —m—1+4kt,
then F(m,k,t)vy is a singular vector of M(X) of weight A —m(kay + (k—1)ag). All these
assertions remain true, if we do a swap A1 <> A2, f1 < fo, a1 <> as.

The part of this theorem, which remains to be proved, is the making sense assertion. In
the article cited above, we deduce it from some known constructions in the representation
theory that for given m,k the expression makes sense for infinitely many values of t,
which, certainly, implies the result. Still, it is true that the fact can be proven by direct
computations (making use of Remark after Corollary 3.13). To encourage the reader to
make these direct computations, I show such a computation in the first non-trivial case,
namely for £ = 2:

m m Lm— m m— m m m+t m m—1T—v prm—u
N P L R K P Z (u)( )fl T T T Quo (f2, f1)

v
u,v>0

= 12mf2m+ Z (::L) (m:t) 12m_v én_uqu(f%fl)-

u,v>0

But (7:) =0, if u > m, and Quu(f2, f1) = 0, if v > 2u (see Corollary 3.13), hence if

u < m,v > 2m. Thus, our expression contains f; and fy only to non-negative integral
powers.
For example,

(1—t)t
2

TR = i+ (L=t filfe, fi] — [[f2, f1], fa].
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Finally, consider the case of A satisfying the equation A\; + Ao +2 = 0. In this case,
there should be a singular vector in M (A)x_(a,+a,), and this vector generates a submodule
of M(\) isomorphic to M(\ — (a3 + a3)). But (A — (a1 + a2))(h1) = A\ — (2 —2) = Ay,
and, similarly, (A — (a1 + a2))(h2) = A2. We see that the submodule is isomorphic to the
whole module M (A). Then it contains a singular vector of its own, the latter generates a
submodule which is again isomorphic to M (), and so on. Below, we give explicit formulas
for many singular vectors, and, actually, as it was shown by Malikov [6], our construction
gives all of them.

Let us introduce notations for some elements n_ :

b1 = f1, ba = fo, b3 = [f1,b2], by = —[f1,03], b5 = [fo,b3],

and, by induction,

bar = [f1,b3k—1]; bak+1 = —[f1,b3k], barra = [f2, bak].
(Notice that the projection g(A4) — s[(2) @ C[t, ] takes bzy_1,bax, b3xr1 into e®t ¥ h®
t=k fot k)
These by, b2, b3, ... form a basis in n_, and they satisfy the relations [b;,b;] = a;;b;;

where a;; = 0 or £1 and a;; = j — i mod 3. (This is Exercise 6.12.)
0, if 7 =0 mod 3,
LEMMA. (1) [h1,b;] = ajb; where aj = { —2, if j =1mod 3, [heb;] = —[h1,b;] for
2, if j =2 mod 3;
all j.

(2) [e1,b1] = ha; for j # 1, [ex, f;] = Bjbj—1 where B; =< =2, if j =1 mod 3,

0, if 7 =2 mod 3.
{—2, if 7 =0 mod 3,

{ 2, if 7 =0 mod 3,

0, if j =1 mod 3,
2, if 7 =2 mod 3.

(3) [e2,b2] = ha; for j # 2, [e2,bj] = vjbj_o where v; =

Proof: a direct computation by induction.
THEOREM 3.15. [5]. Let Ay + A2 +2 =10, and let

By, = bibsg—1 + babsr—2 + ... + bag—1b1 — (A1 + 1)bsi.
Then, for any ki, ..., kg,
ququ—1 .. -Bkl'U)\

1S a singular vector in M()\),\,(lir.._Jrkq)(aﬁaQ). Moreover, the operators By commute
with each other, and the singular vectors shown above are linearly independent.

Proof. The relation BBy = By By is checked directly, the linear independence of
the singular vectors shown follows from PBW. For the main statement, it is sufficient to
check that ey Brvy = eaBrvy = 0; it is also checked directly, but let us do it.

e1b1b3k—1 = hibsg—1 + bibsg—1e1 = bgp_1(h1 +2) + b1bsr—_1€1,
e1bsp—1b1 = bag—1h1 + b3p—_1b1e1,

e1bsr, = 2b3k—1 + bsrer,
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and for j # 1,3k — 1,

2bj—1b3k:—j, lfj =1 mod 3
elbijk—j = — ijbgk_j_l, if j=0mod 3 } + bjbgk_jel
2bj—1b3k—j + 2bjb3]€_j_1, if j =2 mod 3

The summation shows that

e1Bron = [bsp—1(h1 +2) + bgp—1h1 — 2(A\1 + 1))bsg—1 + Brei|vy
= ()\1 +24+ A — 2()\1 + 1))b3k_11))\ =0.

Similarly, e Bpvy = 0.

3.5.2. The general case. Now we will generalize the results of Section 3.4.1 to the
case of arbitrary Kac-Moody algebras. The proofs are similar to proofs in Section 3.4.1,
and we will not repeat them.

3.5.2.1. The Weyl group. The notion of the Weyl group is one of the main notions
of the classical Like theory. It is important that it is naturally extended to the Kac-Moody
theory, but we did not need it up to now. Now, it is time to introduce it.

Let A\, € b* and (u, u) # 0. Put

We get a linear transformation s,: h* — h* with the following properties: si =id, s,(p) =

—p, su(A) = A, if (u, A) = 0; in other words, s, is a reflection of h* in the orthogonal
complement {A | (u,\) = 0} of u in the direction of p. Put s; = s,, and let W be the
group of transformations of h* generated by s1,...,s,. This group is called the Weyl group
of g(A).

Notice that s;(a;) = a; — a;j0;. In particular, A = span(ay,...,a,) is W-invariant,
and s;’s are identities on the orthogonal complement of A; thus, W may be regarded as
the group of transformations of A. It is clear also that the action of W preserves the inner
product (, ).

It is true also that the action of W always take roots into roots; this is Exercise 6.13.

ExXAMPLES. (1) The picture below shows the action of the Weyl groups in the sets
of roots of the Lie algebras sl((3),s0(5), and Gs; solid arrows show the action of s;, and
dashed arrows show the action of ss5.

38



Our next example contains a description of the Weyl group for sl(n + 1), which,
certainly may be applied to sl[(3). As to the two other example above, the description of
the Weyl groups and their orbits in the sets of roots is left to the reader.

(2) Let g(A) = sl(n 4+ 1). In this case ai,...,qy, is a basis of h*, and the action of
reflections s; is the following:

—Qy, ifj :ZL
Si(Oéj): Oéj+06i, lfj:Z:l:l,
Qj otherwise.

Expand h* by adding one more basis vector, a,41, put s;(a,4+1) = apy1 for all ¢; then
make a basis change a; = 01 — B2,...,an = Bn — Bnt1,n+1 = B1+ ... + Bny1. The
transformation s; becomes a transposition ; <> (3;+1. Thus, W is the symmetric group
S(n+1).

(3) Let g(A) = Al. Then the action of the Weyl group is

si(ay) = —aq, s1(ag) = 201 + ag,
so(aq) = a1 + 2ax, so(a2) = —ao.

Return to the diagram (A}) in Section 2.3.3; we see that s; and sy are reflections in
the flashed line, in the horizontal and vertical direction respectively. (Similar holds for
g(A) = AZ: see diagram (A43).) As a group, W (for A} and A3, as well, actually, as for
all infinite-dimensional Kac-Moody algebras of rank 2) is a free product of two copies of
7./27; its elements are

S1or2-.-515825815828182...810r2-

Returning to the case of A%, put Sk = s152571 ...51; it is easy to check that
—_——

2k—1
Sk(ar) = —(2k — Dag — (2k — 2)a, Sk(az) = 2kay + (2k — 1)as
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and to deduce from that that S = s, where a = kaj + (k — 1)as. You may wish to repeat
all this with the interchange 1 <> 2.

Similar statements hold for A3: see Exercise 6.14.

We will need also transformations s£:h* — b* given by sf,(A) = s,(\ + p) — p (we
assume, as before, that a p € h* with p(h;) =1 for all i is fixed). It is the reflection in the
direction of p in the (affine) hyperplane parallel to the orthogonal complement to p and
passing through —p. In general, this is not a linear transformation: SZ(O) does not need
to be zero (but sf(—p) = —p).

Below, we will use the notation ¢” for all tranformations :h — . Namely, ¢?(\) =
elp+A) —p.

3.5.2.2. Real and imaginary roots. The statements made in connection with
Example (2) have, actually, far-reaching generalizations. Call a root « of g(A) real, if the
only root proportional to o is —a. Roots, which are not real, are called imaginary. It
is a common knowledge that all roots of finite-dimensional simple (and semisimple) Lie
algebras are real (so the notions of real and imaginary roots do not belong to the classical
Lie theory). But for the Kac-Moody algebras these notions are important. From the root
diagrams for A} and A3, we see that roots on the flashed lines are imaginary and all the
other roots are real. Similar situation occurs for all affine algebras (Section 2.3.3). As
to more general case, I have neither desire nor opportunity to discuss the details (I can
recommend the book “Infinite-dimensional Lie algebras” by Victor Kac [4], especially the
last, 3-rd, edition.) But I provide some important properties of real and imaginary roots
in a proposition below.

PROPOSITION 3.16. (1) If « is an imaginary root of g(A), then ma is also a root for
all non-zero integers m.

(2) Real roots are precisely those from the Weyl group orbits of the simple roots
ai,...,Qy; In particular, all real roots have positive inner squares.

(3) Imaginary roots have non-positive inner squares.

(4) The set of elements of W which are reflections in hyperplanes coincides with the
set of reflections s, for all real roots of a of g(A).

For affine algebras, it is true that every imaginary root has zero inner square, and
they all belong to the hyperplane diay + ... + d,a,. For Al and A2 it is visible from
our diagrams, and, frankly, the proof for all affine algebras is not too hard. As to the

2 —1
-5 2
(see the diagram on the next page). The diagram repeats that on Page 20, but I drop
the dimensions of the root spaces. Also on the diagram below I restrict myself to the
ny-domain (the n_-domain is symmetric).

other Kac-Moody algebras, I will illustrate the proposition for the case of g (

The roots on the axes are a; and as. Their Weyl group orbits of these roots marked
with the letters A and B (the two generators of the Weyl group are the reflection of
all rows and the reflection of all columns). We see that there are only 11 real roots
within the picture: aq, as, a1 + ag, ag +4as, a1 + das, 3a1 + 4as, 3aq + 1las, 4daq +
Sag, 4ag +15ag, 8a + 11ag, 1lag +15as. The inner products (aq, «;) are entries aj;-’m of
the symmetrized Cartan matrix. Thus, for the example above, (a1, 1) = 2, (g, ag) = —1,
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2 2
and <O[2,a2> = 5 From thiS, <k10&1 + kgag, k:loq + k2a2> = 2]{?% — 2k51k2 + gk‘%, and the

5—V5h k 5

V5 LI ++/5
5 ko 5
impression is that for the “hyperbolic” Kac-Moody algebras real roots are rather rare. All

the roots between the two slight lines are imaginary.

root kiaq + koaw is imaginary, if 0.2764 ~ ~ 0.7236. The main

3.5.2.3. Formulas for singular vectors. Take some A\ € h* and some sequence
i1,12,...,in of integers between 1 and n. Put A% = X\, At =57 (A%),... . AN =/ (A1),
The vector N 1A\™ is collinear with o, ; define v, € C by the condition AT —
YmQy,, -

ProPOSITION 3.17.

i f s (8)

is a singular vector in M(X). (We do not state here that the expression above “makes
sense”; we assert only that it is annihilated by each e;.)

Proof is similar to the proof of Proposition 3.12 in the previous section.

k2
0O 0 0 O
0O o0 o0 o0 o
0O o0 o0 o0 o0
0O o0 o0 o0 o0
0O o0 o0 o0 o0
0O 0 0 0 0 O
0O 0 0 0 0 O
0O 0 0 0 0 O
O 0 000 0O
O 00 0O OO0
A9 o o o o 0 0 Y4
0O o0 o0 o0 o0
0O 0 0 0 0 O
0O o0 o0 o0 o0
Bd o o o o B
O O O O
0O 0 0 O
o0 0 o
o o
o 0 0
Ao/ o o /04
BJ o AB
o
B B ky
A

The expression (8) can make sense only it has an integral positive degree, that is,

if —y1a1 — ... —ynvany € A;. This degree is equal to )\N)\B, that is, w?(\) — A\ where
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w = Sy ...S. For an n € Ay, the equation w”(\) — A = 7 determines in h* an empty
set, or an affine plane parallel to the plane of fixed points of w. The most essential
case is when this plane has maximal possible dimension, that is if it is a hyperplane,
that is, if w is a reflection, that is, if w = s, for some real root . But in this case
wP(A) — A is proportional to a. We arrive at the conclusion that in this case we must
have s?(\) — A = ma with a positive integral m, which is the same as the Kac-Kazhdan
m{a, o)

2

THEOREM 3.18 [5]. Let o be a positive real root of g(A), let sq = Sipy ... Si, be a
shortest possible presentation of s, as a product of s;’s, let A € b* satisfy the Kac-Kazhdan
equation s (A\) — A = ma where m is a positive integer. Let v1,...,yn € C be defined as
above. Then

equation A(hq) + p(ha) =

N

iN 11 U>‘

makes sense and is a singular vector in M(\)x—ma-

For imaginary roots « with negative (a, ) the method of [5] gives the following result.
Let a and 8 are two such roots, and let wa = g for some w = s;,...s;, € W. For a
A €n_, we put 4 = A — na and define sequences 71, ...vn;01,...,05 by the formulas:

. . —_—
A=X N =8 (M, NN =50,

]

. ; —
PO =g, ! =80 (W), T = 60
Suppose that we know a polynomial function F,,, on {\ € b* | s2(A) —\ = ma} such that

Fra(N)vy is a singular vector in M (A)x—mqa. Then the following holds:
THEOREM 3.19 [5].
Fib o F Fna ) F £ o

makes sense and is a singular vector in M(w(A + p) — p)w(r+p)—p—mB-

In other words, if we already have some formula for singular vectors for some imaginary
root av with negative (a, a), then we can derive from it formulas for all roots from the W-
orbit of a.

Notice, in conclusion, that Theorem 3.15 also can be generalized at least to Kac-
Moody algebras g(A) from the Subclass 2.1 in Section 2.4, that is, to central extensions
of the algebra gg ® C[t,t™1], where g is a simple finite-dimensional Lie algebra. It is true
(we know it for A1) that all imaginary roots of the algebra g(A) have zero inner squares.

Let {u;} be a basis in go and {u’} be the dual (with respect to the Killing form) basis.
For a positive integer n, set

1oe Y Swe ) o e
0<s<n 1

This is an element of U(n_(A).
Let now A € h(A)* satisfies the equation (A + p)(h,) = 0 (this is a generalization of
the equation A\ + Ay = —2 for A7).
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THEOREM 3.20 [5] For any positive ky, ..., ky,
TkN Cen Tklw\

is a singular vector in M(\); it does not depend on the order of ki, ..., kn.
Notice that we do not state that this formula gives all singular vectors of M ().

For finite-dimensional Kac-Moody algebras the formulas above may be transformed
to a traditional form without negative and non-real exponent. The results do not look at-
tractive. Still for s[(3) there are rather compact formulas for singular vectors (see Exercise
6.15).

With this results, we finish studying representations of Kac-Moody algebras and pass
to the Virasoro algebra.

4. Virasoro algebra and its representations.

Although there is no commonly recognized classification of infinite-dimensional Lie
algebras, there are several important classes of them: limits of classical Lie algebras (several
versions of gl(c0), 0(c0), and so on); Cartan algebras of formal (or polynomial) vector fields;
Kac-Moody algebras; current algebras; algebras of vector fields on manifolds; and some
others. The Virasoro algebra does not belong to any of these classes, and constitutes
a kind os separate class, consisting only of it (although, sometimes there appear some
“higher Virasoro algebras,” but they exist in a kind of shadow of the Virasoro algebra.
This makes the Virasoro algebra an extremely interesting mathematical object, but still
more it is known by its famous applications in Physics (the string theory, the conformal
fields theory, etc.) It should be mentioned that the Virasoro algebra is named after the
outstanding Argentine physicist Miguel Virasoro (1940-2021).

The Virasoro algebra is a central extension of the Witt algebra. So we begin with a
description of the latter.

4.1. The Witt algebra.

4.1.1. Definition.The Witt algebra is a Lie algebra with the basis {e; | i € Z} and
the commutator [e;, e;] = (j —i)e;+;. (Compare with the descriptions of Aj/c and A3/c in
terms of b;’s in Section 3.1.5 and Exercise 6.12.) It may be considered as the Lie algebra

. d
of polynomial vector fields in C* : e; = z**! e Notation: 20itt.
x

PRrROPOSITION 4.1. The Lie algebra 2itt is simple.

Proof. Let I C 20itt be an ideal, and let a non-trivial linear combination g =
Z;V:l mjey; belong to I. The successive commutators [eo, g], [€o, [€0, g]], - - - are D kje,,
n = 1,2,..., and the all belong to I. This shows that all e;; belong to I, and hence I
is spanned by e; | ¢ € A for some A C Z; but since [e;, e;] = (j —i)eiyj, j € A implies
i+ j € Afor all i # j which shows that A =7 or 0).

COROLLARY 4.2. 20itt has no non-trivial finite-dimensional representations.

Indeed, the kernel of a non-zero homomorphism 2itt — gl(n) would have been a
proper ideal of 2itt..
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. d
4.1.2. Witt-modules F,,. The identification of e, with :L‘Z“d— makes Clz,z7}]
x

a Witt-module. If we denote 2/ € Clz,z~!] by f;, then e;f; = jfir;. The other major
example of a representation of 2Jitt is the adjoint representation. If we denote e; considered
as a vector in the 2Uitt-module 2itt by f;, then the module structure will be described by
the formula e; f; = (j — i) fi+;. We obtain a generalization of both these representations, if
we fix two complex numbers, A and p, and define F), as a space with the basis f;,j € Z
and the module structure e;f; = (j +p — A(i + 1)) fi+; (an easy computation shows that

(eiej —ejei) fu = (7 — D)eir;fi = leis €] fi
An analytic description of F), is as follows: the space is the space of “forms”
: L od
otp(z)(dz)~N,p € Cla,z7Y, f; = a#Hi(dz) A e; = x“’ld— (as above). In particular,
x
(C[.CE, 113'71] = Foo, Witt = -Fl,l-

REMARKS. (1) The Witt algebra has a natural Z-grading, dege; = i. The module
Fu is also graded: deg f; = j.
(2) There is a Witt-module isomorphism F ,4+1 — Fx, of degree 1: f; — fii1

See also Exercises 6.16 and 6.17.

4.1.3. Dual, contragredient, and reverse modules. Let M = @, _7 M be a
graded Witt-module (e;(M}y) C My41) with all M}, finite-dimensional. We associate with
M three graded modules: the dual module M* = @, _7(M* ), the contragredient module

M = S EZMk, and the reverse module M° = S eZM 5 in the following way:
(M*)e = (M_p)*, [(M*)p == (M*)jpi] = [(M_p—i — M_g]*;

My, = (My)*, [My, —= M) = [Myy; — My
MP = M_y, [Mg 2 M) = [M_y —5 M_;_].

It is clear that each of these operation repeated twice is the identity, and the composition
of any two of these operations is the third one (dual to contragredient is reverse, etc.).
Let us apply these operations to the modules Fy, of Section 4.1.2.

PropoOSITION 4.3. f;u = F—1—>\,—1—,LL7‘T)\,LL = F—1—>\7M—2>\—17‘F§\)u = f)\’_u+2)\.
Proof. Let {f;} be dual to {f;}: f7(fx) = 6k Then in ]:j\ku,.T,\u,f;M respectively

e (fZRI(f ki) = (Fip)(=€if—k—i) = —(u=k=i=A(i+1)) = ((=1=p)+k—(=1=A)(i+1));

leifi)l(frti) = frile—ifipi) =p+k+i—A—i—1)=(p—2A-1)+k— (-1 - A)(i +1);
ei(for) = —e—ifor=—(p—k = A—i+1))fop—i = (—p+2X) + k= A+ 1)) fop—i.
4.2. Construction of the Virasoro algebra.

The Virasoro algebra is a central extension of the Witt algebra. We have encountered
central extensions before: for example, the Kac-Moody algebra A1 is a central extension
of the Lie algebra s[(2) @ C[t,t~!]. But we avoided considering the general operation of
central extension of Lie algebras. But we cannot avoid it anymore.
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4.2.1. Central extensions. A (one-dimensional) central extension of a Lie algebra
g is a Lie algebra g given with Lie algebra homomorphisms

C—sg—2sg (9)

(C is regarded as a commutative Lie algebra) such that i is one-to-one, p is onto, ker(p) =
i(C) and i(C) is contained in the center of g. There exists a convenient classification of
central extensions of a given Lie algebra. Since p is onto, there exists a linear map (not
necessarily a Lie algebra homomorphism) ¢: g — g such that po ¢ = id. For g,h € g,
[9(g), q(h)] does not need to be equal to q[g, h]; but p([q(g), ¢(h)] — qlg,h]) = [poa(g),po
q(h)] —poqlg,h] = [g,h] — [g, h] = 0. Hence, [q(9),q(h)] — qlg, h] = i(c(g,)) for a unique
¢(g,h). This function c:g x g — C (together with ¢ and the Lie algebra structure of g)
fully determines the central extension (9): for g, heg,

[9,h] = alp(9), p(h)] — i(c(p(g), p(h)])- (10)

(Proof: q[p(g), p(h)] = [gop(g), gop(h)]+i(c(p(9), p(h))); furthermore, since p(gop(§)—g) =

0, z=qop(g) —g€i(C) C center(g) and, similarly, y = gop(h) — h € center(g); hence,
[gop(9),qaop(h)] =g+ = h+y]=I[g h])

We can take formula (10) (for linear maps i, p, q,c with properties listed above) for

the definition of a Lie algebra g, but we need to be sure that the axioms from the definition

of a Lie algebra (anti-commutativity and the Jacobi identity) hold. Translated into the

language of ¢, these mean that

c(g,h) = —c(h, g), c(lg, hl, k) + e([h, k], g) + c([k, g], h) = O;

a bilinear function ¢: g x g — C with these properties is called a cocycle (or a 2-cocycle)
of g.

Thus, a cocycle determines a central extension, and every central extension is deter-
mined by a cocycle. We need only to find out how much a central extension determined
a cocycle. The transition from (7) to ¢ involves a choice of ¢q. For a different choice of ¢,
some ¢’ with po ¢’ =id, we have po (¢’ — q) =0, that is, ¢ —g¢=1iob for a b:g — C. For
the corresponding cocycle ¢/,

iod(p,q)=1[qd'(9),d )] —dlg,h] =lalg) +io(b),q(h)+io(h)]—(q+iob)g,h]
= [Q(g)7Q(h)] - (Q+ 70 b)[97 h] =10 (0(97 h) - b[97 h]),

that is, (g, h) = ¢(g, h) —b[g, h]. Cocycles ¢, ¢ with this property are called cohomologous,
¢ ~ c. The vector space cocycles(g)/ ~ is called the (2-dimensional) cohomology of g and is
denoted as H?(g). The main result of the construction above is a one-to-one correspondence
between the equivalence classes of central extensions of g and H?(g).

REMARKS. (1) The zero cocycle corresponds to the trivial extension g = g ® C (a Lie
algebra isomorphism).

(2) The multiplication of a cocycle by a non-zero constant corresponds to the multipli-
cation of ¢ by the same constant, that is, essentially, does not change the central extension.
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In conclusion, we will explain that the notion of a central extension arises naturally
in the representation theory. A projective representation of a Lie algebra g in a vector
space V' is a linear map p: g — End(V') such that for any g,h € g, p[g, h] — (p(g) o p(h) —
p(h) o p(g) = c(g,h) -id for some c¢(g,h) € C. It is easy to check that this ¢ must be a
cocycle. Moreover, cohomologous cocycles ¢, ¢, ¢/(g,h) = ¢(g,h) — blg, h] correspond to
“equivalent” projective representations p’, p, p’'(g) = p + b(g)-. Thus, (equivalence classes
of) projective representations of g is the same as representations of central extensions of g
with p(i(a)) = a - id.

4.2.2. A deviation: back to the affine algebras.

4.2.2.1. The cocycle. We noticed in Section 3.4 that the simplest infinite-dimensional
Kac-Moody algebras, like Al, are central extensions of “current algebras” go ® C[t,t71],
which may be regarded as polynomials on C* with value in (a finite-dimensional sim-
ple) complex Lie algebra go. The cocycle which gives rise to this central extension is
(gt h®@1t") = 6min.0(g, h), where (, ) is the Killing form on go. A real (and more
analytic) version of this central extension is the following. The current algebra is the Lie
algebra of, say, C*, functions on the circle S! with values in a real simple Lie algebra
go with the commutator [p,¥](0) = [p(0),1(0)], and the cocycle, which determines the

central extension, is ¢(p, 1)) = /Sl (p(0),1(0))do.

4.2.2.2. From central extension of Lie algebras to central extensions of
Lie groups. The construction of central extensions (and the language of cocycles) exists
in many different contexts. In algebra, the central extension of a group G by an Abelian
group A is defined as a group G given with an embedding of A into G as a central subgroup
and with an isomorphism G/A = G.
There exists the following classification of such central extensions. They correspond
to cocycles ¢: G x G — A satisfying the rule ¢(g, hk) = c¢(gh, k). Two cocycles are called
cohomologous, if their difference has the form ¢(g, h) = d(gh) for some function d: G — A.
Central extensions, which correspond to cohomologous cocycles are isomorphic. R
In the Lie theory, the commonly considered situation is the following. G and G
are Lie groups, A is R (or S!') and all homomorphisms are Lie homomorphisms. It is
known that finite-dimensional simple Lie groups, as well as Lie algebras, do not have
non-trivial central extensions; still, there are important examples. The simplest example
is the so called Heisenberg algebra: it is the central extension of the two-dimensional
commutative algebra with basis a,b. It is extended by one more basis element ¢ with
[a,b] = ¢, [c,a] =0,[c,b] = 0.
The correspondence between Lie algebras and Lie groups, which exists in the classical
finite-dimensional theory, exists also for central extensions. In particular, the Lie group,
which corresponds to the Heisenberg algebra, is the group of real unipotent 3 x 3 matrices
1 a ¢
0 1 b]; its center is {a = b = 0} = R; the quotient over the center is the Abelian
0 0 1

group R?.

4.2.2.3. The case of the current algebras. The “Lie group,” which corresponds
to the Lie algebra C°°(S?, gg) is the “current group” C°°(S', Gy), where Gy is the Lie
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group, which corresponds to the Lie algebra gy. So, what we are looking for, must be a
central extension of the current group. But here we arrive at a huge disappointment: there
exists a theorem that states that current groups have no central extension, either by R, or
by S*.

But there exists a way out of this hopeless situation. The central extension (by S%)
of the current group C*(S*, Gy) is a group structure not on C=(S!, Gy) x S*, but rather
on the (infinite-dimensional) manifold, whose projection onto C*°(S*, Gy) is a non-trivial
fibration. Just for fun, I will describe this “manifold” in the case when Gg is SU(2), which
topologically is the sphere S®. The current group, topologically, is C>°(S!, S3). Consider
the set of pairs (f, F), where F: D? — 83 and f = F|g:. We say that (f, F}) ~ (f, F»), if
Fy and F» “cobound” zero volume (certainly, this volume is defined modulo the volume of
S3). Thus, the “manifold” of equivalence classes is fibered over C*°(S!, S3), and the fiber
is S'. The group structure in out extended “manifold” is induced by the group structure
in $3 = SU(2).

4.2.3. Definition of the Virasoro algebra.
PROPOSITION 4.4. (1) The formula

1 ) .
c(ei,ej) = E(S—i,j(f’ )

determines a cocycle of the Witt algebra.

(2) This cocycle is not cohomologous to zero.

Proof. (1) We need to check that c([e;, €;], ex) + c([ej, ex], i) + c([er, €i], €;) = 0, and
we can assume that i+j+k = 0 (otherwise the expression in the left hand side is 04+0+-0).
In this case

12(c(lei, e5]; ex) + cllej, ex], ei) + c([ex ei], ¢5))
= (=) = k) + (k=) (@ — i) + (0 = k)(5° - j)
(G = Dk + (k= )i + (i = k)5%] = [(G = )k + (k = §)i + (i = k)]
(i +J+ k)G — k" + (k= j)i* + (i — k)j*] —0=0.

(2) If c(es,ej) = b([es, e;5]), then c(e—1,e1) = 2b(eg) and c(e_2,e2) = 4b(ep) which is

impossible since c(e_1,e1) =0 and ¢(e_2,€2) = =

5
The central extension of the Witt algebra determined by the cocycle c is called the Vi-
rasoro algebra and is denoted as Uir. Thus, Uit has the basis ..., e_9,e_1,€p,€1,€32,...;2

and the commutator relations
.. 1 ) )
[2,€i] =0, [ei, e5] = (j —i)eirj + E‘S—i,j(JS —Jj)z.

Actually, the cocycle ¢ represents the unique, up to a constant factor, 2-dimensional
cohomology class of 2itt (this is Exercise 6.19).

HiISTORICAL NOTES. The cocycle (proportional to) ¢ first appeared (in the context of
the Lie theory over fields of finite characteristic) in mid-60’s (Block [6]). It was rediscovered
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in 1968 by Israel Gelfand and myself [7]; we, actually computed not just H?2, but the full
cohomology H* of 20itt (not defined in these lectures). Then the Virasoro algebra was
rediscovered in the early 70’s by physicists, for whom it was the algebra of infinitesimal
symmetries in some important quantum field theories, in particular, in the string theory.

1
The factor T (which, actually, makes many formulas better looking) and, which is much

more important, some basic constructions considered below (Fock spaces, vertex operators,
etc.) are contributions of physicists.

4.3. Verma modules over the Virasoro algebra.

4.3.1. Generators and grading. The Virasoro algebra has a natural Z-grading;:
dege; =1, deg z = 0. We split it in our usual way: Uir = n_ & HhEHny where n_ is spanned
by e; with ¢ > 0 and ny is spanned by e; with i < 0 (we accept this strange agreement
to make our notations compatible with those of some key works on representations of the
Virasoro algebra), b is spanned by ey and z, and n, is spanned by e; with i < 0. There
arise Verma modules M () labeled by A\ € h*; we will use for M (\) the notation M (h, c)
where h = A(eg) and ¢ = A(z). The module M(h,c) has a basis e;, ...e; v, i1 < ... <ig
arranged into “levels” M (h,c)k, k > 0:

v level 0

ev level 1

e2v  eqv level 2
eii’v e1eav  esv level 3

ejv e%ezv e1€e3v e%v eqv level 4

It is clear from this diagram that dim M (h, ¢), = p(k), the number of partitions of k. By
the construction of the Verma modules, e_;(v) = 0 for all i > 0 and eg(v) = hv, 2(v) = cv.
The relations [z, ex] = 0, [eg, ex] = kex imply that z acts as the multiplication by ¢ on the
whole module M (h,c) (the physicists would have said, the central charge is ¢) and e acts
on M(h,c)i as the multiplication by h + k.

4.3.2. Examples of reducible Verma modules. As before, it is important to
find out, for which h, ¢ the Verma module M (h,c) is reducible, that is, contains singular
vectors in some M (h,c), with &k > 0. A vector w € M (h, ¢), k > 0 is singular (and then
it is of type (h + k,c)), if and only if e_jv =0, e_ov = 0 (e—; and e_o generate ny). For
relatively small values of k, it is not hard to determine all h, ¢ for which M (h, ¢); contains
a singular vector; for brevity’s sake, we do it here assuming that ¢ = 0.

For k = 1, we observe that e_jeqjv = 2hv, e_seqv = 0; hence, M(h,c); contains a
singular vector if and only if h = 0.

For k = 2, we observe that

e_1e3v =2(2h + 1)e1v, e_se2v = 6hv,
e_1e9v = 3eqv, e_sexv = 4hv;
thus, a singular vector in M (h, ¢)s exists if and only if

2(2h +1) 6h

det [ 3 AR

} = 16h% — 10h = 0,
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that is, if and only if A =0 or g
For k = 3, we find that

e_1e3v = 6(h + 1)etv, e_se3v = 6(3h + 1)eyv,
e_1e1eav = 3e3v + 2(h + 2)eav, e_sereav = (4h + 9)eqv,
e_1e3v = 4eqv, e_oe3v = beqv;

thus, M (h,c)s contains a singular vector if and only if

6(h+1) 0 6(3h + 1)

det 3 2(h+2) 4h+9 | =—-12(3R* —7Th+2) =0,
0 4 5
o . 1
that is, if and only if h =2 or 3"
Further computations (which become more and more involved when k grows) show

1 33
that M (h,0)4 contains singular vectors (only) for h = 1, 3 8

vectors for h = 0,2,7; and M (h,0)g contains singular vector for h = —

M (h,0)5 contains singular

1,108

2477 37 8"

REMARK. An attentive reader could notices that all the values of h, for which the
2

module M (h,0) has a singular vector have the form . Actually, this is true and

will be proved below; see Section 4.8.1.1.

4.3.3. Criterion of reducibility: statement. Below (in Section 4.5), we will prove
the following criterion of reducibility of Verma modules over the Virasoro algebra.
For p,q € Z~q, let ®,, be a curve in the plane C2(h, c¢) with parametric equations

1-p?> 1-pg 1-¢* _,
h = ¢ ¢
Lttt ,

c=6t+13+ 6t L.

Obviously, ®,, = ®,,; if p = ¢ then it is the straight line 24h = (1 — p?)(c — 1); if p # ¢,
then @, is a conic, in R?(h, ¢) a hyperbola.
The curves @, , are presented on a diagram on the next page.
1
The lower branches of hyperbolas ®,, fill densely the domain ¢ < 0,h > ﬂc, the

upper branches are contained in the domain ¢ > 25,h < 0 but their union is nowhere
dense.

THEOREM 4.5. (1) If (h,c) is not contained in any of ®,, then the Verma module
M ((h,c) is irreducible.

(2) If (h,c) € ®,q but is not contained in any P,y with p'q’ < pq, then there is a
singular vector in M (h, c)pq and no singular vectors in M (h,c), with 1 <k < pq.

We will give a proof and a more detailed statement in Section 4.5 below.
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If (h,c) € @pg and ¢ = 0, then t = —Z or t = —= and h = 2p 2? or
Bp—29)° -1 . . _ , _ .
2 . This gives, at least partially, an explanation to the computations above in

this section.
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4.3.4. Modules contragredient to Verma modules. There are several important
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Verma modules.

The module M(h,c) has a significant resemblance to the module M (h,c). First,

dim M (h, ¢), = dim M (h, ¢). Second, M (h,c), = Cv, where ¥(v) = 1, and T is a singular
vector of the type (h,c). Third, if M(h,c) is irreducible, then M (h,c) = M (h,c), and
if M (h,c) is reducible, then M (h,c) is also reducible. But in this last case, the modules

M(h,c) and M (h,c) are sharply different.

PROPOSITION 4.6. (1) The module M (h,c) has no singular vectors not proportional
tov.

(2) The submodule B of M(h,c) generated by U is isomorphic to the (irreducible)
quotient of the module M (h,c) over its maximal submodule L(h,c) # v.

(3) M(h,¢)/B = L(h,c)

Proof. (1) Let f € M(h,c),, k> 0 be asingular vector. Then, for any x € M(h, ¢)x—,,
f(e;x) =e_;f(x) = 0. But M(h,c); is spanned by the sets e;(M (h, c)x_;), which provides
a contradiction.

(2) There exists a Yir-epimorphism M (h,c) — B. Thus B is a quotient of M (h,c). If
B were reducible, it would have contained a singular vector not in Cv, which is impossible
by (1).

(3) follows from (2).

4.4. The Yit-module of semi-infinite forms.

For us, these modules (as well as the whole notion of semi-infinite forms) will serve as
a tool for proving our main result (Theorem 4.5). To establish reducibility or irreducibility
of Verma modules, we need the information about singular vectors in this modules. But
constructing of these vectors turns out to be a very difficult problem (we will discuss some
results in this direction in Section 4.6). Our main idea is find sufficiently many singular
vectors in some other modules, and with their help to approach the problem of reducibility
of Verma modules. These “other modules” will be the modules of semi-infinite forms.

4.4.1. Definition. Let A\, € C. In Section 4.1.2, we considered 2itt- (and Yit-)
modules F),, with a basis {f;}. Now we consider infinite monomials

AN fig N N fiyy oo < gz < J2 < J1, Jjk = —k for almost all k.

For a monomial F' as above, we set deg F' = ), (jx + k). Then the number of monomials
of a given degree k is p(k), the number of partitions k = k1 + ... + kg, k1 > ... > ks for
a partition 7 = {kq,...,ks}, we set

Fr=. . Nfos aNfosqora Ao o AN foogo AN fo1gkg (11)

Finite linear combinations of monomial (of degree k) are called semi-infinite forms (of
degree k), and the (graded) space of semi-infinite forms is denoted as H(\, u). (The
physicists call it the fermionic Fock space). We will define on this space a structure of a
graded Yir-module; this structure (unlike the space H (A, ) itself) will depend on A and

L.
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For i # 0, we define the action of e; on H(\, u) by the formula

il AN Nia Nfi) =D (o Aeifju Ao A fig A fiy) (12)

k=1

(We may need to rearrange the factors to make the sequence of subscripts monotonic; this
may result in a sign change). This works, since e;f;, is proportional to f;, +;, and for
almost all k, ji + ¢ is contained among j,’s. Notice that e;: H(\, u)r — HA, pt) gt

For ¢ = 0 this definition does not work. We take for the definition of the action

of ey the equality ey = 5[6_1,61]. Finally, the action of z is defined by the equality

1
le_a, ea] =4deg+ 52. The following proposition shows that these operators e; and z satisfy
the relations in the Virasoro algebra and provide an additional information on the action
of eg and z.
PROPOSITION 4.7. (1) If neither of i,j,i + j is zero, then [e;,e;] = (j —i)eit;.
(2) [60, ei] = 161

(3) [ei, 2] = 0.
1
(4) [e—;, €] = 2ieo + E(f” —i)z.
1
(5) eq acts in H(\, p)r as multiplication by iu(u —2\—1)+ k.
(6) z acts in H(\, ) as multiplication by —2(6A% + 6\ + 1).

Proof. (1) If we apply e; and then e; to ... A fr, A fi, A fi,, then we apply first
e; to one of the factors (since i # 0) and then e; to one of the factors (since j # 0). If
these factors are different, then the ordering e;, e; is irrelevant. Hence, the application of
ejej — ej — e; consists in successive application of e;e; —eje; = (j —i)eiyj t0 fry, froy-- -
Thus, (eie; —€€i) (- A fog A foo A Sy oo A frog A foa A fry) = (G —0)eirsi (oo A frg A frog A
Jir <o N frg N fro A fiy) (since i+ j # 0).

(2) If i # 0, then [[e_1,e1],€e;] = [e—1,]e1,€ei]] — [e1,|e—1,ei]] = (i — 1)][e—1,ei41] —
(i 4+ Dler,ei—1] = [(1 —1)(1 +2) — (i + 1)(i — 2)]e; = 2ie;; thus the equality [eg, e;] = ie;
also holds.

(3) leis [e—2, ea]] = [[ei, e—2], e2] +[e—2, [ei, e2]] = (—Q—i)[€¢—27<132] +(2—1)[e—2,ei2] =
[(—2—1i)(4—i)—(2—1i)(i+4)]e; = —4die. = 4[ei, ep]. Hence, [e1, 2] = 5[61, le_a, 2] —4eg] = 0.

(4) For i =1 and 2, it is the definition. For i > 2 we use induction:

[e_isei] = %[e—i, le1, ei-1]]
= i—12 ([[e—isea], eima] + [e1, [e—i, €3] ]) = zt;[e—whei—ﬂ + 2;__21 le1, e—1]
_ (2“ “urh 2(,?@'__21)) e+ —1;(;—12) ((G-1)° = (i— 1)z

1
= 2ieq + E(@'?’ —i)z.
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(5) We need to compute

%[6—1» e1](c o A fo(oa) A (sr ) A fostba AN —(sm1)tbay Ao A fo14ky)

where 1 < ks < ... < k; and ks + ... + k; = k. For this, we need to apply to one
factor ey, then apply to one factor (the same or other) ep, take the sum of all the forms
obtained; then do the same in the other order (first e_; and then e;) and to subtract
the second result from the first. As we noted in Proof of (1), if we apply e_; and e; to
different factors, then the order does not matter, so we cancel these terms. Furthermore,
the application of ex1 to f_(s42), f—(s43),--. turns the whole product to zero, as well as
the application of e_1 to f_(,11). What remains, we need to apply successively e_ie; to
Jo(s+nyande_je1—ere_1 = 2e9 t0 fsik,, fo(s—1)4hers- - o1k, - Sincee_re1f_(s41) =
(—=(s+1)+p—2\)(=s+p) f-(s+1) and eo f; = (j + i — A)e;, the whole operation consists
in multiplication by one half of the sum of these coefficients:

(—(s+1)+p—=2N)(=s+pu)/2+(=s+ks+p—AN)+...+(-1+k+pn—A).

1 1
The first of the summands is 5(—(s+1) +u—=2N)(—s+p) = §(p2 =22\ —p(2s—1)4+2As+

s(s+1)); the sum of the other summands is (—s+ks—(s—1)+ks_1+...—1+ki+su—s\ =
s(s+1)
2
(6) The proof is similar to that of (5), but shorter. We need to apply to the same
product as in (5) [e_2, ea] + 4eg = [e_2, e2] + 2[e_1, €1] and then to multiply the result by
2. But since in Fy , [e—2,e2] + 4ep = 0, almost everything cancels, and all we need is to
calculate e _seaf_(s42),e-2e2f_(s41), —2e_1€1f_(s4+1), the add up the coefficients arising,
and the multiply the result by 2. These three coefficients are

1
+ k + sp— sA. The total sum is 5(,u2 — 2\ — p) + k, as was stated.

(—=(s+2)+pu—=3N(=s+p+A),(—(s+1)+pu—3N(—(s=1)+pu+AN),
=2(=(s +1) + p—2X)(=s + p),

and their sum is —6A%2 — 6\ — 1. This completes the proof.

Proposition 4.6 establish a structure of a Uit-module on H(A, p). Notice that the
modules H(A, u) and H(—1 — A\, u — 2\ — 1) are contragredient (because the correspond-
ing modules F are contragredient) and the modules H (A, ) and H(A, —p + 2X + 1) are
isomorphic. The isomorphism is established by the formula

RAN f—3—k3 AN f_g_k2 AN f—l—kl R aEEA f—3—E3 AN f—Z—EQ AN f_l_zl

where (ki1, k2, k3, ...) and (ki1, k2, k3, ...) are dual partitions, k; = #{j | k; > i}.
The fact that this is a module isomorphism, is Exercise 6.19.

4.4.2. Modules of semi-infinite forms and Verma modules. Throughout this
section, we put

1
h = iu(,u — 2\ —1), c = —2(6A* + 61+ 1).

53



Modules H (A, u) and M (h, c) have a lot in common: dim M (h, ¢);, = dim H(\, i)k, and the
action of eg and z on M (h,c) and H(A, ) is the same: multiplication by h + k and c. Let
us call a graded module M = @j>0Mj, irreducible in degrees < m, if for any submodule L
of M, the intersection L N @}, M}, is either &} (M;, or 0.

PROPOSITION 4.8. The module M (h,c) is irreducible if and only if so is H(\, p).
Moreover, the module M (h,c) is irreducible in degrees < m if and only if so is H(\, ).

Proof. Since F = .. .Af_3Af_oAf_1 € H(A, p) is a singular vector of type (h, ¢), there
is a canonical homomorphism ¢: M (h,c) — H(\, 1), o(v) = F. If ¢ is an isomorphism
in degrees < m, then the modules M (h,c) and H(A, u) are isomorphic in degrees < m
and hence these modules are irreducible in degrees < m simultaneously. If ¢ is not an
isomorphism in degrees < m, then 0 # Kero N @ (M (h,c)r # &) oM (h,c), and 0 #
Ime N BT HA, i # S oH(A, 1)k, so neither of the two modules is irreducible in
degrees < m.

With this proposition in mind, to study the reducibility of Verma modules, we will
consider modules of semi-infinite forms. In the next section, we will demonstrate an explicit
construction of singular vectors in many such modules.

4.4.3. Singular vectors in modules of semi-infinite forms. Let s € Z, n € Z~,.
Consider the “expression”

II (o —Ju)

1<u<v<n
Psm = Z I o w0 fin Ao oA f

j1+*~+jn:5+(g) 1<u<v<n

We could have regarded this expression as an element of A™(Fyu) but the sum is infinite.
For example, o1 2 = fi A feo1 +3fi—1 A fiy2 +5fi—2 A fee3 + ... Still, it makes sense to
apply e; to this expression.
PROPOSITION 4.9.
€ipsm =n(u" — A (0 + 1)) Pstin

where ) 5 1
2n n
-1 ) _
In particular, if A\ = — (n 2)(n +2) and p = —n — 8—, then e;psn = 0.
n n

It is not hard to prove this by a direct computation, but we will postpone the proof,
since we will prove a more general statement below (Section 5.2.3).

(n—1)(n+2)
2n
form ®, consider the expression ¥ = Shift_,,x (CID A (gps’n)k> . In other words, we multiply

s—1
Let us assume now that A = — and y = —n — ——. For a semi-infinite
n

® k times by ¢, and then subtract nk from every subscript at every f in the result.
We again obtain a semi-infinite form. (The shift of the indices is necessary to keep the
condition j, = —k for k large.)
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From now on we assume that n is even.

PROPOSITION 4.10. For our choice of A and u, the map ® — W is a Yit-homomorphism

H, 1) = H(A, p+ nk) of degree k(s — @) )

Proof. 1t follows from Proposition 4.9, that e; ((I> A (gpsm)k) = (ei@ A (gpsin)k>; as

to the shift by —nk, it commutes with e;, if we shift p accordingly. Commuting with
z is obvious: z is a multiplication by ¢ = —2(6A% 4+ 6\ + 1) both before and after the
homomorphism. It remains to determine the degree. The contribution of Shift_,;® into
deg U is deg ® (in each summand j, + ¢, j; loses nk and ¢ gains nk). The sum of the

subscripts in gp’;n is k (s + <Z)), the shift by nk results in a subtracting (nk)?, and

nk(nk + 1)

adding the numbers (¢ to jy) contributes . The final result for the degree is

1 2 _22 2
k(s+(g))—(nk)2+nk(n§+ ):k<8+n n n2k+n k+n)

., (S B n2(k:2— 1)) |

n?(k —1)

ProrosiTiON 4.11. If s >
H(A, 1+ nk) is not trivial.

The proof of this we also postpone to Section 5.2.5.

COROLLARY 4.12. If

, then the Wit-homomorphism H(\, pu) —

-1 2 -1
(n—1)(n+ )and“:_n_s ,
2n n

A=—

(k-1
then the module H(\, p 4+ nk) has a singular vector of degree k (s — %)

4.5. Proof of reducibility criterion of Verma modules over %ir.

Using the above results on the module of semi-infinite forms, we can prove the Theorem
4.5. We use the parametric equations

1 — p? 1-— 1 — ¢?
hpq(t) = 4p l+ 2pq + 4q t_la

Cpq(t) = c(t) = 6t + 13 + 6t 1.

of the curve ®,, given in Section 4.4.3.
LEMMA. If

(n—1)(n+2) s—1 n?(k —1) n?

A= — o ,p=(k—1)n— ,p=k,qg=5—
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then )
fipg (£) = Sl = 23 = 1), c(t) = —2(6A% + 61 + 1).

Proof is a direct computation, but we will do it. First,

n 1 1 n 1 1 n  1\°> [1\? n?2 5 1
A= e b m A l= = XA+ D) = (=4 2) —(2) =224 =
2 g AT SRR (A+1) < 2+n> () ;1

12
—2(6A(A+1) +1) = —3n* +13 — 5 =613+ 6t~ = c(t)

2
with t = —%. Next,

-1 2 1
u—2)\—1:(k—1)n—S——f—n-i—l———l:k:n—S+ )
n n n
1 k(k—1) , 2ks—s—1 s*—1
“p(p =22 —1) = - -
e ) 2 > o
On the other hand,
1 —p? 1— 1—¢? K2—1)mn? 1-k 2k(k —1
Py teee 1-d )n” s nk(k—1)
4 2 4 8 2 4
+82—1_S(l€—1)+n2(k—1)2:k(k—l)n2_2k8—3—1+52—1'
2n2 2 8 2 2 2n2

1
Thus, é,u(u — 2\ — 1) = hpy(?).
PROPOSITION 4.13. For any positive integers p and q, and any positive even n, the
2

module M (hpq(t),c(t)), where t = —%, has a singular vector of positive degree < pq.

(k-1 -1 2 -1
Proof. Put k = p, s:q—l—¥, = _(n 2)7(171"' )’ pw=(k—1)mn-— i , and,
2

—1
as above, t = —%. Then p—kn = —n— i , and, by Corollary 4.12, the module H (A, )

n

(k-1

has a singular vector of degree k | s — %) = pq. In virtue of Proposition 4.8 and

the last lemma, this shows that the module

M @”(“ — 2\ —1),-2(6A% + 6\ = 1)) =M (hpq (—%2> e (—%2»

has a singular vector of degree < pq.

Now, let us make use of the Shapovalov form. Similar to the Kac-Moody case, we
define Fj, o.x(x,y) € C for z,y € U(n_), by the formula o(x)yv = F}, .k (z,y)v, where v is
the vacuum vector in M (h,c). This is a symmetric bilinear form on the space U(n_); =
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M(h,c)y of dimension p(k), and the kernel of this form is precisely the intersection of the

maximal submodule of M (h, c) and M (h, c)g. The determinant of the form Fj,  (¢).c, .(t):pq

in M(hpq(t),cpq(t))pq is @ polynomial of ¢; but Proposition 4.13 shows that it is zero for
2

n
t = —— for all even n. Hence, this determinant is zero for all ¢ € C. Now we can formulate

our main technical result.
For ¢ > p > 1, let G, 4 be a polynomial in h and c, of degree 2, if p < ¢, and of degree
1, if p = ¢, such that G, ,(h,c) = 0 is the equation of the curve ®,,.

THEOREM 4.14. (conjectured by Kac [8], proved by Feigin and me [9]).

det Fpep = C [[ [Gpg(h, )P0 (13)
qg>p>1
pq<k

where C' is a non-zero constant.
Obviously, this result implies Theorem 4.5 from Section 4.3.3.

Proof of Theorem consists of two parts: (1) the two sides of (13) have the same degree;
(2) det Fj, ¢ is divisible by the product in the right hand side.

Proof of (1). The matrix of the Shapovalov form has rows and columns labeled by
partitions of k: the entry a,, corresponding to partitions 7 = {k1,...,ks}, p={l1,..., 4}
is determined by the formulae_y, ...e_gseg, ...ex v = a;,v. The degree of the polynomial
arp does not exceed min(s,t), and, precisely as in Section 3.3.4, we find that in the de-
terminant, the only monomial of the highest degree is the product of the diagonal entries.
The degree of a,, is s = ¢(7), the number of parts in the partition 7. Thus, degdet Fj, ..k
(with respect to h and ¢) is >, ¢(7) where P is the set of partitions of k. On the other

TeP(k)
hand,
deg [] [Gpag(h,0)P* 70 = > 2p(k—pg)+ > plk—pg)= > plk—pg).
g>p>1 q>p>1 g=p>1 q>1,p>1
pq<k pa<k pa<k pq<k

Thus, we need to prove a simple combinatorial fact:

Y Ur)y= > pk—pg).

TeP (k) g>1,p>1
pq<k

Probably, it is well known, but I will provide a proof. Let Q(k) be the set of pairs (7, (p, q))
where 7 is a partition of & which contains p at least ¢(> 0) times. For a given partition 7
there are precisely ¢(7) of different (p, ¢) satisfying the condition. (Indeed, let the partition
7 contains «,, parts equal to m. Then the pairs (p,q), such that (7, (p,q)) € Q(k) are
(1,1),...,(1,a01);(2,1),...,(2,2); ..., and the number of such pairs (p, q) is a1 +as+... =
o(T)). On the other hand, for a given (p, q) there are p(k — pq) partitions containing p at
least ¢ times. Thus, the two sides of our projected equality are equal to the number of
elements in Q(k).
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Proof of (2) is based on a lemma:

LEMMA. Let A(t) be an N x N matriz whose entries a;; are infinitely differentiable
functions of t, and let D(t) = det A(t). In, for some tg, rank A(tg) < N — r, then
D®)(tg) =0 for s <r.

Proof of Lemma. For an entry a;; of A, denote as A;; the matrix obtained from A
by removing i-th row and j-th column. Assume (by induction) that for matrices of order
N — 1 the Lemma has been already proved. Obviously,

D'(t) =Y (=1)"*al;(t) det Ay (1),

%]

and the s-th derivative D(*) (t) involves, at most (s—1)-st derivatives of det A;;(t), and these
derivatives are all zeroes at ¢y, since rank A;;(tp) < rank A(tp) < N—r=(N—-1)—(r—1).

Back to (2). Let (h,c) € ®,,4, pq < k. Then M(h,c) contains a Verma submodule
generated by a singular vector of degree pg (or less) and hence the Shapovalov form F}, ..j
has a kernel of dimension at least p(k — pq). Consider a curve v = {7(f)} in the plane
C?(h, c) transverse to ®, , and such that v(0) = (h,c); for the parameter ¢, we can take
Gp,q- By Lemma, det F, ;). is divisible by tP(F=Pa) which certainly means that det FJ, ..,
is divisible by G, 4(h, c)PF~PD | as stated.

4.6. Explicit formula for singular vectors.

4.6.1. Examples and existing results. It follows from the results of previous
section that for h = hy 4(t), ¢ = ¢, 4(t), there exists a unique, up to a non-zero constant
factor, singular vector in M (h,c),,. As a function of ¢, it is a polynomial in ¢,¢~!, and to
make it unique, we normalize it as o, 4(t)v, where

Un_) S opa(t) = 3. Plyd(t)ey, ..ej,, Phyo' =1
Jji1>...23s>1
Jit...+is=pq

For relatively small values of p and ¢, this o, (¢) may be explicitly found:

e2.2(t) = e + 2ueies + (u? — 4)e3 + (6 — 2u)eres + (3u — 6)ey
where u =t +t1;
es1(t) = e + 10teTes + (24t% — 10t)eres + 9t2e3 + (36t — 24t + 6t)ey.
However, no general formula of this kind for o, ,(t) exists. I am aware of several attempts
of writing such a formula. First, I will mention a work of a group of physicists [17],

who found a recursive procedure for finding a formula; but I doubt that it may give even
the results listed above. Second, A. Kent [16] extended to the Virasoro case the formula
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of Feigin-Fuchs-Malikov discussed above (see Sections 3.4). One should also mention a
beautiful work of Benoit and Sent-Aubin [15], a formula for oy 4(%).

4.6.2. The calculation mod e3. Here I present a partial result obtained in mid-
80’s by Feigin and me [12]. Let m:U(n_) — Cley, e2] be the projection of U(n_) onto the
quotient over the ideal generated by es. There is a very explicit formula for wo, 4(1); it
looks especially attractive when ¢ = 1:

Toar1(t) = (] + tea)(ed + tea)(e] + 25tes) ... (eF + (2r — 1)%teq),

To9rs1.1(t) = e1(e3 + 4teg)(e] + 16tes)(e] + 36tes) ... (€3 + (2r)tey).

(compare with the example above). The general formula is this:

[mop.q ()] = 11 (€f + (0 +507") ) (14)

—p<r<p, —q<s<gq
rZp mod 2, s£2q mod 2

where § = \/t. Notice that every factor in this product appears twice, with a possible
exception of e which corresponds to r = s = 0, so extracting the square root of this
product cause no difficulties. For example,

mo32(t) = (eF + (4t + 4+t Hex)(e? +t7tea)(e2 + (4t — 4+t 1)eq),
o3 3(t) = e1(€3 + 4tes) (e + 4t~ Tea)(e3 +4(t+ 2+t 1ea)(e2 +4(t — 2+t~ 1)ea).

The idea of the proof will be explained in Section 4.6.4.

4.6.3. The action in F,,. The article [12] contains another partial formula for
the singular vectors. It describes the action of 0, , in the module Fy,. Namely, let

Op.q(t)f = Ppqfpq- Then

Ppi1,g+1(A 1, t) H H {(n =202 = [(p—20)0~" + (¢ — 25)0]>A
1=0 5=0
+ [(2i(p — i) + p)t "+ p(1 = 25) + q(1 — 26) — 4ij + (25(q — §) + @)t] (1 — 27)
+ (@07 4+ 50) (i + )07 + (j + 1)) x
X ((p—1)0~ '+ (q—NOp—i+1)0 "+ (q—j+1)0)} (15)

This formula may look less attractive than (14), but it is of the same nature: the polynomial
P, (A, p,t) is expressed as of a product of polynomial of degree 2. Again the idea of the
proof is presented in a section below.

4.6.4. The proof of formulas in Sections 4.6.2 and 4.6.3. For some values
of t, the singular vector in M (h(t),c(t))pq is contained in intermediate Verma modules
M (h(t) + p'q’, c(t); this corresponds to intersections of the curve ®, , with curves ®,/
with p'q’ < pq. For these t, o, 4(t) € U(n_) becomes the product of several factors o, ¢ (%),
and we can assume by induction that corresponding wo, (t) and Py, (t) are known. This
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gives a certain amount of values for 7o, , and P, ,, and it is obvious that this amount is
sufficient to fully determine these polynomials. Thus, all we need to do to prove formulas
(14) and (15) is to check that they do not contradict to these product rules which is easy
to do (especially for intersections ®, , N @, , with p’ < p,q¢" < q,p'¢ < pq).

4.6.5. The upper and lower degrees of op, (t). The following statement was
proved by A. Astashkevich and me [18]. I omit here some details of computations, they
all can be found in the article cited.

PROPOSITION 4.15.
Opqa(t) = (g — 1)1PPebt~(T7DP 4 (p— 1)129e2¢(P= 14

where “...” denotes the terms of intermediate degrees in t. Thus, the upper and lower
degrees of op 4(t) int are ¢(p — 1) and —p(q — 1)

Proof. 1t follows from the formula (15) that in Fj ,,
qg—1

Tp,q(t) fo = [(p — )PPV T (p— (p+ DA +po) + ...

v=0

p—1
+Hg=D [ (n—=(g—Dr+ qU)th_(q_l)”] foar
u=0

or, in other words,
Opa(®fo = [(p = DT 1eg 4 (g = VPP O Vrep]

Let us denote upper and lower degrees of a polynomial P in ¢,¢t~1 as dy(P) and d_(P).
The last formula shows that

max  dy (PJ90) > (¢ — 1)p,

Ji+...+is=pq
min d_ (Piv3s) < —(p—1)q.
Jit...+js=pq ( pa ) = Ja

For a positive integer 7, put

. . Jg—1
e(j)=7—1- {—J -
p
MAIN LEMMA. dy (PJ7%) < (jr).
r<s
This lemma is proved by induction by the lexicographical ordering (ji,...,j%) <
(J1,---,7s). We assume that j, > j,4+1 = 1 and deduce the desired inequality from
- | Ju—1, if j, #1 mod p,
e_gv—Oforﬁ—{p, if 7, = 1 mod p,
obvious properties of the function .

using the induction hypothesis and some
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Main Lemma immediately implies the statement concerning the upper and lower de-
grees of 0, ,(t). The computation of the coefficients (p — 1)!?¢ and (¢ — 1)!?” is straight-
forward (and, actually, we will never need it).

4.7. Casimir operators in modules over the Virasoro algebra.

This section contains a short presentation of a note [19] of Feigin and me, where
we tried to describe“Casimir operators” in the case of Virasoro algebra. Our goal was
to pave a way to description of the structure of reducible Verma modules M (h,c). We
managed to describe these structure later (I will present our results about them in Section
4.8 below, but we did not use any seriously the Casimir operators. Our Casimir operator
work remained unfinished and mostly forgotten. Still it had at least one reader, and this
reader was Victor Kac. He used not our results, but our approach to get a more or less
full description of all Casimir operators (not just one as in the Kac-Kazhdan article) over
Kac-Moody algebras [20]. I want to refresh my memories about this work to demonstrate,
how much the Virasoro algebra is different from the Kac-Moody algebras.

4.7.1. Central series. Consider a series

Z eiq ce €i1)\5(60, z)e_jl < €j. (16)
[1l=[J]
where I = {i1,...,i.},J ={j1,- - drfi1 < ... <, 1 < ... <G| =i+ ... Fig, || =
j1+ ...+ jr, and A are entire function of two complex variables.
This series is not element of the universal enveloping algebra U (Uit), but it has the
ability to act in (eg, z)-diagonalizable (that is spanned by common eigenvectors of eq

and z) virtually ni-nilpotent Uir-modules. Such modules are usually (and justly) called
Bernstein-Gelfand-Gelfand modules.

REMARK. If v is a singular vector of the type (h,c), then the operator (16) takes it
into )\g(h, c)v.

The series (16) is called central, if its action commutes with the action of all e; and z.

THEOREM 4.16. (1) If the series (16) is central, then all the functions N} can be
reconstructed from )\g

(2) A function \(h,c) can be )\g for some central series if and only if it satisfies the
following condition:

(%) If (h,c) € ®pq for some p,q € Z>q, then FA(h + pgq,c) = A(h, c).

REMARK. For example, any function A(h, ¢) periodic in h with period 1 satisfies the
condition (). But this example is not interesting for us: we are studying central series
because if the Verma module M (h,c) contains a singular vector of the type (R, c), then
AR, ¢) = A(h, ¢); but it is certainly true that h’ is h 4 a positive integer.

Proof of Theorem 4.16. Let us try to construct, for a given function A(h,c) a central
series with )\g (€0, 2) = A(ep, z). We already know that the action of the series (16) on the
whole module M (h, ¢) is the multiplication by A(h, ¢).

Suppose that we already know the functions A} with |I| = |J| < s. Present the series

(16) as the sum of three sums,
2.t 2t >

[=lJI<s  ||=|=s  [I]=|J|>s
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and consider the action of these three sums on the space M (h, ¢)s with the basis ejv, |I| =
s. The action of the first sum is known to us; let A = || A% (h, ¢)|| be its matrix. The action
of the third sum is zero. The second sum takes e;v € M (h,c)s into

Z es(Nje(h,c)e_ger)v = ZAS(h,C)Sh(h,c; s))esv),
J

|K|=|J|=s

where Ag(h, ¢) is the matrix ||A](h, c)|| and Sh(h, ¢; s) is the matrix of the Shapovalov form
Fp, c.s. We obtain the equation for Ag(h,c):

(A(h,c) + As(h,c))Sh(h,c;s) = A(h,c)E  (FE is the identity matrix). (16)
Thus, if the Shapovalov form is non-degenerate (that is if (h,c) ¢ ®,, with pg < s), then
As(h,c) = (M(h,c)E — A(h,c))Sh(h,c;s) ™ .

This completes the proof of part (1): the functions A, if they exist, are determined
by )\8 in the complement to the curves ®,,, and hence in the whole plane C?(h,c). It
remains to prove that Condition (*) is sufficient (its necessity is obvious) for removing
singularities on these curves. Suppose that (h,c) belongs to only one curve ®,, with
pq < s. Then M(h,c) has a unique proper submodule L = M (h + pq, ¢) with a non-zero
intersection L N M (h,c)s. The operator (16) on this intersection with the multiplication
by A(h + pg,c), and if A(h + pg,c) = A(h,c), then the operator A(h,c)E — A(h,c) is zero
on L N M(h,c)s = Ker(Fp,45), and the equation (17) is solvable on this intersection.
This shows that the function Ag(h,c) can have singularities only in the isolated points of
intersections of curves ®, ,, and hence it has no singularities at all. This completes the
proof of Theorem 3.15.

4.7.2. The relations between (h,c) and (p,q). These relations are two-sided,
and, accordingly, this section will consists of two (closely related) parts. The first part will
be needed in Section 4.8, while the second part will be needed in Sections 4.7.3 and 4.7.4.

First. let us locate, for given h, ¢, let us first locate all pairs p, ¢ € C such that (h,c) €
®,,,. (It is important to notice that now we consider curves ®,, with p, ¢ being not positive
integers, rather arbitrary complex numbers. The result is: excluding the exceptional
cases ¢ = 1,25, the set of these p,q is a union of four lines invariant with respect to the
transformations (p,q) — (—p, —q), (¢,p)) (no wonder: ®,, = ¢, = P_, _, = P, _);
in other words, the four lines form a rhombus invariant with respect to the “diagonals”
p = £q. Calculations:

e for a given c, the equation (with respect to t) of the equation ¢ = 6t + 13 + 6t~! has
c— 13+ /(c—1)(c—25)

two solutions (with the product 1), ¢t = T . Put 6 = \/t; obviously,
0 has 4 values: if # is one of them, then the other 3 are —0,0~ %, —0~1;

e the formula for h gives

—1y _12_0—1_(p9+q9_1)2

e —1—24h
tlg =+ ————.
P+t g ol
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The latter is an equation of a line, actually, of four lines (generically, they all are different,
but they may become a pair of parallel or crossing lines, or even one line), since there are
two possible values for ¢ (that is, t may be replaced by t~1) and two values of the square
root. The slopes of these lines are —t and —t~!. These lines are real, if c is real and either
< 1, or > 25. In the first case the slope is positive, in the second case it is negative. In
the boundary cases ¢ = 1 and ¢ = 25 the four lines become a pair of parallel lines. See the
picture below.

q . N q . N .
N . N . N .
N . N . N .

N , N . N .

N N . N .

N N . N .

N . N .

N . N .

N . . D N ¢ D
N s s N2

A

,

.

.

. .
A .
\ .
.
.
p N N
1 c

=1 c=25

c <

Let us now consider the relation between (h,c) and (p, q) in the “opposite” direction.
Let £ be a line in the plane C?(p, q), not parallel to the p- and q-axes; let ap + 3q = v be
its equation (so, a # 0 and 8 # 0). Then, as we have just seen, all the curves ®,, with
(p,q) € £ have a common point (h,c), and we can find these h and ¢, since we know, from
(17), the equation(s) of the line(s), which contain (h, ¢), and these equations have the form
c—1—24h

. From this,
6t

p+tlg=

B 60+ 13af + 642 _ (3a+2B)(2a +3P)

t= % 50 ¢ = 6t + 13 + 6t~ :6%+13+6

a ap af
and
2 2 —1—6r2 2 _ Gr2 2 _ .2
c—1—24h:7—.6t:6i, soh=2 6y° _6la+p)"—6v" _(a+h) 7"
a? af 2403 2403 40

With these formulas in mind, let us return to central series.

4.7.3. The case of multivalued functions Af,. The construction and results of
the previous section can be applied to the case, when functions )\5 are multivalued, more
precisely, are defined on the same finite branched cover of the plane C2(h, c).

For this branched cover, we take the manifold L of lines in the plane C2(p,q) not
parallel to the axes. The “projection” 7: L — C2(h,c) takes the line £ = {ap + B¢ = v}
(0 +8%) —~* (3o +28) (20 + 3B)

4af ’ af
branched over the lines ¢ = 1 and ¢ = 25. (Indeed, a generic (h,c) has 4 inverse images,
apt fq = +£v; if c =1 or 25, then a = 3 or, accordingly, « = —f3, and the 4 lines become 2
lines.) Let us assume now that the functions \{ are functions on L, which we can consider
as multivalued functions of h and c. For a line £ € L and a point A € C?(p, q), we denote
as Al the line, which passes through A and is parallel to /. The following statement is
proved by a direct computation.

, which is a 4-fold covering

into the point (h,c) = <
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LEMMA. A function A (considered as a function os h and c) satisfies the condition (x)
from Theorem 3.15 if and only if it satisfies the following condition

(xx) if the line ¢ passes through a point (p,q) with integral coordinates, then

A(0) = M(p, —q)?).

Assymetry of this statement with respect to p and ¢ is illusory.

It is not hard to construct a function A, which satisfies this condition: we can take
any function invariant with respect to the transformation of 7: L — L induced by the
transformation (p,q) — (p,q + 2) of C%(p,q). For example, we can take the function
A{p+ Bq=1~}) = exp(wivy). As a function of h and ¢, this function is determined by the
formula

Ah.c) = expm,\/lza— c+ \/(162— 1)(c—25) 24h21 —c (19)

The transformation 7 plays for the Virasoro algebra the role of a Weyl group trans-
formation. Probably, a reasonable analogy of the Weyl group for the Virasoro algebra is
the group of transformations of L in “horizontal” lines ¢ = k with integral k. The previous
construction involves only the transformations, which preserve c; the other transformations
acson c as c — 26 — c.

4.7.4. Application: the composition factors of indecomposable Bernstein-
Gelfand-Gelfand modules. Irreducible sub-quotient-modules of a Bernstein-Gelfand-
Gelfand module M are called composition factors of this module. They all have the form
M(h,c)/L(h,c), where L(h,c) is the maximal submodule of the Verma module M (h, c);
(h, c) is the weight of this composition factor. The invariance property of Casimir operators
shows that the function A of the formula (19) takes equal values on the weights of all
composition factors of an indecomposable Bernstein-Gelfand-Gelfand module.

Consider, for example, the case ¢ = 0. The previous argument show that if one of the
weights of an indecomposable Bernstein-Gelfand-Gelfand module has the form (h,0), then
all of these weights are (h;,0) and the functions

24+ 1 v24+1
exp 2wiT+ and exp 277@'T+ (20)
take equal values for all h = h;. This statement shows that if one of the composition
3m? £
factors has the weight (0,0), then all the other have weights y, 0 |, and if one of
1 2m — 2)(6m — 1
the weights is <§, O), then all the rest have the form (( m )2< mn ),O). And it is

1
true that the singular vectors in the Verma modules M (0,0) and M (g, 0> have precisely

these weights (see the next section). However it does not seem likely that the Casimir
operators provide a complete answer to the question whether two particular weights may
be weights of the composition factors of an indecomposable Bernstein-Gelfand-Gelfand
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module (precisely as in the Kac-Moody case, see Section 3.3.3). For example, the values

175 207
of functions (19) are the same for h = 37 and 327 but it does not seem plausible
175 207
that ETR 0) and g,() are weights of composition factors of the same irreducible

Bernstein-Gelfand-Gelfand module.

4.8. Structure of reducible Verma modules and modules of semi-
infinite forms.

In this Section, I have to restrict myself to a sketchy presentation. Most of the results
were proven by Feigin and myself in [13], and then Astashkevich [14] found a shorter proof
(which covers also the case of Neveau-Schwarz superalgebra.).

4.8.1. Preliminary computations and examples. Consider a pair (h,c). Ac-
cording to Section 7.3, pairs (p, q), for which ®,, > (h, ¢) form 4 lines in the plane C?(p, q).
Take any of these four lines, and denote it as ¢}, .. Roughly, there are three possibilities.
First: ¢ . contains no integral points, or just one integral point, but the product of its
coordinates is not positive. In this case the module M (h,c) is irreducible. Second: ¢, .
contains only one integral point, (p, ¢), with pg > 0. Then M (h, ¢) contains only one proper
submodule, this submodule is generated by a singular vector of degree pq, is isomorphic
to M (h + pq,c), and is irreducible. (By the way, the fact that the module M (h + pg, c)
is irreducible requires a separate proof. The proof is based on the following obvious fact
which will be also useful in the future:

if (h,c) € ®, 4, then (h+pg,c) € P_, 4 (21)

this implies that the line ¢4 ,, . contains an integral point with a negative product of
coordinates, and it cannot contain any other integral points, since it is parallel to ¢, ..)
Third case: ¢ . contains infinitely many integral points; this case deserves a separate
consideration.

To contain infinitely many integral points, a line must have rational slope. Thus, let

r
slope be t = ——, an irreducible fraction. Then the line has the equation rp 4+ sq = m.

S
According ton the computations in the end of Section 4.7.2,

p_ (r+s)?—m? (3T+28)(2r+3s):( 25)< 274).

y =

3+ — 3+ —
4rs TS T S

Now, let us consider examples.

4.8.1.1. First example: h = 0, c = 0. Seemingly the simplest, this one, ac-

tually, is one of the most complicated. For ¢ = 0, we can take in the formulas above
2
m- —1
r =3, = -2 Then h = *, and the line ¢5, . has the equation 3p — 2¢ =

m; for h = 0, we should take m = 1. The line 3p — 2¢ = 1 has integral points
.oy (=5,-8),(-3,-5),(-1,-2),(1,1),(3,4), (5,7),... with the products of coordinates

* By the way, this explains the observation made in Section 4.3.2 (see Remark there)
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1,2; 12,15; 35,40;.... Thus the module M(0,0) has singular vectors of each of these
degrees; does it have more? The singular vector of degree 1 generates a submodule of
M (0,0) isomorphic to M(1,0). The line ¢; ¢ has the equation 3a — 23 = 5; the inte-
gral points are ...(—3,—7),(—1,—-4),(1,-1),(3,2),(5,5), ..., the products of coordinates
are ...,21,4,—1,6,25,.... The negative product —1 is not a degree of a singular vec-
tor; its meaning is that M(1,0) is generated by a singular vector of degree 1 in an-
other Verma module (which we already know: it is M(0,0))*. But singular vectors of
degrees 4,6; 21,25;... have degrees 5,7; 22,26;... in M(0,0) which are not among the
degrees listed above. Go further: ¢5, has the equation 3a — 28 = 7, the products of
coordinates of the integral points on this line are —2; 3,5; 20,24;..., which show that
M(2,0) is generated by a singular vector of degree 2 in another Verma module (it really
is!) and has singular vectors which in M (0,0) have degrees 5,7; 22,26;... — the same
as before. Next: the line /5 has the equation 3o — 28 = 11, the integral points are
., (=3,-10),(=1,-7),(1,-4),(3,-1),(5,2),(7,5),... with the product of coordinates
—4,-3;7,10; 30,35;..., that is, M(5,0) brings to M(0,0) singular vectors of degrees
12,15; 35,40; ..., but we already had these degree. Thus M (0,0) has singular vectors
of degrees 1, 2, 5, 7, 12, 15, 22, 26, 35, 40,...; “half” of them (boldface in the sequence
above) come to M (0,0) along the hyperbolas @, ,. But some of them do not appear as a
result of a deformation. I mean that, for instance, M (0,0) has a singular vector of degree
5, but no other module M (h,c) with (h,c) in some neighborhood of (0,0) has a singular

vector of this degree.
The reader may recognize in numbers 1, 2; 5,7; 12,15;; 22, 26; 35,40 the Euler’s “pen-

3n? +
tagonal numbers”, n n. Let us provide the explanation of this in general form. Let
3n?+n o .
(h,c) = — 0 ). The corresponding line in the plane C(p,q) is 3p — 2¢ = 6n + 1.

This line contains an integral point (2n+1, 1) and all the point, which are obtained from it
by adding a multiple of the vector (3,2). The corresponding integral points with positive
product of coordinates are (2n + 1+ 2k, 1+ 3k) and (—1 — 2k, —2 — 3n — 3k), where k is a

3 2
non-negative integer. The degrees of singular vectors in the module M ( " 2+ n,O) are

product of their coordinates; the types of these singular vectors are

2 2

(Bn;—n (2n 41+ 2%)(1 3k),0) <3(n+2k+1)2 (n+2kz+1),0>,
2 2 1)? 2 1

<3n +n (14 2K)(2+ 30 3]{)70) (3(n+ k+ )2+(n—|— k + ),0>.

. : 3n?n .
A similar computation shows that the module M <T’O) contain singular vectors of

* T have in mind the following fact. If (p, —q) € ¢}, . for some positive integers p, g, then,
according to (21), (h —pq,c) € ®,,. So M (h — pgq, c) contains a singular vector of the type
(h — pq + pq,c) = (h,c), and hence M (h,c) C M(h — pq,c).
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3n2+n

the same type. The scheme of relations between the modules M < , O) and degrees

of their singular vectors is shown below.

M0, 0)9 1 g 5 7 1=2 125 22 26 325 420 51 57
M(1,0)
M(27O)e o—o . . . .
M(5,0)e o—o ° °
M(7,0)e —o - o
M(12,0)e ° . . .
M(15,0)e ° ° ° .

Below, we show a scheme of the singular vectors of the module M (0,0) with their

inter-relations and degrees.
3(n+1)2%2—(n+1)
3n? —n 9

N S

3n?+n |
2 3n+1)2+(n+1)
2

4.8.1.2. Second example: h = 0, c = 1. The line 4y ; has an equation oo — 8 =
0, the integral points are ..., (—2,—2),(—1,-1),(0,0),(1,1),(2,2),..., the products of
coordinates are the squares: 1,4,9,16,25,.... These are the degrees of singular vectors.

The submodules M (k?,1) of M(0,0) do not add any new singular vectors. indeed,
an easy computation shows that the line /32 ; has the equation p — ¢ = 2k. Thus, the
module M (k?,1) has singular vectors of degrees p(p + 2k). The degrees of these vectors
in the module M (0, 1) are k? + p(p + 2k) = (p + k)?, and singular vectors of these degrees
have been already constructed before. Thus, the structure of the module M (0, 1) looks as
shown below:

01 4 9 16 25 36 49
M(0,1)es—s o . . . .
M(1,1)e—e ° ° . ° °
M(4,1)e . . . . o
M(9,1)= . ° . .

M(16,1)e . ° .




4.8.2. Structure of reducible Verma modules: theorems and comments.
The main results of this Section (Theorems 4.18 — 4.21) provide a full classification and
a description of interdependence of singular vectors in all reducible Verma modules over
the Virasoro algebra. All these results can be proved by computations similar to those
in the examples in Section 4.8.1, and I do not return to them here. The reader can find
the details in the article [13] of Feigin and me. A clarification of our proofs and a partial
“superization” of them are contained in the article [14] of A. Astashkevich.

THEOREM 4.17. All submodules of Verma modules over the Virasoro algebra are
generated by singualr vectors.

(To show that this theorem is non-trivial we mention the fact that Verma modules
over affine algebras (of sufficiently big range) are not always generated by singular vectors.
For semi-infinite forms this will be explained in Section 4.8.4. A more radical example:
modules M (h,c) contragredient to the Verma modules over the Virasoro algebra never
contain singular vectors of positive degrees — see Section 4.3.4.)

A sketch of proof of Theorem 4.17 will be given in Section 4.8.3. (A more detailed
versioin is contained in [13].)

4.8.2.1. Introduction. Let h,c € C, and let ¢, . C C?(p,q) be the line defined in
Section 4.8.1. The following result has been already discussed above, but we repeat it here
for the completeness sake.

THEOREM 4.18. (1) If the line ¢y . contains no integral points with positive product
of coordinates, then the module M (h, c) is trreducible. (2) If the line £}, . contains precisely
one integral point with the positive product of coordinates, and this product is m, then
M(h,c) has precisely one proper submodule, this submodule is isomorphic to M (h + m, c)
and s irreducible.

The remaining case is when ¢}, . contains infinitely many integral points. As we already
know, in this case

2 2 3r +25)(2r + 3
po s Br29@rads) g g
4rs rs

the line ¢}, . has the equation rp + s¢ = m. We need to distinguish 6 cases. First, either
¢ < 1 (equivalently, the line ¢} . has a positive slope), or ¢ > 25 (f5 . has a negative
slope. Second, the line ¢}, . may intersect in integral points no coordinate axes (we refer to
this case as to CASE 1), one axis (CASE 2), or both of them (CASE 3). We describe the
structure of the module M (h, c) below in each of these cases.

4.8.2.2. ¢ <1, Case 1. THEOREM 4.19. Let (p1,q1), (p2,92), (P3,93), - - . are integral
points of the line £y . with positive products of coordinates ordered in such a way that
p1g1 < p2q2 < p3q3 < .... (If pigi = p;q; for some ¢ # j, then ¢}, . intersects both axes
in integral points). Let then ¢}, . be the line parallel to ¢, . and passing through the point
(p1,—q1), and (p},q1), (Ps, db), ﬁpg, q3); - - - are integral points of the line £}, . with positive
products of coordinates ordered in a similar way. Then the module M (h,c) has one (up
to a non-zero factor) singular vector of each of the degrees prqx, p1¢1 + pi.q), and no other
singular vectors; the interdependence of the singular vectors is shown on the diagram below

on the previous page.
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/
gh,c h,c

.O

(P35, q5) /\

b1q1 e o D2q2

(pll’q/l) i, o
P1q1 +Ppig; @ ® P1q1 + Pagy

(ph —Q1) b3q3 e ® Diq4

P1q1 + Phgh @ ® g1+ Piq,
N /|

c<1, CASE 1.

Thus, the module M (h,c) contains singular vectors of degrees prqr, k = 1,2,... and
of degrees pi1q1 + plq;,, k =1,2,.... Similarly to the situation described in Section 4.8.1.1,
singular vectors of degrees Pyqy, “arrive” at M (h,c) along the curves ®,, .., while Verma
modules M (h', ") with (h/, ") close, but not equal to (h, ¢) do not contain singular vectors
of degrees p1q1 + P}, q}.-

4.8.2.3. ¢ <1, Case 2 and 3. THEOREM 4.20. Let ¢} . intersect one axis in
an integral point, and let (p1,q1), (p2,42), (P3,q3), - .. be integral points of the line Ly, . with
positive products of coordinates ordered as above. Then the module M (h,c) has one singular
vector of each of the degrees prqy, and no other singular vectors.

If £}, . intersect both azxes in integral points, then all the same, but we consider only
integral points with both coordinates positive.

The interdependence of singular vectors is shown on the diagrams below.

(pa, qa) t0 (2, q2)
® D141
® D2g2

/ l P3qs3

(Pl,(h) ) | )

(p3,q3) c <1, CASEs 2, 3
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4.8.2.4. c > 25, Cases 1-3. THEOREM 4.21. See the diagrams below.

In Case 1, the total amount of singular vectors is odd, but it may be 1 or 4 modulo
4, whence two options for the lower end.

In Case 3, we apply the notation (p;, ¢;) only to the point below the midpoint of the
interval between the two intersections with the axes (including the midpoint itself, if it has

integral coordinates).
0
®

c> 25, CASE 1

(P17 Ch)

(p3,q3) N\ /| or

(78RN P2r-1G26-13# \Ip21gor
P1q1 +p2k 1(]% 1

(%, 45) (p2,q2) \ / s \ /

P1G1 + Py 19541

p2k+1Q2k+1
¢ > 25, CASEsS 2,3 \

(P2, Q2) ® D141
(P4, q4) ® P2(o midpoint
(Pk, qk)

(p:s, QB) TP3Q3

b (P1,q1)
(p1,q1) ® DGk

4.8.2.5. Final remarks. Notice that the cases ¢ < 1 and ¢ > 25 are symmetric to
each other: there is a 1-1 correspondence between embeddings

M(h,c) = M(h',c) and M(1—h',26—c)— M(1—h,26—c)
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In all cases, the module M (h,c) is contained in other Verma module(s) if and only if
the line ¢}, . contains integral point(s) with negative product(s) of coordinates. In Cases 1
and 2, these “bigger” Verma modules correspond to these points, in Case 3 they correspond
to pairs of these points with equal products of coordinates. Therefore, in the case ¢ < 1
the module M(h,c) can be contained in finitely many different Verma modules, while in
the case ¢ > 25 this set of “bigger” Verma modules is either empty, or infinite. These
embracing Verma modules are related by diagrams similar to those in Sections 4.8.2.2 —
4.8.2.4.

4.8.3. Submodules of Verma modules. This Section contains a proof of Theorem
4.17: all submodules of Verma modules over the Virasoro algebra are generated by singular
vectors. We will assume in this proof that the Statements of Theorems 4.18 — 4.20 are true
(see comments in Section 4.8.2).

4.8.3.1. The Shapovalov form of a quotient of a Verma module. Consider
the curve ®,, = {h = h(t) = hy4(t),c = c(t)} < C?*(h,c). For every t, the module
M (h(t),c(t)) contains a singular vector n, ,(t) = o, 4(t)v € M(h(t),c(t))pe (wWe use the
notations of Section 4.6). This o, ,(¢) is a polynomial in ¢,¢~! with values in U(n_), which
has no zeroes and its upper and lower degree are, correspondingly, (p — 1)g and g(p — 1)
(see Proposition 4.15 in Section 4.6.5).

Let M (t) = M(h(t)+pq, c(t)) be the submodule of M (h(t), c(t)) generated by 1, 4(1),
and let L(t) = M (h(t),c(t))/M(t). The Shapovalov form

E(h(t), c(t)): M(h(t), c(t)) = M(h(t), c(t))

*

is homogeneous of degree zero and is zero on M (t) and takes values in L(t)* C M (h(t), c(t))*.
Thus, it induces a non-degenerate symmetric bilinear form

Sp(t) = Sk(t): L(t)r, — (L(t)k)"

The determinant of this form is defined up to a non-zero factor, but we can speak of its
zeroes and their multiplicities. Let dj be the sum of these multiplicities for all ¢ € C. In
Sections 4.8.3.2 snd 4.8.3.3 below, we provide two computations of dj. The first computa-
tion is based on the degrees of polynomials o, 4(t) (see above). The second computation is
done under the assumption that all submodules of the Verma modules M (h, c) are gener-
ated by singular vectors (Theorem 4.17). The results of these two computations will agree,
and we will use it to complete the proofs of Theorems 4.18-4.21.

4.8.3.2. The first computation of dx. We augment the curve ¢, , by ¢ = 0 and
oo. We obtain a rational curve ip’q C CP?. The spaces M (h(t), c(t))x form a trivial p(k)-
dimensional bundle M(h(t),c(t))s over EI\DWI (we denote as p the “partition function”:
p(k) is the number of partitions of k). The subspaces M (h(t) + pq,c(t))k—pg = M(t)x
of M(h(t),c(t)), form a p(k — pq)-dimensional subbundle M (t), of M(h(t),c(t))r. The
fibers of the quotient M (h(t),c(t))r/M(t)y are spaces L(t), and we denote this quotient
as L(t).

Further, we denote the line bundle M(t),, as 7, 4. This line bundle has a section
Np.q(t) without zeroes and with two poles of degrees (p — 1)g and (¢ — 1)p (at ¢ = 0 and
o0). Hence,

Eunpg=—(p-1)g—-(¢-1p=p+q-pg
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It is also obvious that M(t); = p(k — pq)np.q-
The determinant det S7'? form a section of the line bundle

wk (SQAdimﬁkﬁk)*,

P
isomorphic to ®P* P9 . (since L(t)y, is isomorphic to [trivial bundle — p(k — pg)1p.q])-
Hence, Eu(wf ) = 2p(k — pg) Eunp 4. Let Pr(0) and Py(00) be the multiplicities of poles
of the section det S;"? at t = 0 and oco. Then for the total multiplicity dy of zeroes of
det S}’? we have the formula

di, = P(0) + P (0) 4+ 2p(k — pq) Eunp, 4.

It remains to calculate Py (0) and Pj(00). It is not hard.

Near oo, the determinant of the form SP'? may be calculated as the determinant of the
principal minor of the corresponding Shapovalov matrix of the whole M (h(t), ¢(t), which
correspond to the part of the base {e;, ...e; v}, in which e, is present less than p times

1 —p?)t
recall that the er o over oo 1S spanne ePv). Fort — oo ~ — ¢ ~ 0t.
(recall that the fiber of n,. is spanned by ePv). For ¢ O b 0L

The degree of the minor considered is the sum of degrees of diagonal entries, and this sum
is easy to compute, since

(i —p)(1—p?)
2

tv.

1
€_;6;V = |:2’Lh + E(Z?) - 'L)C:| v~

which has degree 1, if i # p, and degree 0, if i = p. Thus Px(c0) is equal to the total
amount of elements not equal to p in all partitions of k, which contain ¢ less than p times.
Py (0) is described in the same way with p <> q. The results of the computations may be
described by the formulas

tP

ZPk(OO)tk = p(t)(1—tP9) <s(t) -1 tp) ,ZPk(O)tk = p(t)(1—tP) (s(t) — 7 iqtq) )

where p(t) = Z p(k)t*, s(t) = Z Zt“”.
k=0

u=1v=1
4.8.3.3. The second computation of dix. Let w; € M (h, 4(t:),c(t;)), i=1,...,N
be all singular vectors of positive degrees < k. For each ¢ we denote by b; the dimension of
the intersection of L(t;); with the submodule of L(¢;) generated by the projection of w;.
Then we put r; = 2, if the pair h, 4(¢;), c(t;) belongs to the Case 3, and r; = 1 otherwise

and define
N

C — Z szz

=1

Our aim is to calculate ¢, on the base of Theorems 4.18 — 4.20 and then to check that c;
coincides with d.
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Denote by W; the submodule of M (h(t;),c(t;)) generated by w;. According to Theo-
rems 4.18 — 4.20, there are two possibilities of mutual disposition of the modules W; and
M(t;) (see Figure below).

-

k

LAY \ \ / 7/ ATTTTTT

In both cases, we must take the dimensions of the submodules of M (h(t;), c(t;)) gener-
ated by singular vectors with the signs indicated (in the case (b) the singular vectors inside
M (t;) make no contribution, but it is convenient for us successively with the signs + and
—). We observe that all the singular vectors, which come to the module M (h, 4(t),c(t))
along the curves @,/ » with p’q’ < pq are taken with the sign +, and all the singular vectors
which come in the similar way in modules M (t) = M (hy 4(t) + pg, c(t) are taken with the
sign —. Furthermore, the coefficient r; is equal to 2 (which may happen only in the case
(b)) if and only if either the singular vector comes at once along two different curves @, ot
it comes along a curve tangent to the curve (hy 4(t), c(t)) or (hy () +pg,c(t)). In addition
to that, we must take with the sign — and some coefficient N(p, q) (not depending on k)
the dimension of M (¢;);. The final result is

k= Y.  apgpk—p'd)— DY By.gplk—pg—p"qd")~N(p,q)p(k—pq), (22)
p'>q,p ¢’ <k p''2>q"
{r",¢'}#{p,q} k"1 <k—pq

where oy, is the number of intersection points of the curves ®,, . and ®, ,, and B, 4 is
the number of intersection points of the curves ®,. . and (h, 4(t) +pg, c(t)) (the tangency
points are regarded as double intersection points). These numbers generically are equal to
4, but they can be 3, 2, or even 1, if one or both “curves” are straight lines, or if the sets
{p,q},{p',q'} (or {p”,¢")}) have non-empty intersection. The result of these computations
is:

tP t?
_ ! I,k _ . _ . pq
Zzap/’q/p(k rq )t - p(t) |:28(t) 1—¢p 1 — 4 2t :| )
k p'q
S5 Burarplk—pa— 9" = () |25(t) - —— — | s
kp“q”p,qp pq—pq =p TR — .
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Hence,

tP 4

Zk;cktk =p()(1—1") |25(t) — T — 757 — 2| = (N(p,) + 2)p(t)t™.

It remains to prove:

LEMMA.
N(p,q) =2(2pq —p—q—1).

Proof. N(p,q) is composed of > r;, where the summation is taken over those i, for
which W; D M(t;) (case (b)), and the doubled number of pairs (p’,q") # (p, q), (g, p) with
p'q’ —pq (these pairs were not excluded from the first sum in formula (22), but the singular
vectors, which come along the corresponding curves @, ,» are contained in M (¢;),, and
thus do not contribute in ¢x). That is, we must draw all the lines through the point (p, q)
not parallel to the axes, and then mark on them all integral points (p’,q") # (£p,+q)
with 0 < p’q’ < pq if the intersection point with the set {xy = 0,2 > 0,y > 0 is integral,
and all such points but one otherwise. Then N(p,q) will be the full number of marked
points. We observe that (i) the lines symmetric in the line x = p bear the equal numbers
of marked points; (ii) the number of marked points on a line ¢ of positive slope is equal to
2a + b — ¢, where a, b, ¢ are the number of integral points in the intersections of £ with the
sets {0 <z <p,0<y<1},{zy=0,2 >0,y >0}, {(—p,—¢q),(—q,—p)} (so b and c are
equal to either 0 or 1). Hence

N(p,q)=22(pp-1)(¢—1)+(p+qg—1)—2]=2(2pg —p—q—1).

We see that dj, = c¢. It follows from this that all submodules of M (h(t),c(t)) are
generated by singular vectors, since a submodule not generated by singular vectors, would
have increased some ci, and the above equation would have been impossible.

4.8.4. Final remark: unitary representations. In conclusion, we mention a
description of all values of h and ¢, for which the irreducible representation L(h,c) of the
Virasoro algebra possesses the structure of a unitary representation. This result belongs to
D. Friedan, Z. Qiu, S. Shenker, P. Goddard, A. Kent, and D. Olive; the relevant reference
is [21].

PROPOSITION 4.22. The irreducible representation of Uit with the highest weight h,c
possesses a structure of a unitary representation if and only if

c=1-—

6 h_((m+1)2k—m€2—1
mim+1)" dm(m +1)

for some k,l, m satisfying the conditions m > 2,1 </l <k < m.

For the proof see the article cited above.
1 1 1 1
E les: c=0,h=——;¢c==-,h=0,—, =.
xamples: ¢ , 51 €= 3 ' 16’ 3
Notice that (h, ¢) given by the formula in Proposition 4.22 belongs to the curve ®,,, ,+1
and the Verma nodule M (h,c) has infinitely many singular vectors.
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4.8.5. Structure of modules of semi-infinite forms. The main goal of this section
(which contains no proofs, proofs can be found in [13]) is to demonstrate that the highly
reducible modules of semi-infinite forms are considerably different from the corresponding
Verma modules. We will use the following notation: L(h,c) is the irreducible quotient of
the Verma module M (h,c).

Let W,, a curve in the plane C2%(\, p) given by the parametric equations

(p+1)0—(qg+1)67t .

A= A(0) = 2, = p1pe(0) = 7

N
N =

A direct computation shows that

—1-=X(0) = )‘(9_1)7 fipq(0) = _qu(g—l)’ ppg(0) —2A(0) —1 = N—p,—q(g_l)a

that is, the transformations (A, u) — —(1 — A\, u —2A — 1), (A, 1) — (=1 — X\, —u) which
take the modules of semi-infinite forms into contragredient or isomorphic modules, map
the curve ¥,, onto ¥, or ¥_,, .. Also

1
—2(6A(0)” + 6A(0) + 1) = c(), S1tpa(6)(11pq(6) = 2M(0) — 1) = Py (#)
where t = —62, so the image of the curve ¥,, with respect to the map C?*(\,pu) —
1
C%(h,c), (\,p) — <§u(u —2X — 1), —2(6)\% + 6 + 1)) is ®,,. Differently: the inverse

image of ®,, = ®,, consists of the curves V,,, ¥, V_, _,,V_, _,.

1
Let us fix A, u € C and corresponding h = §u(u —2XA—1), ¢ = —2(6A\* + 6 + 1).

The set {(a, ) | (A, 1) € Wqop} consists of two lines symmetric to each other with respect
to the diagonal o = 3 (two of the four similar lines for (h,c), see Section 4.8.2). Choose
one of these lines and denote it as £),. The structure of the module H(\, ;1) depends on
the set of integral points on this line.

If the line /), contains no integral points, or only one integral point with a non-
positive product of coordinates, then the module H (A, ) is irreducible and is isomorphic
to M(h,c). If the line ¢, contains only one integral point, (p,q), and p > 0,¢ > 0, then
H(A, 1) is again isomorphic to M (h, c), the latter contains a proper irreducible submodule
isomorphic to M (h+ pq, ¢) with the quotient L(h,c). In the similar case with p < 0,¢ < 0,
the module #H(\, ) is isomorphic to the module M (h,¢c) contragredient to M(h,c). In
this case, the highest weight vector of H(\, ) generates a proper irreducible submodule
isomorphic to L(h,c¢), and the quotient, also irreducible, is isomorphic to M (h + pq, c).

If the line /), contains infinitely many integral points and crosses the both axes in
integral points, then

HA, p) = L(h,c) ® L(h+ p1q1,c) ® L(h + p2g2,¢) . ..

where the notations come from the diagrams in Theorem 4.20 of Section 4.8.2 corresponding
to Case 3. The sum above is infinite, if the slope of /) , is positive, and finite, if the slope
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is negative. If the line /), contains infinitely many integral points, has a positive slope
and crosses at most one of the axes in an integral point, then the possible structure of the
module H (A, ) is presented on the diagrams below.

° o o/ \l:l
o . o><o
. o 0><|:I
o . o><o
. o 0><|:I

The black dots, white dots, and squares on these diagrams mean generators of modules;
two symbols are connected with an oriented sequence of arrows if and only if the second
one is contained in a submodule generated by the first one; the arrows directed upward
(downward) correspond to polynomials in e; with negative (positive) i. Black dots denote
singular vectors; white dots become singular vectors after factorizing over the submodule
generated by singular vectors, squares become singular vectors after second such operation.
The two left diagrams (straight) correspond to the case when the line ¢, intersect one of
the axes in an integral point; the first of them corresponds to the case p; < 0,p2 < 0 (in
the notation of the diagram in Theorem 4.19 of Section 4.8.2), the second one corresponds
to the case p1 > 0,p2 > 0. The right diagram reflects the case when the line ¢y, (of
positive slope) does not cross any axis in integral points. Notice that in all the three cases
the submodule generated by singular vectors is an infinite direct sum of modules which
are irreducible, with one possible exception of an extension of one irreducible module with

[ ]
another one (corresponds to the picture |). After the factorization over this submodule,
[ ]

the singular vectors again generate a direct sum of irreducible modules, and the same after
the second factorization.

If the slope of £, is negative, the structure of the module is similar; the main difference
is that all the diagrams are finite.

5. The overview from the point of view
of Heisenberg algebra.

The main goal of this part is to show that the whole theory of representations of the
Virasoro algebra (and, actually, the affine algebras) may be understood as a projection
of (much simpler) theory of representations of the (infinite-dimensional) Heisenberg alge-
bra. As a by-product of this understanding, we will obtain a more “industrial” way of
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constructing singular vectors in the modules of semi-infinite forms, developed in Section
4.4.3. While the construction in Section 4.4.3 provides some sporadic examples (which was
sufficient for the purposes there), our new way will give explicit formulas for all singular
vectors in these modules.

5.1. The Heisenberg algebra and its canonical representation.

5.1.1. Definitions. Let § be a Lie algebra with the basis consisting of F}, j € Zg
and /I and the commutator relations

[FZ,FJ] — 35_17]41, [FJ, 41] - O
There exists a “canonical” $)-module D which is the space C|z1,z3,...] of polynomials of
infinitely many variables with the action of H described by the formulas

F; =ux; for j >0, F_; for 7 >0, 1=1id.

—J 8xj
With respect to the decomposition ) = n_ & h S ny, n_ = span(Fj,j > 0),ny =
span(Fj,j < 0),h = CI, D may be described either as the Verma module M(\) with

A1) = 1 (and vy = 1) or as a unique irreducible $)-module with 1 acting as id and a
virtually nilpotent action of n_.

5.1.2. The H-module D as a Yirt-module. Put

I o ...
e; = g F.F (+§F%’ if ¢ is even and # 0) , z =1L
r4+s=1

r#0, s#0

Although the sum in the definition of e; is infinite, it may be regarded as a valid operation
in D: for any p € D, there exists a C' € Z such that F;p = 0 for any j < C.

PROPOSITION 5.1. The operators e;, z: D — D equip D with a Uit-module structure.
Proof. Let i +j # 0.

1 1
el =| X An (+34]). 3 RA (+35)
r+s=1t utv=j
(we abbreviate the notations). The term Fy, F;;_,, appears in the last commutator twice:
[FwFi—waFi—i—j—wa—i] = (w - i)FwFiJrj—w, [Fi—i—j—wa—jaFij—w] = (j - w)FwFi+j—w;
i+
2 b

we leave the details to the reader). The case of i + j = 0 is substantially different. Notice
that

the total is (j—7)Fyy Fi4j—w (the formulas will look slightly differently, if w is %, ‘%, or

[FaF_b, FbF_a] = bFaF_a - anF_b.
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Hence (we write the formula for odd j = 2k 4 1, for even j a small modification is needed)

k
le—jre5] = ZF_T ok 1+ZF Flop s 1,ZF2R+1 ot +ZF%+3+1F_S,

s=1 r=1 s=1

I
Mx

[F—TFT—Qk—h FQk—l—l—rFr] + Z[FSF—2]€—S—17 F2k+s+1F—s]
s=1

1
I
—

I
E

((Qk +1-— T)F—rFr + TF2k+1—TFr—2k—1)

ﬁ
I
_

+ Z((Qk + s+ 1)FsF_g — sFopys1F op—s—1).
s=1

In the first of the two sums in the last expression, we replace F'_,.F, by F,.F_,. + rl. We
get

k 2k+1
le_jies] =Y k+1-wF,Fy+ Y (2k+1-u)F,F_, +Z 2k +1+u)F,F_y
u=1 u=k+1 u=1

oo k
+ Y @k+1-wF,F_,+ ) (2k+1-u)ul
u=2k+2 u=1

k+12%—@2k+1), .. -
12 T=2je0+ "5

1,

=) 202k + 1)F,F_, +
u=1

as required. The case of j = 2k is similar.

As a Uir-module, we will denote D as K. If we put degx; = j (so deg F; = j), then
K becomes a graded Uir-module: Ky = span(1), K1 = span(zy), Ko = span(z?, z5), K3 =
span(z3, x1w2,73), and so on; in particular, dim K,, = P(n). This makes K analogous to
M(h,c) and H (A, p); but unlike K, each of these two depends on two complex parameters.
We want now to extend the definition of K to a two-parameter family.

PROPOSITION 5.2. For any a, 8 € C, the operators

{ei+(ai+ﬁ)F‘ for i #0,

€; —

2 1 2
eo—l—ﬁ T fori=0, = (1=1207)1

satisfy the Virasoro commutator relations.

Fyi, ifitj#0,
LEnMA: [e“Fj]:{{) * if@'+j’i0.

Proof of Lemma:

lei, F5] = Y ([, Fj)Fs + Fy[Fy, Fy))

r4+s=1i

1
<+§([F%,Fj]Fé + Fi[Fy, Fj]), if i is even and # O) :
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If i + j = 0, then everything in this sum is 0; if ¢ + j # 0, then one term survives, and it
is jFi-l-j'
Proof of Proposition 5.2. If i # 0,5 # 0,7+ j # 0, then [é;, €] =

le; + (ai + B) Fi,ej + (aj + B)Fy] = lei, e5] + (ag + B)lei, F] — (ai + B)[ey, Fi]
= (J —1)eip; + [J(aj + B) —i(ai+ B)|Fiy;
= (J —d)eir; + (G — ) (ali+j) + B)Firj = (§ — )€t

Ifi= j 75 0, then [go,gj] =

52—042
2

eo + Tej + (aj + B)FJ} = [eo, €] + [eo, (o + B)F;] = je; + j(aj + B)F; = je;.

The case of [¢€;, €] is similar. And the last case: if j # 0, then [e_;, €;] =

le—j + (—aj+ B)F_j,ej + (aj + B)Fj] = le—j, e] + (—aj + B)(aj + B)[F-;, F}]

3 2 2 3
— ey + 2 2‘74I+j(ﬁ2—j2a2)/}1:2j(eo+6 0‘41)+J (1 - 122)1

1 2 12
Ay
12

= ng() + Z.

This completes the proof.

Proposition 5.2 establishes a two parameter family IC(a, ) of Uit-modules. From now
on, we will use the notation e; instead of €;; what used to be e;, corresponds to the case
of a=p=0.

Our next goal is to compare it with the family H (A, 1) of semi-infinite forms modules.

5.1.3. Bosonic-fermionic correspondence. We will use this term, borrowed from
physics, for the following result.

THEOREM 5.3. There exists a (unique up to a non-zero constant factor) Biv-isomorphism

1
K(a, B) = H(A, p) where A = —a — 2 uw=p3-a.

Proof: the whole Section.

To begin, we will construct an action of the Heisenberg algebra in H = H(A, p) (it
will not depend on A and p). The construction is simple:

Fi(oo e Afia A N ) =Y (oo A i A i Ao Ao A f5)

r=1

We are going to prove that [F;, F;] = 0, if i+j # 0 and [F_;, F;] = j-id. Here and below, we
will use the following graphic presentation of semi-infinite monomials: for ... A fj, Afj, Afj,,
we will place, on a number line, black dots at ..., j3,J2,71 and white dots at all other
integers. For example, ... A f_sAf_ 7 Af_s ANf_aNf_1AfoN fi A fs will be presented as
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—8—7—6 —4 -1 0 1
..o o @ e o o

O e O O

o P~

o O

The action of Fj is presented by the diagram —

0+
FiFj and F;F; (i+j # 0) may transform ]3 k pa £ o”into o e

E k+i4+j E kE+i+j

order may be different) or e o J into o . J. The equality F;F; = F}F;

is obvious in the first case and also in the second case, if the dots k£ + ¢ and k + j are both

black or both white. If, say k 4+ ¢ is black and k + j is white, then F};F; cannot transform
k+i+3 k+i+3

]f o J into ]f el J at all, and F;F} can do it in two different ways:

. Each of the compositions

k:k+ig€+j

k k+1
° o
T ° (the

kk+ik+jk+i+j Fj kk+ik+jk+i+y
[ ] [ (] o —F 0 [ [ (]

Fi kk+ik+jk+i+y
— 30 e o °

k k k
[

ot

ik+jk+i+j F; kk+ik+jk+i+] F
o — ® Y —_—

O O

oz
ot

ikt kit
or o [ ]

o

and the results cancel, since the first composition reverses the order of k£ and k + ¢, and
the second one preserves this order.

Now consider the commutator [F_,, F;]. Let, for the beginning, j = 1. The composi-
tions F_1 F; and F1F_1 are presented on the diagram below.

F_F -~ ® ® .0 6,0 O ® ® .0 O ®,°0 O O :--

FiF_4 ---ooooSooo:ooooot)oooo---

(top arrows show the transformation performed first, bottom arrows indicate the second
transformation). We see that F_; F} multiplies the monomial by the number of adjacent
pairs ( @ o ) and FyF_; multiplies the monomial by the number of adjacent pairs (o e ),
or, differently, the first number is the number of transitions (black — white) we make
moving from far left to far right, and the second one is the number of transitions (white —
black). Since we begin with e and end with o, the first number is one more than the second
one, and the difference is 1. Thus, [F_1, Fi| = 1-id (we do not count the possibilities of
applying — and < to different dots; they are the same for F'_1 F} and F;F_1, and cancel
in the difference F_1Fy — F1F_1). At last, for j > 1 we split our sequence of black and
white dots into j sequences according to the residue modulo 7, like this (for j = 3):

Each of the j sparse sequences contributes 1 to [F_;, F;| as above, so [F_;, F}] = j - id.
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Thus, H becomes an $-module, and

aft ol = FR LRI ERF (LN s A foa A for)

21
is an $-isomorphism K — H.

Let us return to the proof. If we fix a and 3, then K acquires a structure of a Uit-

module, and our isomorphism carries this structure into H. It remains to check that the
1
last structure is the same as that of H(\, u) with A = —a — g H= B — a.

First, the action of z with respect to the two structures is the same:

2 2
= —-12a%2+3—-2=1—-12a°.

1 1
1202 12X —2=—12 (A + 1) —2 = —12 (—a— —) (—a+ —) —2

Next, we compare the actions of e; for the two structures. It would be sufficient to do it,
say, for es and e_1, since these two generate Uir, but we will do it for an arbitrary odd

1
(the case of an even i is not much different, but we prefer to avoid the coefficients 3 and

the squares of F’s). For the beginning, assume that o = = 0. Then, with respect to
the structure coming from K, e, = Y F.Fs (r+s =14, > s, 7 # 0, s # 0). This e; can

transform ]f g ¢ if sk g_ " into lg g ¢ _lo— sk ;l_ " in two different ways:

l+s k+r
O

o+
L:u

k +r F, k{l{l+sk+r
[ () — O © [ [}
k

+ 7 Fygr—o kK0 0+s k+7r
O e o O [ ] [ ]

l+s k
[}
/!

S

k ¢ 14
oo )
kKl /l+sk+rFos—r k
ee O o

o+
[ e N
o

(the order of operators in the second line may be different), and the results cancel because

of different signs.
k41

It remains to evaluate the amount of transformations e — o  arising in the action
of e;. We will need the following simple combinatorial observation. Consider the diagram
of a monomial as above,

—8—7—6-5-4-3— 2
. (e)

- @ [ ] [ ] ©) ® ©)

o —

0
°

o

2 3 4 5 6 7
o o € 0 0O O ---

(we mark black and white dots as well) and draw a vertical line between the dots marked
as j — 1 and j. Let w be the number of white dots to the left of the vertical line and b
be the number of black dots to the right of vertical line. Then j = w — b (on the picture,
1 =3 —2). The fact is obvious (the proof is left to the reader). Now take the diagram

of our monomial and draw a vertical line through the midpoint of the interval between

]oC and ka. The combination F,.Fs with s < r,r+ s = i, r # 0, s # 0 which take

]f into K 3t correspond to white dots to the left of the vertical line (then this white point
has the label k + s) and to black dots to the right of the vertical line (then the black dot
has the label k 4 i — s); see the diagram below.
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k k—+1 k k—+1

N Y RN P

k k—+1 k k—+1
O‘}?S/O o ° o Fs e

Let w be the number of white points to the left of vertical line (in the initial diagram),

b be the number of black points to the right of vertical line, and ¢ be the number of black

k k
points between e and 3t (all in the initial diagram). The transformation on the left of

the diagram above produce the sign (—1)9, the transformation on the right produce the sign

: 11
(—1)97L. Thus, the total coefficient at ]f — K St e;is (—1)%(w—b) = (—1)4 (k + 2 —iZ_ )

1
=(-1D)¥(pu+k—Ai+1)) with u=0, A= —g» a8 it should be for a = 8 = 0.
For arbitrary « and 3, e; acquires the summand («i+ ) F; which leads to the addition
,+ 1
of az + 3 to k’+%. But

41 . 1\ . .
k+ZT+ozz+B:B—oz+k+ (044—5) (i+1)=p+k—-Ai+1)
1 .
where A = —a — 2 1= [ — «, as it should be.
This completes the proof of Theorem.
5.2. Vertex operators.

5.2.1. The definition. Vertex operators Bi(a):H — H, a € C,k € Z are defined
by the formula

i Bk(oz)tk — exp (Z aiiti) exp (Z Oziiti) |

k=—o0 >0 1<0

In other words,

= 1 1
> Bila)th = (1 +aFit+ Sa(F + aF2)t? + 50(2F5 + 3aF Py + PFHE + .. ) :

k=—o0

1 1
(1 —aF t7t ¢ ia(—F_g +aF? )t + 604(—2]7_3 +3aF | F o —?F3 )t 4 .. )

So, for example,

1
Bo(a) =1+ a*FF_ | + Za?(F2 + aF)(—F_y +aF?)

1
+ %oﬂ(wg +3aF Fy + o®F))(—2F 3+ 3aF 1 F_5 — o*F ) + ...,

1 1
Bi(a) = aF] — 5oﬂ(F2 +aFHF 4 + E042(2F3 +3aF Fy + ?F)(~F_5 +aF?)) + ...
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The following properties of vertex operators are obvious:
id, if k=0,
0, iftk#0.
(2) For any a € C, By(a)v = v where v € H denotes the vacuum vector.
(3) The operators B(«), B_r(«) are taken into each other by the anti-isomorphism
F, —~ —F_,.
Now we prove the key property of the vertex operators.
PROPOSITION 5.5: [F;, Bi(a)] = aBgti(a).
Proof. Obviously, {Fi,exp al;,jtj} =0, if j # —i. Also, [F;, F*,] = —ikF'fi_l (=4, if

k =1). Hence,

PROPOSITION 5.4. (1) By(0) = {

aF[Fy, FEJR X ok (—i) kPR

{Fi,exp “F:_t} . i[k,(f)k _

k=1 k=1 K(—)*
o k—1ppk-1,—(k—1)i —1
. Q" T , aF_;t
= t_l ! = t_l —7» .
° ;; I R -
Therefore,
= = aF;tt aF;t!
> [FiBe(@)th = |Fi, Y Bi(a)t"| = |Fiexp [ Y — exp | Y —
k=—00 k=—o0 7>0 J 7<0 J

Using this proposition, we can give an axiomatic description of vertex operators.

PROPOSITION 5.6. Let o € C. Assume that for each k € 7Z a C-linear operator
Cx:H — H of degree k is given such that Cy(v) = v and [F;,Cx] = aCxy;. Then Cp =
Bk(a)

Proof. Let Dy = Cy — Bi(a). We need to prove that Dy = 0. It follows from our
assumptions and Proposition 5.11 that Dy(v) = 0 and [F;, Di| = aDjy;.

If & = 0, then the last equality takes the form [F;, Di] = 0, and F;Dxv = Dy F;vo =0
for i < 0 (since Fyv = 0 for ¢ < 0). Hence, Dy (v) = 0 for all k # 0; for £k = 0 this is also
true by assumption. Therefore, Dy F;, ... F; v = F;, ... F; Dyv = 0 for all k,iq,...,17,
that is, Dy = 0.

If a # 0, then Dy, = é[Fk, Dy, so it is sufficient to prove that Dy = 0. Let Dg(z) =0

for degx < j and Do(F}, Fj, ... F;.v) # 0 for some positive ji,..., 7, with j1 +...+j, =j
(j > 0 since Fy(v) # 0). Then F_;Do(Fjy, ... Fj;.v) # 0 for some i > 0.
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We will use the following computation:

F,DyF, = F,F,Dy — oF, D,
= FyF,Dy — aD,F, — a*D, 4,
= F,F,Dy — FsDyF, + DyF,
—aFyv Do+ aDoFyyy.

If we put u = —i, v = j; and apply the both sides of the last equality to Fj, ... F} v, then
on the left hand side we will get F_;Do(F}, ... F;v) # 0, and on the right hand side we
will apply Dg to vectors of degrees, respectlvely, —J1,7J—%47J—J1—1%7J—J1,] — 1, all less
than j; so, on the right hand side we will get 0. This completes the proof.

5.2.2. The vertex operators and the forms ¢y, ,,. In Section 4.4.3, we considered

the forms ( )
V(Ji,..-y]
Phn = > S T A A
V(1,...,n)
g1t tin=k+(%)
j1<'--<jn

and also a linear map
Shift_,, o (Apkn):H — H. (23)
Now we are going to prove
PROPOSITION 5.7. For every k € Z, n € Z~q, the mapping (23) coincides with By(n).

Proof. In view of Proposition 5.6, we need to check two things: (a) the mapping
(23) with k& = 0 takes v into v, and (b) F;¢k n = n@k+in. The assertion (a) is obvious:
won = foNfi AN... A fn_1+ terms containing f; with negative j, and

Shift_p, (... A foa AfZ)A(foANFIA oA faz1)) = A foa A for.

As to (2),
]1, e ,j
Fi@k,n = Z TL Zf]l /\fjs+1/\/\f]n
J1tAin=k+(5 )
j1<~~~<.jn
n .
Z V(J1,--sls —Gyeneyin)
2 V(1,..n) Ji Jins
J1tetin=k+i+(5)

and all we need to check is > V(j1,..-,Js — &y .-+ Jn) = nV(j1,---,Jn)- Let > V(j1,...,
s=1 s=1

-2
js—i,...,jn) = P(i). Then P(i) = P(O)+iP’(0)+%P”(0)+. . but P(0) = nV(j1, . .., jn)
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and all the derivatives P’(0), P”(0),... are skew-symmetric polynomials of ji,...,j, of

degree < degV = Z , hence they all are zero.

5.2.3. Explicit formula for vertex operators. For a partition o = {s1,...,8,},$1 >
.. > 8y >0, we put

fo=iifoua A fougsy Ao AN fotgsyy Jo={ ., —u—1,—u+8y,...,—1+ 51}

and

h(o) = 11 (' — ")

J'€Je3" Ederd">5"

(the last quantity is known as the dimension of the irreducible representation of S(u)
corresponding to the partition o).

PROPOSITION 5.8.

where

B Y At P | S A
ba = (=1 |U|]/€‘]"’-7// Jr.g' >3 . j'edr,j"&ds,3'>5" 24
(@) ={=1) h(o) h(T) (24)

Proof. Tt is seen from the original definition of Bj(«) that for fixed o and 7, the
function b, (o, 7) is a polynomial in a. Therefore, it is sufficient to prove the formula for
sufficiently large integral a. By Proposition 5.7, the coefficient b, (o, ) for large integral
a can be found in the following way. We shift the set J, by « to the right (that is, add
a to each element of J;), then remove J, from the resulting set (if « is large enough, the
shifted set contains .J,) and get a final set J = {j1,...,7,}. The coefficient in question is
equal to

(_1)NV(j1, e ,jr),
V(,...,r)

where N is the number of pairs 7', j” such that 7' € J,5" € J,,j < j7”. It is easy to see
that N = |o|, r = |a|. Hence

11 (' ="

’/"// JU’ '/_a7‘//_a€JT;j/>j//
bo(o.7) = (—1)° 2 FJoij g
aloy7) = (=1) V(1,...,«)

After cancellations, this formula becomes formula (24).
5.2.4. Commutators with e;. Let A\, u € C.
PRrROPOSITION 5.9. The operators

Bi(a): H(A\, 1) = H 1+ «)
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commute with e; according to the following rule:

afe—1) (a—1)(a+2).
2 2

le;, Bk(a)] = |ap+ k + i—a(i+ 1)A| Brti(a)

Proof. If « is a positive integer n, then this proposition is the same as Proposition 4.8
in Section 4.4.3 (the proof of which was postponed there). On the other hand, since the
difference between the left hand side and the right hand side of the equality is on operator
with coefficients polynomial in «, it is sufficient to prove it for positive integral «. Thus,
what we need to prove is e;pr , = BYg4in Where

nn—1) (n—1)(n +2)

B = k
ny+ K+ 5 9

n(i+ 1),

and we can restrict ourselves to the case i # 0. In turn, the equality we are proving means
precisely that

n

s=1
provided that j; +...+j, =k + i+ (2>

We already know that > V(j1,...,Js— 4., Jn) = nV(Jj1,-..,jn) (see Section 5.3.2).

Now we will need one more ;elation of this kind.
LEMMA.

ijsvul,...,js iyeosin) = [(Zy)— ()

Proof of Lemma. Let Q(i) be the left hand side of the equality in Lemma. Then

V(i1 n)-

2
: , i
Qi) = Q(0) +iQ'(0) + FQ"(0) +
But all the derivatives of @ starting from Q”(0) are skew-symmetric polynomials in

J1s---,Jn of degree less than (Z),so they equal 0. Thus,
: : ~. 0 :
Q(i) = Q(0) +jQ'(0 ng 31,...,yn>—zZysﬁvm,...,;n)
s=1 §
= (Z]S) V(.jla"'7jn) —ZdegVV(jl,,jn)
s=1

() )
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Back to Proposition.

s=1

= (,LL—Z—)\<2+1))V(]1,7.]S _Zaajn) +238V(3177]S _lvujn)
=1 s=1

= [n(u—i—)\(z’—}—l))—l- (Z:J> —Z(Z>
- {n(ﬂ—i—)\(i+1))+k+i+ (Z) —z(Z)] V(i -sdn) = B-V(i1, -5 dn):

V)

V(jl? cee v]n)

COROLLARY 5.10. By(a): H(A, p) = H(\, p+ ) is a Vic-homomorphism if and only

(a—1)(a+2) __a2+k—1
2a S o '

A=—

If we believe that this homomorphism is not 0 at v (see Proposition 4.10 of Section

4.4.3), then we have an (explicit) construction of a singular vector if degree k for a module
2

a
of semi-infinite forms with h and ¢ equal to h 1(t) and cg 1(¢) with ¢t = — 5 that is, for
an arbitrary point of the curve ®; ; (in the notation of Section 4.5).

But what about ®,, with arbitrary p,¢? In Section 4.4.2 we considered a homomor-
phism H (A, ) = H(\, u+ pn) (we have to change slightly the notations of Section 4.4.2)

2(p—1
of degree pq, ¢ = k — % defined as f ~ Shift_,,, <f A ( ﬁn)> and proved that it
—1 2 k—1
is a *Yir-homomorphism, if A = — (n 2)(n + ), u = —n — ——. This gives a singular
n n

712

vector of degree pg in the module H (A, pn+ pn) for which h = hyq(t), ¢ = cpq(t), t = 5

Is it possible to generalize this construction to the case when n is replaced by a complex
number? At least, not directly: the homomorphism considered is the composition

Bi—(p-1yn2(n) ... By—p2(n)By(n)

and this does not make sense for a non-integral n (well, for a non-integral n?). What we
need, is a “composition” By, () ... By, (o) with complex ki, ..., k,, well, it is desirable
that the sum k1 + ... + k, be integral: this is the degree of our composition. We will
discuss these “composition vertex operators” and their applications to singular vectors in
subsequent sections. But for the beginning, we will prove some things (not too much)
concerning the compositions and the commutators of vertex operators.

5.2.4. Compositions of vertex operators. PROPOSITION 5.11. For o, 3 € C,
oo
> B_x(B)Br(a)thv = (1 — )" v;
k=0
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i other words,

B_+(8)Br(a)v = af(af —1) k' (afB —k+ 1)1).

Proof. We must prove that the degree 0 component of the series

(2 Bkw’;) ( 5 Bk<a>t'f)v

k=—o00 k=—oc0

is equal to (1 — (t1/t2))*?v. Write out this series in full length:

(expz ﬁlzz'té expz 51:1753 expz a}?til expz af‘;itzi) y

>0 1<0 >0 <0

Of these four factors, the last one can be dropped, since F;v = 0 for ¢ < 0. Also, the first
factor can be dropped, since F; applied to anything cannot have a component of degree 0.
Thus, we are interested in the degree 0 component of the series

ﬁFth Fltz 68 t= (& 0 sFistis
(expz 1 QGXPZai I)UZH<Z (_)2! ) (Zaiss!1>v

1<0 >0 i=1 \s=0 s=0

Since, obviously, [F?*,, Ff]v = i®slv, this is

13 G0 e g = TS MO, T (e 22002,
i=1 s=0 _22 2 o i=1 s=0 (_i)SS! i—1 —1

i af
= (expaﬁZ@)v:<expaﬁlog<1—%)>v:(l—i—;) .
i—1

COROLLARY 5.12. If af is a positive integer, then B_(B)Bx(a)v =0 for k > af.

Proposition 5.11 has the following generalization.

PrRoPOSITION 5.13. For aq,...,a, € C,
t. Qi
Z tllﬂt’:Lanl(Oq)Bkn(an)U:H<1_t_]) 0.

It is proved in precisely the same way as Proposition 5.11.
Next result is similar to Proposition 5.6 of Section 5.2.1.

PROPOSITION 5.14. Let o, € C. Assume that for every k,¢ € 7Z an operator
Cor:H — H is given such that

Y Copptfo=(1-0)*v and [F;,Cox] = BCryik + aCriri

k=—oc0
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is given. Then Cy i = By(8)Br(w).
The proof is similar to that of proof of Proposition 5.6 (the reference to Proposition
5.5 should be replaced by a reference to Proposition 5.11 above).

Proposition 5.14 may be used to obtain some formulas connecting different vertex
operators. Here is a statement from our the work of Feigin; maybe, more can be obtained
in a similar way.

PROPOSITION 5.15. If a8 € Z>, then
Bi—ap(B)Br(a) = (=1)* By_ap (@) Be(B).
Besides this, if aff = —1, then
By1(8)Br(a) + Brt1(a)Be(8) = Brreva(a+ 5),
and if af = —2, then

(k+1)8 - ({+ 1a

"y By yep2(a+ B).

Byy2(B8)Br(a) — Bry2(a)Be(B) =

Proof. Tt is sufficient to verify that (for @ and § fixed) the operators

(=1)*’ By—ap (@) Br+ap(B), if aff € Zxo,
Cop = — Byt1(a)Be—1(8) + Bite(a + B), if aff = —
By i2(a)Be—a(a) + bt 1)5 4_— g . 1)aBk+z(a +8), ifaf=-

satisfy the assumption of Proposition 5.14. The verification is straightforward; for example,
if af € Zzo,

Z C_pxthv = (—1)*° Z Bi—ap(a)B_grap(B)t"v

k=—oc0 k=—o0

= (-1)*" Z Bi—ap(@) B_ptap(B)t*v

k=—00

af
= (-1)*" Z B () B (Bt~ = (—1)*F (1 —~ %) v=(1-1t)v.

5.2.5. Application: proof of Proposition 4.11. We postponed the proof of this

Proposition 4.11 in Section 4.4.3. We can prove it now.
2(k—1
%, then Bv # 0, where

We must prove that if n is an even integer and s >
B = Bs—(k—l)n2 (TL) ce Bs_nz (n)Bs(n)
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Proposition 5.13 provides a convenient formula for compositions of vertex operators By, (),
but it works only in the case k1 + ...+ k, = 0, while this sum for our composition is equal
to

(s—(k—=1nH) 4+ (s — (k—1)n*)(s— (k—2)n*) + ...+ (s —n?) + s = kt,

n?(k —1)

where ¢ = s — . We will obtain a composition of vertex operators, which satisfies

our condition, if we subtract ¢ from every subscript:
By = B_ n?(k—1) (n)B_ n?(k—3) (n) s BnQ(kf?)) (n)an(kfl) (n)
2 2 2 2

According to Proposition 5.13, Bov = Cwv, where C is the coefficient of the term with

_ n2(k-1)
2

_ n2(k—3) n2(k—1) t; n’
ty ty * ...t ? in the product H (1 - t_) , which is the same as the

i<j J
coefficient of the term with (¢1 ... ;)™ *=1 in the product [Tic;(t —t;)™". This coefficient
kn?/2)!
is known to be equal to % (this is the famous Dyson'’s identity, see [22]), and hence
n?/2)!
is not zero.
Now, let us show that Byv can be obtained from Bv by means of the operators F_;.

First notice that the expression

By (k—1)n2—m, () ... Bs—n2—my_, (n) Bs—m, (1)

with non-negative integers my, ..., my is symmetric with respect to mq, ..., my: this fol-
lows from Proposition 5.15. Next, let us apply (F_;)¥ to Bv. If an F_, reaches v, we get 0
(since Fyv = 0 for i < 0); thus, every factor F__,v has to form a commutator with some B’s.
If all these B’s are different, the B becomes By. Thus, (F_;)*Bv = nk!- Byv + ..., where
“...” consists of terms obtained by applying F'_; to repeating B. Each of these terms cor-
respond to partitions o = (01,...,0,) of k, 01 > 09> ... >0, and oy +09+...+ 0, = k:
we subtract o1/, ...,0.f from subscripts at r different B’s and multiply the composition
arising by n”. By the symmetry c'iescribed above, the result does not depend on the choice

of these B’s; since there are ' choices, the final result will be n”

( ] 'BU?J, where
n—r)!

(n—r)!
B? = Bsf(kfl)nszcrl (TL) S Bsf(kfr)anfar (n)Bsf(kfrfl)n2 (n) ... B (TL)

Next, we apply to Bv the composition F_o7(F_.;)*~2 and subtract the result, with an
appropriate coefficient, from what we already have. We will eliminate B? with ¢ =
(2,1,...,1). Then we do the same for the other partitions of k£ in any order which is
compatible with the natural partial order: 7 > o, if ¢ can be obtained from 7 by subdivid-
ing some 7; into smaller parts. As a result, we will obtain a presentation of Byv as a linear
combination of terms of the form F_; ... F_;, Bv. Since Byv # 0, Bv cannot be zero.
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5.3. Composition vertex operators.
5.3.1. Introduction. According to Corollary 5.10, if
—1 2 1—k
)‘:_(a )(a+ )7/1':—7 (25)

2a a

then By (a)v, where v is the vacuum vector in H (A, p— «), is a singular vector in H(\, p) .
A direct comparison shows that the equations (25) are the same as the parametric equations
of the curve W_j _; (with the parameter § = v/2a~!; see the beginning of Section 4.8.4).
Thus the operators By («) give rise to (more or less) explicit expressions for singular vectors
of degree k in all modules H(A, p) with (A, ) € ¥_; _1, and, through that, to (well,
less explicit) formulas for singular vectors of degree k in Verma modules M (h,c) with
(h,c) € ®f,1. But for the case £ > 1,/ > 1 we had a construction of singular vectors
in?{ (A, p) only for some isolated points (A, 1) € Wy, 0. This partial success was attained by
applying to v some composition of vertex operators (more precisely, by multiplying v by
powers of the forms ¢; ,,). Our aim now to find a generalization of a composition of vertex
operators, which would give singular vectors in all reducible H (A, u). Our way of doing
that is attaching some sense to a “composition”

Bkl,...,kn (041, e ,Cl{n) = Bk1 (Oél) e Bkn (Oén) (26)

in the case when ki,...,k, are complex numbers with only the sum k; + ...+ k, being
integral.
5.3.2. The definition. At the moment, we still assume that the kq,...,k, are

integers, but we will use the notation (26). According to Propositions 5.5 and 5.9, we
have:

[Fj, By oo (01, 0)] = Y 0aBhy ke hatgikegse e (01, 0 (27)
s=1

€iy By, ok, (Q1, .. )| = pstks—(1 $) By, ko 1kotikost,okn (QLy -5 Qn ),

lei, B ( )] (1s+ks—(i+1)As)B ( ), (28)
s=1
where ) 5

A= a2 et (29)
ps = as(p+ as + agp1+ ... +ay,) — 1. (30)

Now, let us fix complex numbers f31,..., 5, with g1 + ...+ 8, = 0 and try to attach
some sense to a “composition” By, 45, (1) ... Bk, 48, (ay,). For this “composition,” we will
use the notation By, ., (o1,...,0n;01,...,0n), and we list the expected properties of

n

these operators in the following

DEFINITION. Let aq,...,an;61,...,8, € C, and let 81 + ...+ B, = 0. A family of
operators

By k(1o By Br) i HOA ) = HA p+ a1+ ...+ ay)
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(k1,...,k, € Z) is called a family of composition vertex operators (of type (a1, ..., an; b1,

..y Bn)), if formulas (27) — (30) hold with the following changes: (a1, ...,q,) in formu-
las (27) and (28) should be replaced by (aq,...,an;B1,...,B,); formula (30) should be
replaced by

ps = as(p+ s+ agp1 + ...+ o) — 1+ fBs. (31)
EXAMPLE.
By, (1) ... Bg, (an): HA\ p) = HA\ p+ a1+ ...+ ap)
is a family of composition vertex operators of type (aq,...,an;0,...,0).

5.3.3. The main statement. THEOREM 5.16. (i) For a family of operators
Biy ks HA 1) = H(A\ p+ a1 + ... + ay) the property of being a family of composi-
tion vertex operators of type (a1,...,an;0B1,...,Bn) does not depend on X\ and p.

(This allows us to consider a family of composition vertex operators as a family of
operators H — H.)

(ii) For aq,...,an;B1, ..., 0n with B1 + ...+ Bn = 0 fized, the vector space of families
of composition vertex operators of type (aq,...,an;B1,-..,Bn) has dimension > (n — 1)!.
Moreover, for almost all sets (a, 8) this dimension is equal to (n — 1)!.

(The precise meaning of words “almost all” will be clarified in the proof.)

CONJECTURE 5.17 (Still open, as far as I know) The dimension of the above space is
<nl.

5.3.4. Sufficiency of degree 0 operators. LEMMA. Let {vk, .~ | ki € Z, k1 +
...+ k, =0 be a family of complex numbers. Then for any aq,...,a, € C there exists a
unique family of operators By, . . (a1,...,00):H —H (ki,...,ky, € Z), which satisfies
the conditions (27) and

for ki € Z, k1 + ...+ ky =0,Bp,, .k, (Q1,. .., 00)0 = Yiy .. £, V- (32)

Proof is straightforward.

Using this lemma, we can convert the restrictions imposed on By, .. g, , into restric-
tions for v, ..k, (k1 + ...+ ky, =0). Namely:

PROPOSITION 5.18. Let {Vg, ..k, | ki € Z, k1 + ...+ k,, = 0} be a family of complex
numbers, and let {By, . k,:H — H | ki € Z} be a family of operators satisfying the condi-
tions (27) (with some aq,...,a,) and (32). This family is a family of composition vertex
operators H(A\, ) = H\, p+ a1, + ...+ an) of type (a1, ..., an;B1,- .., Bn) if and only if
the following equations hold:

Z(kl —Jj+Bi—ai(oa+ ...+ @im1))V ki—j
J
j—1 (33)
- Z Z ailaizv...,kil —Uyenny kiQ—(j—u),... (.7 > 07 kZ E Z?Z kl = .]);

u=11<i;<is<n
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Z(kz +i+ 6 —ai(oipr +... + an))'Y...,ki—i—j,...

J

J—1 (34)
=3 > Y bk G (> 0k €2, Ky = —j);

u=11<i1<i2<n

Here A and p are assumed fixed, but as the equations do not involve them, we may
conclude that if By, ., is a family of composition vector operators for some |, p1, then
so is for any A, p. Thus, the Part (i) of Theorem 5.16 follows from Proposition 5.18.

Proof of Proposition 5.18. Last lemma shows that the operators By, . . :H — H,
which satisfy conditions (27) and (32), exist and unique. Using the description of e;
via Fj, we can deduce from (27) an expression for [e;, Bi,, . ,]. All we need is that
lej, B,....k, | satisfies also the condition (28). In other words, we can calculate the com-
mutator [e;, Bk, .. k,] from (27) and (28), and our requirement is that the results be the
same. An immediate calculation shows that this is precisely the equalities (33) and (34).
The remarkable fact is that the contributions of A\ and p into the results of the two com-
putations cancel, when we equate them (and this is why Part (i) of Theorem 5.16 holds).
Let us show how it happens.

Since the commutators [F}.Fs, By, . k,] do not involve A and p, the dependence
of the result of the first computation on A and p comes from the commutator [(aj +

1
B)F;, By,.... MJ.Butaj+¢3=;L—(j+-nA-—l%;—.Hauf,ﬁmn(zn,

€5, Brey,...kn] = (— (i +1)N) Z%B...,ksﬂ',... + expression without A, u.

S

Also, since ps = aspu+ ..., A\s = agA+ ..., where ... do not involve either A or u, the
same result follows from (28). This explains the absence of A and p in equations (33) and
(34).

Notice also that our equations are dependent; for example, we can remove all the
equations (33), (34) with j > 3.

5.3.5. Example: n = 2. A simple computation shows that in this case all the
equations (33), (34) are corollaries of one of them, for example, the equation (33) with
j=1. If we put y_j r = 7 and 1 = —fB2 = 3, then this equation take the form

(=k+B8)v+ (BE+1—- B84+ ara2)yk41 = 0.

We see that if neither of g and 8 — ajas is an integer, then all v, can be expressed via,
say, 79. The same is true, if only one of 8, 8 — ajas is an integer, or idf both are integers,
but ajas > 0. But in the “exceptional case,” when § € Z,ajas € Z.g, there are two
independent solutions:

- TB—k—1\. E—B—1 \ .
k(T2 fk< _1)k fk>p—
=4 ¢ )( B—k Th<B = TV kL aga, —g) TR 2P -0
if k> 3; 0 ifk<p—aias
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5.3.6. Beginning of the proof of Main Theorem. Probably, there are two
independent ways of proving Theorem 5.16 (and possibly Conjecture 5.17) The first one
consists in a direct investigation of the system (33), (34), while the second one describes
the functions v, .. knt’fl ... tFn as solutions of system of partial differential equations. We
will combine these two ways: they will give us upper and lower bounds for the number of
independent solutions for generic «, (.

PROPOSITION 5.20. The system (33),(34) is equivalent to the system

Z Z(ﬂs + ks + 1) + Z Qs | Yy +w,... kn+w, = 0
Sc{l,..,n} |s€s sES,tES, s<t (35)
card S=j

(k1 +...4+ky=—4,j+1,....n)

where w; =1, ifi € S, and w; =0 if i ¢ S.
Proof. Indeed, if we denote the equation of system (34) by eq(ki,...,k,) then the
equation (35) is equivalent to Z eq(ki + 81, kn + Spn).

Sc{1,...,,n},card S<j
PROPOSITION 5.21. If all the coefficients of the system (35) are non-zero (equivalently:

if all the sums
Z Bs + Z Qg

ses sESt¢S,s<t

are non-integral), then the system (35) has no more than (n — 1)! independent solutions.

Proof. Fix a large positive integer k and consider the part of the system (35) consisting
of equations with k1 = ... =k,_1 = k. We put

é ‘en—l
LCoprotns = Veu 1= (=1 k—ts — oot 15 L L1y ln1) = E | NS L A

(Thus, I'(¢y,...,¢,_1) is a power series. Then asymptotically (for k& — oo) our part of
system (35) (after multiplication by k~!) takes the form

(Joj—(n—=3jlo(j—1=0(G=1,....,n—1),

where o is the j-th elementary symmetric polynomial. To solve the last system is the
same as to determine the cokernel of the operator

Cllt1,- - tn-1]] = Cllt1, - s taa]]" ", Fs{(joj —(n—jloj_1)F|j=1,...,n—1},
which, by duality, has the same dimension as the kernel of the operator
Cltr, - s tna]™ " = Clta, s tnal, (01, pno1) = Y _(jos — (n— §)oj-1)i;,
that is, as the quotient
Cltr,...,th=1]/(Jo; —(n—=j)oj_1 | j=1,...,n—1),
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which is isomorphic to Clt1,...,tn-1]/(01,...,0n-1), and it is well known that the di-
mension of the latter is (n — 1)..Thus, our “asymptotic system” has precisely (n — 1)!
independent solutions. It remains to notice that if all the coefficients of system (35) are
non-zero, then every solution {7, . x, with k; > k for i =1,...,n — 1, then this solution
is zero. Hence, our system has a part with precisely (n — 1)! independent solutions, and
therefore the whole system has no more that (n — 1)! independent solutions.

5.3.7. End of the proof of Main Theorem: cohomology of a domain in C"
with local coefficients. PROPOSITION 5.22. If a formal series

Tt tn) = Y Vewwoka it 10

satisfies the system of PDE

DZFZO(ZZL,TL), Diz——

then Yk, ...k, satisfy the system (33), (34).

Proof. Indeed, the equations (33), (34) are nothing but

Y HDI=0(j=23,...), Y /DT =0(=0-1,...).

To complete the proof of Theorem 5.16, it is sufficient to prove the following

PROPOSITION 5.23. If no product cyou; is integral, then the system D;I' = 0 has from
(n — 1)! to n! independent solutions.

We shall prove Proposition 5.23 in an equivalent cohomological form. Let

A:An:{(tl,...,tn)ECn|t¢7é0,tj7éti fOI‘]%Z}

An easy check shows that [D;, D;] = 0; hence, the operators D; generate a flat connection
V on the standard trivial line bundle over A. There arises the De Rham complex

Qv = {0%(A) % 0HA) 2% 29 0n(A)),
where Q2¢(A) is the space of holomorphic differential forms of degree i on A.
The homology of this complex is closely related to system (36). Namely, for a linear
operator ¢: H"(Qy) — C, set
Vigoder = Q[EF . tEndty AL A dEy).

Obviosly, {Vk, ...k, } satisfies the system (36). There arises a linear map

.....

(H"(2v))" — solutions of (36).
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LEMMA. If no product oot is integral, then this map is one-to-one.

Proof. Tt follows from the obvious fact that for a holomorphic form w € Q"*~}(C" —0)
the residue of the form dyw with respect to the plane t; = t; is

(exp 27V —loja; — 1)w|{ti:tj}'

In view of this lemma, Proposition 5.23 follows from the following

PROPOSITION 5.24. (n —1)! < dim H"(Qv) < nl.

Proof. The cohomology of the complex Qv is the cohomology of the domain A,
with coefficients in a local system with the stalk C and the transformation induced by a

closed path o:[0,1] — A,, being z — e, z, where e, is a function of the linking numbers
a;, b;; of o with the planes t; = 0,t; = t;:

€y = Hexp 2nv —1a;(B; — (g + ...+ ai—1)) - Hexp 2V —1b;ja,0.
i

i<j

REMARKS. (1) We will not need this long (although obvious) formula for e,; all we
need is if o is a trajectory of the standard action of S* = {z € C | |z| = 1} in A, then
ey =1 (since f1 + ...+ 5, =0).

(2) The fact that the cohomology of A can be calculated from the complex of holo-
morphic forms depends on the fact that A is a Stein manifold, namely the holomorphy

—1
domain of the function (¢1,...,t,) — <Hl i [l (ti — tj)> :

Consider the sequence of (holomorphic) fibrations

n Pn—
Ap 25 A5 By A B A = C

where p;(t1,...,t;) = (t1,...,tj—1). The fiber F; of p; is C with j punctures, which is
homotopy equivalent to the wedge of j circles.

Denote our local system on A = A, by C or C". Then there arises a sequence of
local systems C7 = R'(pj11).C?*! on A;. The Leray spectral sequences of the fibrations
p; provide the chain of isomorphisms

H"(An;C") 2 H™ M (A, _15C" 1) 2 22 H?(A;C%) = H' (Ar;CY) (37)

The stalk of the system C7 is H'(Fj;1;C7t|p,,,)). Let d; be the dimension of this
stalk. Then the description of F}j given above shows that jd;y1 < d; < (j+ 1)dj+1. Since
d, = 1, this shows that (n + 1)! < d; < nl. From (37), H"(A,;C™) = H'(A;C!). Since
the system C! is trivial (see Remark (1) above) and A; is homotopically equivalent to the
circle, dim H1(Aq;Cl) = d;.

This completes the proof of Proposition 5.24, and, hence, of Theorem 5.16.

5.3.8. A final remark. Informally speaking, Proposition 5.22 states that

Z tk1 tkn — H (1 B E)aiaj ﬁtﬁz
’ykla-“akn 1 ~°"n t] - [
1=

ki+...+kn=0 1<i<j<n
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(Compare Proposition 5.13.) It is true, however, that neither the left hand side of this
equality, nor its right-hand side, makes much sense: the first one is a divergent series, the
second one is a multivalued function. The equality means only that the both sides satisfy
the same system of equation. (See further comments in Section 4.8 of [13].)

5.4. Applications to singular vectors in the modules of semi-
infinite forms.

The results of Section 5.3 show that
Bk1 ,,,,, ko (0417 <oy Oipg 517 ce ;Bn)v € H<)‘7 :u)k1+~--+kn

(where v is the vacuum vector of H(A\, u — a3 — ... — «y,)) is a singular vector if and only
if it is not zero and

(as — 1) (s + 2)

sA =0 a?+a,2\+1)-2=0,
as\+ aZ +as(2N+1) (38)
as(p—agr1—...—ap)— 14+ Bs+ks =0
(s=1,...,n). Let us begin with the case a3 = ... = a,, = a. The the sum (over s) of the
second equality (38) becomes (since 51 + ...+ 5, = 0)
n|op— 5 a“ | =n—k, wherek =k +...+k,
The system (38) becomes
a®+al2A+1)-2=0,
—1
n(nT)aQ—nua—l—n—kzo.
From this,
)\:_a2—oz—27 = (n—Da k:—n.
2a 2 no
This is the parametric equation of the curve W_,, _; /,, (see Sections 4.8.4 and 5.3.1).
If we plug the last expression for u into the second of equations (38), we get:
1 k
ﬁs: <n+ _S)OCQ—F——]f.
2 n
With these 5, we can state that
Bkl,...,kn(aa-"705;517"'>6n)v S H()\,M)k (39)

(in view of an indeterminacy of composition vectors operators, it is better to cay “any
vector of this form”) is either zero, or a singular vector. (It is easy to see that the vector
(39) does not depend on ky, ..., k,: only k matters.) If k is not divisible by n, then H (A, u)
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(generically) does not have singular vectors of degree k, and hence the vector (39) is zero
(which is not obvious a priori). If k is divisible by n, then H(\, ) contains singular vectors
of degree k, and the vector

-1 _ _
n QQ,n 3042,”',1 n
2 2

Bk/n,...,k/n (Oé,...,Oé; Oé2> NS /H<)‘7,U/)k

is either zero, or a singular vector. One can expect that this vector is not zero for some
a’s, but we were not able to prove it. If we believe in this, then we obtain explicit formula
for singular vectors in all reducible modules H (A, u).

Remark in conclusion that if we drop the assumption oy = ... = «,,, we get more
vanishing theorems for composition vector operators. For example,

2
By, ks (Oé, 2 —5,5) v=20

in H(A, p) for arbitrary o and

k2042 + 2k1 (Oé — 1)(Oé + 2) (kl + kz)

>\:— et
2—a2 '’ 20 g 2 —qa?

B=1+

5.5. The Japanese Lie algebra &¢.

Our next (and last) goal is to include the Lie algebras $) and Uir into a bigger Lie
algebra which, in many senses is the right infinite-dimensional version of gl(n). We call
it Japanese, because it is one of basic objects in “semi-infinite geometry,” created and
developed by the so called “Sato school” which was founded in Kyoto, Japan, by Mikio
Sato. The most relevant publication on this subject is [23]. I can say that semi-infinite
forms also belong to this geometry, as well as the Japanese Grassmannian. This is the
(infinite-dimensional) manifold of subspaces L of the space V' with the basis {v; | i € Z}
such that the quotients L/(LNV_) and V — /(LN V_) (where V_ = span{v; | i < 0}) are
finite-dimensional.

The actions of $ and Uit in H will be the restriction of a certain action of this Lie
algebra. We begin with its construction.

5.5.1. The main construction. What is the gght Lie algebra of matrices of
infinite order? The most obvious candidate is the limit lim gl(n), which is the Lie algebra
n—oo

of 0o x oo matrices with finitely many non-zero entries. We will denote this Lie algebra
as gl(oo). Also we can consider the algebra of automorphisms of an co-dimensional space.
There is two other versions of this. Let V be the (complex) vector space with the basis
{vi | i € Z},and let V be the space of “linear combinations” 3 ayvi with the set of

kel
non-zero coefficients aj with positive k being finite. Then EndV is the Lie algebra of

matrices ||ag;||; ;e with finitely many non-zero entries in every column, and End V is the
Lie algebra of matrices [|a;;[|; ;.7 such that, for some N, the set of non-zero entries a;;
with ¢ > N or j < —N is finite. However, neither of these three Lie algebras possesses a
non-trivial central extension, and by this reason we have to look somewhere else.
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We describe below modifications of these two Lie algebras, which are equally satis-
factory for our purposes. We will attribute the notation &£q to the last of them, but the
reader can replace it by any of the other two.

The first is the Lie algebra of generalized Jacobi matrices, that is, matrices ||a;;|| such
that for some n, a;; = 0, if |j — 4| > N (in other words, matrices with finitely many
non-zero diagonals).

The second is the Lie algebra of endomorphisms of V' continuous with respect to
topology generated by sets Vj, = span{v; | ¢ < k}. In other words, this is the Lie algebra
of matrices with finitely many non-zero entries in every column satisfying the additional
condition: for every r,s € Z, the number of non-zero entries |la;; with i > r and j < s is
finite. R

The last one is the same with V' replaced by V. Its matrix description is the same
as in the previous case, with the condition of “finitely many non-zero entries in columns”
dropped. This is what we denote as &£y.The picture below shows (schematically) the
structure of a matrix from this Lie algebra.

%
lnl e y . ° . . [ ] ... [ ]
many T . ° o Te ot : .o.o

Finitely e T el
_—., ° .
many .

&\\\\\\Q&Q&\\Q .

The common property of the last three Lie algebras is that they possess a (common to
them all) non-trivial central extension. Below, we describe a cocycle ¢(A4, B), A, B € 6£,.
First, define a transformation ¢: 8Ly — BLy which assigns to a matrix A its “upper left

corner”:
7

N

) :{aij, if1<0,5 <0, 0

A = [lai;]| = ¢(A) = Halj’ i 0 otherwise

This transformation “almost commutes” the commutators, in the sense that the matriz
(A, B) = [¢(A),d(B)] — ¢[A, B] has finitely many non-zero entries. Indeed, if A =
Haij-H, B = ||sz||, and Qb(A,B) = HCin, then, for ¢ < 0,] < 0,

Cij = Z(aikbkj — bikag;) — Z(aikbkj — bikag;) = — Z(aikzbkzj — bira;),

k<0 k k>0
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which has finitely many non-zero values, since both ay; and by; can be different from zero
for finitely many k£ > 0,5 < 0. We put

c(A,B) =try(A, B).
Let us prove that this ¢ satisfies the cocycle equation. For A, B,C' € &£,

c([4, B, C) + ¢([B, O, A) + <([C, A, B)
A)

+9([C, A], B))

[4,

= tr (¢([4, B], C) + ¢([B, C],

= tr ([¢[A, B], #(C)] + [¢[B, C], (A)] + [4[C, A, $(B)]
—¢[[A,B],C] —9[[B,C],A] —¢[[C,A],B])  zero (Jacobi)

= tr ([¢[A, B, ¢(C)] + [¢[B, C], ¢(A)] + [#[C, A, ¢(B)]

—[¢(A4),0(B)], #(C)] — [6(B), #(C)], p(A)] — [¢(C), ¢(A)], #(B)]) zero (Jacobi)
= tr ([v(A, B),o(C)] + [¥(B, C), (A)] + [¥(C, A), ¢(B)])
The latter is equal to zero, since ¥(—, —) € gl(oco) (has finitely many non-zero entries) and

the following holds:

LEMMA If X € gl(oo) and Y is an arbitrary Z x 7 matriz, then the trace tr[X,Y] is
defined and is equal to zero.

Proof. It is sufficient to consider when X is a one-entry matrix with the entry of z,.
Let Y = ||y;;j||. Then the only (non-zero) diagonal entry of XY is (XY),, = x,sys and
the only diagonal entry of Y X is (Y X)ss = ysrxrs. Hence, tr[X, Y] = ysr — ysr = 0.

Thus, ¢ is a cocycle, and it gives rise to a one-dimensional central extension of the Lie
algebra B£,. We denote the extended Lie algebra as &£ and denote the generator of the
center by z.

We will see in the next section that this central extension is not trivial. Actually, &£
is the unique (up to isomorphism) non-trivial central extension of &£,

5.5.2. Some important subalgebras of &£L.

5.5.2.1. The Heisenberg algebra. Let Fj be the matrix of the transformation
v; > Vi, that is the matrix ||a;; = d;—x ;||. Let us compute c(Fy, Fy).

First of all, obviously, [Fy, F] = 0, and hence ¢[Fy, F;] = 0. Let us calculate, for
k>0, ¢(F_i),¢(Fk), and [p(F_k), ¢(Fk)]. The matrices of F_, Fj, p(F_i), ¢(F)) are

shown below.

Fy 1-.. £y P(Fk) ¢(Fi)
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Computations:

P(F_k) O(Fr) O(F_r)o(Fr)  ¢(Fr)P(F-r)  [o(F_r), ¢(Fp)]
V_f—1 > V1 V_1 > V_f_1 V-1 >V V_k—1 > V_f—1 V-1 >V
V_k—2 > V_9 V_g > V_f_2 V_o > V_9 V_k—2 > V_f—2 V_o > V_9
V_f—3 > V_3 V_3 > V_—-3 V_3 — vV_3 V_k—3 F> V_k—3  cveennnnn

.................................... V_f — Vg

Thus, tr[¢(F_), p(Fr)] = k and c¢(F_g, Fy) = k. A similar computation shows that if
¢+ k # 0, then tr[Fy, F;] = 0 (the matrix of [Fy, F};] does not have non-zero diagonal
entries), and hence ¢(Fy, Fi,) = 0. Thus, elements Fj (k # 0) and z span a subalgebra of
B £ isomorphic to the Heisenberg algebra.

By the way, this construction shows that the restriction of the cocycle ¢ to the com-
mutative subalgebra of &£y spanned by Fj, k # 0 is not cohomologous to zero (since the
Heisenberg algebra is a non-trivial central extension of the commutative algebra). Hence, ¢
is not cohomologous to zero as a cocycle of £, and &L is a non-trivial central extension
of @Eo

5.5.2.2. The Virasoro algebra. There is a two-parameter family of embeddings of
Uir into B L with the parameters A\, u € C, and they arise from the 2itt-module structure
in Fy,. Namely, we denote by € (k € Z) an element of &£, which acts in V as v; —
(p+7—Ak+1))vjtr (a familiar formula, isn’t it?). We know only too well that [e;, ex] =
(k —£)ex1¢. Now, let us calculate c(ey, ex). It is easy to see (precisely as in the Heisenberg
case), that if k+¢ # 0, then the matrix of 1)(€s, €;) does not have non-zero diagonal entries,
so in this case c(€g, €x) = 0.

It remains to calculate ¢(€x,€_). Similarly to the previous calculation, the matrix
of 1(ex,e_x) has k non-trivial diagonal entries ¢_; _;, j = 1,..., k. The contribution of
[p(e—k), p(€x)] into 1p_; _; is the coefficient at v_; in ege_pv_;. But there is a difference
with the previous case: the commutator [€_g, €] is not zero: it is equal to 2k€y. This
makes an additional contribution into ¥ _; _; the coefficient at v_; in 2kepv_;. From this,
we obtain a formula for c(e_,€;) = trp(e_g, ex):

k k
cEper) =Y (n=J3=AL=k)(n—(+k) =A1+k) =2kD (u—3j—A).

i=1 =1
A direct further calculation gives:

k3 —k

cle_p,ex) =ku(p—21—1) — (6A% 4+ 6\ + 1),

and this is our final result. ]
This shows that the formulas e; — €; for ¢ # 0, ey — €y + E,u(u -2\ —1)z,z —
—2(6A% + 6\ + 1)z define an embedding Uit — &£. We denote this embedding as 7y, (If

A and p are known and fixed, we will consider Uir as a subalgebra of £; in particular,
we will never use again the notation é;.)
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5.5.2.3. The orthogonal and symplectic algebras. The space V possesses a
symmetric inner product, (v;,v;) = d;+;1, and a skew symmetric inner product, {v;,v,} =
(5i+j,1j%. Both are defined in the space V. Accordingly, we define two subalgebras of
@20! ~

Do ={g€ 6Ly | (gv',v") + (v, gv") Yv,0" € V}

SP, ={g€ 6L | {gv, v} + {v,gv"} Vu,v" € ‘7}

Both O and &, can be described in the terms of matrix entries. Namely,

9 = llgi;|l € Oo, if and only if g1 ; = —g1-j: Vi, j,
g = ”ng - 6%07 if and only if glfz"j(l — 22) = glfj,z(l — 2]) Vl,j

Notice that the last two conditions describe symmetries in diagonals parallel to the main
diagonal, so they do not conflict with the definition of &£,. Also both can be applied to
generalized Jacobi matrices.

A calculation (which we skip) shows that the restrictions of the cocycle ¢ to D¢ and
&P, are not cohomologous to zero, so they give rise to non-trivial one-dimensional central
extensions O and &P of Oy and &P,

5.5.2.4. The substitutes for the algebras of upper triangular matrices. Cer-
tainly, upper triangular matrices form a subalgebra of &£y, but it does not play any serious
role in the representation theory. This role is played by a whole family of subalgebras of
& L. For a positive integer N, denote by Po(N) the subalgebra of &£y which consists of
matrices | g;;|| such that g;; =0, if i > j,i > —N,j < N (see diagram below).

7

—-N

zeroes

%

N

The inverse image of Py (V) is the trivial center extension of Py (N); we denote it by
PN).

Also we will use the notation diag for the algebra of diagonal matrices. The matrix
with the only non-zero entry E1; = 1 will be denoted as h;.

5.5.3. Representation theory for &£. There is no indisputable similarity between
6L and Kac-Moody and Virasoro algebras, because &£ has “infinite rank.” In particular,
there are no Verma modules. Still some basic notions of the representation theory work
for the case of L.

5.5.3.1. Bernstein-Gelfand-Gelfand modules and their weight vectors. A
& L-module M is called a Bernstein-Gelfand-Gelfand module of type ¢ € C, if (i) zm =
cm for every m € M; (ii) the restriction of M to the algebra diag of diagonal matrices
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decomposes into the sum of one dimensional diag-modules; (iii) for any m € M there exists
an N such that dim U(B(N)) < oo (where U stands for the universal enveloping algebra).
A weight vector of a £-vector is, by definition, a common eigenvector of all elements
of diag. The weight of a weight vector m € M is the sequence {\;} of complex numbers
such that hym = A;m (where h; is a one-entry matrix with h;v; = 6;5v;).
PROPOSITION 5.25. If {\;} is the weight of some weight vector in a Bernstein-

Gelfand-Gelfand module, then \yy = Any1 = ... and Ay = A_ny_1 = ... for some
N.

Proof. Let m € M be a weight vector of weight {)\;}. Then, for some N, the space
U(P(N).is finite-dimensional. But () contains subalgebras isomorphic to sl(n) with

arbitrary large n,
mmyy
sl(n)

_

//////%

and it is well known that sl(n) has no non-trivial representations of dimension < n. For
all ©+ > N, the differences h;1 1 — h; and h_; — h_;_1 belong to one of these subalgebras
sl(n),n > dimU(P(N) of P(N). Hence their action on m is trivial, which means that
)\i = )‘i-i-l and )\—i = /\—i—l-

We will call weights, which satisfy the conclusion of Proposition 5.25, admissible. For
an admissible weight {\;}, we will denote \; and A_; with i large as A\ and A_.

5.5.3.2. Highest weight vectors. A weight vector in a &£- or gl(oo)-module M is
called a highest weight vector, if here exists an N such that (i) gv € Cv for any g € PB(N);
(ii) gv = 0, if g € P(n) and all the diagonal entries of g are zeroes. Actually, it is true
that any irreducible Bernstein-Gelfand-Gelfand module has a unique up to a factor highest
weight vector. We will not prove it here which makes it necessary to impose an additional
assumption on modules considered in next Proposition; for our purposes, this assumption
is quite harmless.

The weight of the highest weight vector of an irreducible Bernstein-Gelfand-Gelfand
module M will be called the highest weight of M.

Notice that if M is an irreducible Bernstein-Gelfand-Gelfand gl(co)-module with an
admissible highest weight then for all weights of weight vectors in M, A\, and A_, are
the same.

PROPOSITION 5.26. (a) Let M be an irreducible Bernstein-Gelfand-Gelfand &£-
module possessing a highest weight vector v. Then M is generated by v over U(gl(c0)).

(b) Let M be an irreducible Bernstein-Gelfand-Gelfand gl(co)-module with admissible
highest weight {\;}. Then the structure of a gl(co)-module can be uniquely extended to a
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structure of a &L-module. Moreover, z € &L will act in M as A\_ o — Moo

Proof of (a) is similar to the proof of similar statement for Verma modules. It is
obvious that M is generated by v over U(®L). But we can reorder the factors in elements
of 8L in such a way that elements of () go last. These elements take Cv into Cv .
Then we apply the matrices whose entries are in the domain ¢ > —N,j < N,7 > 7, but a
matrix from &£ has only a finite sets of non-zero entries in this domain, so these matrices
are all in gl(o0).

To prove (b), let us first describe a canonical way to extend the structure of a
Bernstein-Gelfand-Gelfand module over gl(co) to a structure of a & £-module.

Let g = |laij|| € &Ly. Consider first the case when all the diagonal entries of g are
zeroes. Let P is the set of all pairs (4, j) with a;; #0. Then g= > a;;E;j, a;; € C—0.

i,j)EP
Let m be a weight vector of M. Then only finitely many of Vectcgrs )Eijm can be non-zero.
Indeed, for some N, W = U(PB(N) N gl(co))m is finite-dimensional. Since M is the sum
of one-dimensional diag N gl(co)-modules, the same is true for W. Hence, vectors from
W can have finitely many different weights, but all F;;m with ¢ # j are weight vectors
with different weights. Denote by Py the set of pairs (¢, j) with non-trivial E;;m and set
am = Z Qi j E”m
(i,9)€Po

Now, let g be a diagonal matrix, g = > d;h; Let {\/}, {\/} be weights of weight
vectors v/, v” € M. The series ) d;\; and > d;\] diverge (in general), but their difference
> di(N, — \”;) converges (is, actually, finite). Indeed, if v € M is a highest weight vector,
then both v" and v” are obtained from v by applying several matrices from gl(oo). Hence
the weights of both v and v"” are obtained from the weight of v by changes in finitely
many positions, so there are only finitely many differences between them. Hence we may
regard the infinite sums d; \; as well-defined up to a common summand which gives rise to
an extension of the representation of gl(co) to a projective representation of &£g, that is,
to a representation of L, since the latter is a unique central extension of &£, according
to the Feigin-Tsygan theorem 5.15 (see Section 5.3.1).

Next, let us prove that the & £-extension of the gl(oco)-structure constructed above is
unique. For this, it is enough to prove that for any weight vector m € M there exists such
N € Z that gm = 0 for any matrix g = |/g;;|| € L such that g;; =0 for i = j or i < —N,
or j > N. Let

m = Ez Ei1 §1 U,

rir ot

where is # js(s = 1,...,7) and let N = max(|i1]|,...,|ir|,|71],---,[jr]). Obviously,
c(Ei, j.,8Ly) =0,s0 gm =gE; ;. ...E; v is the sum of 2" terms of the form

El/lji PN Ei’sj; [ . [g, Ei/llvji/] “ee 7Ei;’j£'] v,

where {(¢7,71),..., (is,J2)} and {(¢},4)),..., (i}, j;)} are two complimentary subsets of
the set {i1,71),..., (ir,Jr)}. All these terms are zero by Condition (ii) in the definition of
highest weight vectors in the beginning of this section.

It remains to prove that z acts in M as the multiplication by Ao — A_. But z =
[F_q, Fy] where F'_1 = Z‘;’;foo E; ;1 and F; = F' are generators of ) C &£ described
in Section 5.5.2.1. For the computation of the action of [F_q, F}]| in M, we can replace

104



F_; and F!, by their “approximations” F», = Zj.v:__lN E; ;1 and (FM)! (with a large

N). We have:
2v=[F_1,F! Ju=[FN,(FN)v = (hy —h_n)v=(An = A_n)V = (Moo — A_oo)V.

This completes the proof of Proposition 5.26. Notice in conclusion that both the
intersections diag N O and diag N &P consist of diagonal matrices > d;E; with d; =
—di_; (i1 € Z), so in the cases of O and &P the weights of the Bernstein-Gelfand-Gelfand
modules have the form A; | ¢ > 0 with Ay = Ay41 = ... and Proposition 5.26 remains
true with z acting as the multiplication by —2\ ..

5.5.3.3. Finite Bernstein-Gelfand-Gelfand modules. A Bernstein-Gelfand-
Gelfand &£-module M is called finite, if the action of F;; with j # 4 is locally nilpotent,
that is, for every m € M there exists an r such that Ef;m = 0. It is easy to check that an
irreducible Bernstein-Gelfand-Gelfand module is finite if and only if its highest weight {\;}
is integral dominant, that is, {\;} is a non-decreasing sequence of integers. This makes
finite modules similar to finite-dimensional modules in the classical representation theory.
We will consider some important examples in the next section.

5.5.4. Some important examples.

5.5.4.1. The &£-module of semi-infinite forms. A semi-infinite form on V is
the “expression”

Vi, AUy Aoy 11 <9 < ... and i, = n for n large.

For i,5 € Z, we put
Vi, Ao oA ANV A N iy, =1
Eij(”ilA%A'”):{oh T 0 ¢ (i1, ).

w if 7 >0, .
0 ifi<o. These formulas equip the space V

of semi-infinite forms with the structure of an irreducible Bernstein-Gelfand-Gelfand gl(oo)-

1)
module with the highest weight vector w, and the highest weight (...,0,0, 1,1,1...).

According to Proposition 5.26(b), this structure has a unique extension to a structure of
a BL-module with z acting as id.

Notice that for any fixed A, u € C, the embedding 7y,: Uir — &L (see Section 5.5.2.2)
makes 1V a Uit-module, which is the same as H (A, u); the isomorphism V — H(A, p) acts
as

In particular, for w = vi AvaA. .., Ejw = {

Uiy NVig ANVig Ao = fio A AN fja Aoy Jo > g1 > g2 > oo, {de = Z — {i}-

5.5.4.2. The spinor representations of . We consider the space V with he inner
product (v;,vj) = 0;4j1. The Clifford algebra Cliff (V') is multiplicatively generated by V'
(that is, {v;} is the system of generators) with the relation v'v"” 4+ v"v" = (v/,0") - 1. We

denote as V. and V_ the subspaces of V spanned by, respectively, v; with ¢ > 0 and v;
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with ¢ < 0. Then the subalgebra of Cliff (V') generated by Vi is A*Vy. Obviously, A*V
is Cliff(V)/V_ Cliff (V') which makes A*V, a Cliff(V')-module, obviously irreducible. The
subspace of Cliff(V') spanned by 1 and monomials of degree 2 is, obviously, closed with
respect to commutators, so it is a Lie algebra.

PROPOSITION 5.27. This Lie algebra is isomorphic 9.

Proof. According to formulas in Section 5.2.3, O¢ consists of matrices |/g;;|| with
J1—i,j = —g1—j,, that is, is generated by 2-entries matrices GG;; nonzero entries d;_; ; and

—01—j,i. A direct computation shows that the correspondence G;; — v;v; — §5i+j,1 -1
establishes the isomorphism stated.

As a representation of 9, A*V, is the sum of two irreducible representations: A®Ve™V.
and A4V ; these are called spinor representations. A construction similar to that in the
proof of Proposition 5.26 makes A°*"V, and A°44V, O-modules.

The D-modules A®¥*"V, and A°d9V, are closely related to the & £-modules of semi-
infinite forms. Namely, the subalgebra of O consisting of endomorphisms of V' which
preserve the decomposition V' = V_ @ V, isomorphic to &£: an D-endomorphism of V,
which preserve the decomposition V = V_ @V, , is determined by an automorphism of V,
and we turn it into an endomorphism of V' by means the renumeration of the basic elements:
{vo,v1,v2,v3,04 ...} = {v0,v_1,V1,V_2,09,...}. The &L-module A*V is the same as the
modules of “shifted” semiinfinite forms v;, Avi, Avi, Aooy to <ip <i2 <...,v;, =n+k
for fixed k € Z and large n; the space of this shifted forms with a given k is denoted as
H(k). This H(k) is a &L-module with the highest weight

(k)
...,0,0,0, 1,1,1,...

The isomorphism between exterior forms on W = V. and (shifted) semiinfimite forms on
Vis
Wy, /\’U)j2 /\.../\’U)jr S Vig ANvj, Ny N,
where {ig,i1,172,...} is the set of integers consisting of all negative integers of the form
Js +1 '

2
isomorphism is

and all positive integers not of the form .753 In the category of &£ modules, this

AV = (B H(k), AV = D H(K).

k even k odd

5.5.4.3. The Weyl representation of &3. The space of this representation is the
space D of polynomials of infinite set of variables x1, 2, ..., which appeared in Section 5.1
as the space of the canonical representation of the Heisenberg algebra. It is easy to see
that the operators F;Fj;, together with /I, span a subalgebra of the Lie algebra End D.

PROPOSITION 5.28. This subalgebra is isomorphic to S N gl(oco).
Proof. According to the formulas in the Section 5.5.2.3, a matrix ||g;;|| belongs to
SRy, if g1—4,;(1 — 2i) = g1—;,:(1 — 2j). Hence, &P N gl(co) spanned by F;; acting as

1-25 1 -2
V1—g ijj,vl,j — Tzvi,kaO,ifk#l—i,l—j
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(obviously, F;; = Fj;). It is easy to see that

2% — 1 2% — 1 2% — 1 2% — 1
[Fij, Fri]l = Givrn Fig+6ive Fik + 6j4k,1 Fy+6j101 Fyy,
hich shows that the correspondence Fis s Fiu Fre j* — 3 5 if k>0, i compat
whnicn snows a e CO espo ence ij AR = k—l, 1fk.§0 S CO pa—

ible with the commutators.

A construction similar to that in Proposition 5.26 may be used to extend the action
of P Ngl(co) to the action of &P. This representation of &P is the right “Japanese
version” of the classical Weyl representation.

5.5.5. A localization of ). The main idea of the construction below is to include the
Yir-module H (A, p) into a bigger module which will contain singular vectors not for some
special values of A and u, but always. A similar construction exists for Verma modules
over Virasoro (and, possibly, Kac-Moody algebras); see [25] .

We use the “bosonic version” D of the space F of semi-infinite forms. The extension
consists in localization with respect to the variable ;. We will consider even further
extension allowing not only negative, but also complex powers of this variable.

For v € C, we denote by D, the space of formal series

o0
vV—nm
E Pn(T2, T3, ..., xpn)x] ",
n=0

where p,, is a homogeneous polynomial of degree n (where we assume that degz; = j). In
particular, pg is a constant, and p; = 0. We use also notations ﬁ(y) = @qu 23,,+q; this
is a Z-graded $)-module.

Using the formulas

e; = Z F,.F, <+§Fi2/2, if 7 is even and # O) +< B2 — 042/]1 im0
r>s 2 ’ ’
r+s=1t
r#0, s#£0

z=(1-12a*)1

1 ~
and A = —a — 30 b= B — « from Sections 5.1.2 and 5.1.3, we turn D(v) into a Z-

graded Uir-module. In this capacity, it will be denoted as ﬁ(/\, i, v). Obviously, there is a
canonical isomorphism H(A, p,v) = H(\, p, v + q) of degree —q, and H(\, ) = H(A, p,0)
contains H(\, ).

PROPOSITION 5.29. For any A, u,v,q the module ﬁ()\,,u, V) contains a unique (up to
a constant factor) singular vector of degree q.

Proof. Let

o
_ v+qg—n
w = g Pn(x2, T3, ... Tp)T]
n=0
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and consider the equation
(e.1+e_a+..)w=0.

Ifeei+eo+4... )w= an To, T3, ..., 2y)xt T an Ty, T3, .., 2,)xY " then

this equation becomes the system ¢, = 0 for all n. Wthh pm contribute to ¢, 7

Most of the summands in the formula for e_; leave x'/+q ™ intact. The exceptions
are F_; 1F1,F_;1F 1, and (—a+ B)F_1, if i = 1. All the rest, will turn pmxy+q ™ into
(Dppm)xT9™™ where D is a differential operator of degree < 2; so, for these parts of e_;,
P Wlth m # n do not contribute to ¢,, and the contribution of p,, is Dp,,. Similarly, the
contributions to g, arising from F_;1F_41, and (—a + §)F_ are of the form D’p,,_; and
D"p, _o, where D’ and D" are also differential operators of order < 2.

1% . 8 n v —
And the most important thing: F_;, _;F; <pn+1x1+q " 1) =(i+ 1)%%” "
Ti+1

Thus, our equation ¢, = 0 becomes

Z Dol Dpy+ D'pri + D"prn =0
j=2 Lj

If we equate to zero every homogeneous component of the left hand part, we get the system

apn+1

apn+1 o

8anrl
= —Tp-1, 3 = —Tp_2, 4 = " Th-3y.-) 40
8902 4 ! 8x3 " 2 8%‘4 " 3 ( )

where 7,,_1,7,_2,... are polynomials of degree n — 1,n — 2, ... defined by the equality
(e_1+e_o+...) Z P (T2, ... )x’1/+q "= (rp_1+rn_2+.. .)x’1/+q_n +...,

where the last “+...” means terms with x”+q "’ ,n >n.

If we already know pq,p1,...,Pn, We have the system (40) for p,4+1. Uniqueness of
solution is obvious (since p, 41 is homogeneous of degree n+ 1), to prove the existence, we
need to confirm the equality

iarn—(j—l) . .arn—(i—l)

8:131 ij
But the part of degree —i —j + 2 of (e_;—1) —e_j—1) — ( —i))(e_1 +e_2+...)
is [e_(i—1),e—(j—1)] = (j = 1)e_(;i4j—2) = 0. Therefore, the part of degree n —i — j + 2
of (e_(i—1) —e—¢j—1) = (j —1))(Tn—1 +Tn_2 +...) is zero, and this part is precisely (i —
1)&"5;—,(:1) =(j— 1)M This completes the p[roof of Proposition 5.29.
The final result is: The module 7/-[\()\, i, ) has a canonical singular vector of the form

x4+ pa(\, p, v, xg)x'f_Q + p3(A, p, v, ko, x3)T] S ... (41)
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COROLLARY 5.30. The module H(\, i) of semi-infinite forms has a singular vector of
degree n if and only if pj(\, p,n;x2,...,x;) =0 for j > n. This vector has the form (41).

This shows that if W_j; _p, = 0, then p;(\, i, k¢) = 0 for j > kZ.

The explicit expressions for the polynomials p; are not known, but they can be cal-
culated from the equations given above. We exhibit the first three of these polynomials.

1
p2()\7,u7 v, 332) - —57/332,
1 v—1
P3O\, p, v 22, 23) = (o — V3,
3 2
1
Pa(\, Vs 22,23, 14) = E((V - 3)04% —ajaz + (v — 1))’“%
1
+ g((zj —3)ag +2(v — 1)ag — 201003 vy
1 , (k — 0)*
where as = pu+ (s —1)[ A+ 3 ) Notice that ¥_;_; = apayp — 5

6. Exercises

6.1. Prove that if g = C with zero [, |, then U(g) = Clz]; if g = C™ with zero [, |,
then U(g) = Clz1, ..., 2,

6.2. Prove that the functor Ass — Lie, which assigns to an associative algebra the
Lie algebra with the same space and the operation [A, B] = AB — BA possesses a right

adjoint, and this right adjoint assigns to a Lie algebra its universal enveloping algebra (see
Section 1.1.4).

6.3. Prove that Ind%1 V' is an initial object of the category of a-modules, which contain

V as a b-submodule. Prove the “dual statement”: Coind?l V' is a terminal object of the
category of a-modules equipped with a b-projection onto V.

6.4. (about the modules K (A, 1) and J(«, ) from Section 1.2.3). (a) Check that the
formulas for the actions of f, h, e given in the end of Section 1.2.3 provide valid descriptions
of sI(2)-modules. (b) For which A, p, «, 5 are the modules K (A, 1) and J(«, ) isomorphic?
(c) If the module J(«, ) is reducible, then list all their (proper, irreducible) submodules.

6.5. Prove that the quotient of a Kac-Moody algebra g(A) over its center ¢ is graded
simple in the sense that it has no proper ideals I compatible with the n-grading, I =
Dr, .k, LN 8(A)k,,. k- Still g(A)/c is not necessarily simple, it may have proper ideals;
show this on the example Al.

6.6. Prove that for A = _; _; , the Kac-Moody algebra g(A) is isomorphic to
s0(5) (see Section 2.2.2). ) ]
6.7. Prove that for A = _g _; , the Kac-Moody algebra g(A) is isomorphic to

G4 (see Section 2.2.3).
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6.8 Let A = {_; _g], and let ¢ be the centrer of the Kac-Moody algebra g(A)/c.
Prove that the homomorphism g(A)/c — 5[(2) ® C[[t,t71] constructed in Section 2.2.4 is
an isomorphism. Hint. It has been proved in Section 2.2.4 that this homomorphism is
onto, so it is sufficient to prove that it has no kernel. But this kernel would have to be a
must be a graded ideal of g(A)/c, while g(A)/c has no proper graded ideals (Exercise 6.5).

2 -1
-4 2
in Section 2.2.5 is valid (the homomorphism constructed there is an isomorphism). Hint:
the same as in Exercise 6.8.

6.9. Let A = [ } Prove that the description of the Lie algebra g(A)/c¢ given

6.10. Prove that there are precisely 6 isomorphism classes of indecomposable affine
Lie algebras of rank 3. (Cartan matrices of these affine Lie algebras are listed in Section
24)

6.11. Prove that if 0 # k1hy + ... + k,h,, € ¢ and all k; are non-negative integers,
then ki + ... + kpay, is a root with (o, @) = 0 (see Remark in Section 3.2.2.2).

6.12. Prove that the elements b;, i = 1,2,3, ... of the Lie algebra n (A}) constructed
in Section 3.4.2 form a basis of this algebra and prove that [b;,b;] = ¢;;b;+; where b;; =0
or +1 and b; ; = i — j mod 3. Actually, the whole algebra Aj/c is generated by elements
b;, © € Z with the same relation.

6.13. Prove that the Weyl group takes roots into roots.
6.14. Describe the action of the Weyl group on the roots of A3.

6.15. Prove that the s[(3)-module M (A) with Ay =m—u—1, o =u—1 (A1 + X2 =
m — 2, see Section 3.2.2.1) contains the following singular vector:

Z u(u—1)...(u—s+1)E5 Egy "Ey %,
s=0

here F;; is a one-entry matrix with a;; = 1.

6.16. Determine, which of the modules F), are reducible. For the reducible modules
Fxp find all their proper submodules.

6.17. Let M be a itt-module with the basis f;, 7 € Z and e; f; = a;; fi+; with some
a;; € C. Prove that with exception of some degenerate case (for example in the case when
all a;; are different from zero) M is isomorphic to Fy, for some A, ;1 (find them).

6.18. (It is rather a riddle than an exercise.) The set of equivalence classes of central
extensions of a Lie algebra (see Section 4.2.1) possesses a structure of a complex vectors
space. Guess, what this structure is, and prove that the correspondence between classes of
extensions and the two-dimensional cohomology is actually a vector space isomorphism.

1
6.19. Prove that the cocycle c(e;,e;) = Eé_i,j(jg’ — j) of the Witt algebra (see
Section 4.2.2) is unique in the sense that every other cocycle is cohomologous to Ac, A € C.

6.20. (We use the notations from Section 5.1.2.) Prove that if the operators €; =
ei +a;F; (1 #0),e0 = eg + b, z = ¢/ satisfy the Virasoro commutator relations [e;, €;] =
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B 1 2 _ 2
(j —1)eir; + Eéi,—j(js — j)z, then a; = ai + 5, b = ﬁTa’ ¢ =1— 1202 for some

complex numbers «, 3.

6.21. Recall that the Schur polynomial s,(z1,...,x;) where p = (ri,...,7%), 11 >
ro...>1r>0,7r1+ ...+ 1, =k is a partition of k (we denote the set of all partitions of

k as P(k)) is defined by the formula

147 147 T
mlJr?“k 1 x2+7’k 1 o xk+7“k 1
det
ac]f_H'“ mg_HTl e mZ_Hrl
Sp(.'bl,...,l‘k): 1 1 1

I T9 P Tk
det .

k—1 k—1 k—1

Ty ) Ly,

This is a symmetric polynomial of degree k, hence

5, = g aprer

TeP(k)

where for 7 = (t1,...,t;), e = ey ...e€, is a monomial of the elementary symmetric

polynomials.
Below, we use the notations from Section 5.1.3. Prove that in H

Foloo fos A faAfa)= ) apefs

TEP(k)

where for p = (r1,...,7r%), 7 = (t1,...,tx), F, = Fy, ... F,, (here we assume that Fj = 1)
and fT =...A f—k—l AN f_k+7'k VANPIRAY f_1_|_r1.
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