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The polynomial

rnsq :“ 1 ` q ` q2 ` ¨ ¨ ¨ ` qn´1 “
1 ´ qn

1 ´ q
,

where q is a parameter, is commonly considered as a “quantum”, or a q-analogue of a (positive) integer n.
The expression goes back to Euler («1760) who used it in the context of combinatorics and q-series. Con-
sequently, Gauss («1808) defined and studied polynomials based on rnsq, called q-binomials. Quantum
integers are extensively used in combinatorics, algebra, analysis, and mathematical physics.

The notion of “quantum rational” based on modular, or PSLp2,Zq-invariance, was introduced in [14],
and that of “quantum irrationals” in [15]. Properties of these q-numbers have since been studied and
related to various subjects, such as combinatorics of posets [13, 5, 6, 18, 17], Markov numbers and Markov-
Hurwitz approximation theory [7, 8, 11, 21], enumerative geometry, Grassmannians and triangulations
of annuli [19, 10], triangulated categories and homological algebra [1, 22].

The goal of this short review is to explain the main ideas of the emerging new theory.

What is a q-analogue? A “q-deformation” or “quantization” of a mathematical quantity is usually a
function, often a polynomial, or a power series in q. In physics, q “ eℏ, where ℏ is the Planck constant,
while in mathematics q is a parameter. When q Ñ 1, one obtains the initial quantity. For instance, the
Gaussian q-binomial coefficients are defined by

ˆ

n

k

˙

q

“
rnsq!

rn ´ ksq! rksq!
,

where rnsq! “ r1sqr2sq ¨ ¨ ¨ rnsq. They are polynomials in q with positive integer coefficients.
A q-analogue must satisfy several requirements.
A. Given a sequence of integers that counts some objects, its q-analogue must count the same objects,

but with more precision. For example, the binomial coefficient
`

n
k

˘

counts the number of north-east
lattice paths (with no steps down or left) in the the k ˆ pn ´ kq-rectangle. The coefficient of qm in the
q-binomial

`

n
k

˘

q
is the number of such paths with exactly m boxes under the path.

Example 1. The polynomial
`

4
2

˘

q
“ 1 ` q ` 2q2 ` q3 ` q4, counts lattice paths in a 2 ˆ 2-square. There

are
`

4
2

˘

“ 6 north-east lattice paths. Furthermore, there is exactly one such path with either 0, 1, 3, or 4
under boxes, and there are two paths with 2 under boxes:

‚ ‚KS
+3 ‚

‚ ‚KS ‚

‚ +3 ‚ ‚

‚ ‚ ‚KS

‚ +3
KS ‚ +3 ‚

‚ ‚ ‚

This corresponds to the coefficients 1, 1, 2, 1, 1 in the polynomial
`

4
2

˘

q
.

In other words, a north-east lattice path is the boundary of a Young diagram, a fundamental notion of
combinatorics and representation theory. The binomial

`

n
k

˘

thus counts the number of Young diagrams

that fit into the k ˆ pn ´ kq-rectangle. The q-binomial
`

n
k

˘

q
also counts them, and the coefficient of qm

in this polynomial is the number of Young diagrams with m boxes.
1
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B. As pointed out in the classical book [23], a q-analogue must count the number of points in a certain
algebraic variety over the finite field Fq. If q “ pm, where p is a prime integer, the Gaussian binomial

`

n
k

˘

q

is the number of points of the Grassmannian Grk,npFqq. This requirement is of a geometric nature.
C. A more analytic requirement: the same q-analogue appears in the so-called q-calculus. Assume

that the non-commuting variables x and y satisfy the relation yx “ qxy of the “quantum plane”; the
q-binomial theorem then states that

px ` yqn “
ÿ

0ďkďn

ˆ

n

k

˙

q

xkyn´k,

producing the q-binomials.
For mysterious reasons, exactly the same polynomials appear in three completely different situations!

Let me quote Joseph Fourier: “Mathematics compares the most diverse phenomena and discovers the
secret analogies that unite them”.

Why not 1´qx

1´q ? When x P R or C is not an integer, the expression rxsq :“ 1´qx

1´q is still the usual way

of defining a q-analogue of x. An important property of this definition is the useful recurrence formula

(1) rx ` 1sq “ qrxsq ` 1.

However, when x is rational this expression is not a rational function in q. Indeed, taking x “ n
k , the

above expression is the quotient

1 ` q
1
k ` q

2
k ` ¨ ¨ ¨ ` q

n´1
k

1 ` q
1
k ` q

2
k ` ¨ ¨ ¨ ` q

k´1
k

.

Well, if we want a rational function in q, why don’t we take
“

n
k

‰

:“
rnsq
rksq

? Note that this is the above

quotient with q replaced by qk. But then we lose (1) and these expressions cannot have interesting
properties analogous to the properties A, B, and C discussed above.

PSLp2,Zq-invariant q-rationals. Given x P Q, is it possible to find a rational function with integer
coefficients rxsq P Zpqq such that (1) still holds, as well as some analogs of the properties A, B, and C?
The answer is “yes”, and it is based on the geometric idea of invariance by a group action.

The set of rationals completed by one additional point, Q Y t8u, admits a transitive action of the
modular group PSLp2,Zq by fractional-linear transformations

(2)

ˆ

a b
c d

˙

pxq “
ax ` b

cx ` d
, a, b, c, d P Z, ad ´ bc “ 1.

Recall that PSLp2,Zq has two (standard) generators,

T “

ˆ

1 1

0 1

˙

, S “

ˆ

0 ´1

1 0

˙

,

the translation T pxq “ x ` 1, and inversion Spxq “ ´ 1
x . The only relations between T and S are:

S2 “ pTSq3 “ 1. Whenever they are satisfied, T and S generate a PSLp2,Zq-action.
It turns out that the group PSLp2,Zq also naturally acts on the field Zpqq of rational functions in q.

We have the following theorem/definition.

Theorem 1 ([14, 9]). (i) The matrices

Tq :“

ˆ

q 1

0 1

˙

, Sq :“

ˆ

0 ´1

q 0

˙

generate a PSLp2,Zq-action on Zpqq by fractional-linear transformations (2).
(ii) There exists a unique map r sq : Q Ñ Zpqq commuting with the PSLp2,Zq-action such that r0sq “ 0.
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Part (i) is immediate, one checks that the relations remain unchanged: S2
q “ pTqSqq3 “ 1. Existence

in part (ii) can be established by an explicit formula in terms of continued fractions; the uniqueness
statement follows from the transitivity of the PSLp2,Zq-action on Q.

Note that if Tq is fixed then Sq is the unique matrix up to a scalar multiple satisfying these relations.
Note also that, changing the parameter, t “ ´q, one obtains the classical Burau representation of the
Braid group B3; see [3] and references therein.

Theorem 1 can be reformulated as follows (see [9]): there exists a unique map r sq : Q Ñ Zpqq satisfying
the recurrence (1) together with

(3)

„

´
1

x

ȷ

q

“ ´
1

qrxsq
.

The recurrence relations (1) and (3) suffice to calculate the image of any rational.

Example 2. Let us give several concrete examples that illustrate the general situation.
a) The quantization map r sq does not commute with arithmetic operations. Indeed,

„

5

2

ȷ

q

“
1 ` 2q ` q2 ` q3

1 ` q
,

„

5

3

ȷ

q

“
1 ` q ` 2q2 ` q3

1 ` q ` q2

give two different instances of “quantum 5”. TUTORIAL VIDEO
b) Consider the classical Fibonacci numbers pFnq “ 1, 1, 2, 3, 5, 8, 13, . . . The consecutive quotients,

Fn`1

Fn
, lead to an interesting sequence of polynomials

“

8
5

‰

q
“

1 ` 2q ` 2q2 ` 2q3 ` q4

1 ` 2q ` q2 ` q3
,

“

13
8

‰

q
“

1 ` 2q ` 3q2 ` 3q3 ` 3q4 ` q5

1 ` 2q ` 2q2 ` 2q3 ` q4
,

“

21
13

‰

q
“

1 ` 3q ` 4q2 ` 5q3 ` 4q4 ` 3q5 ` q6

1 ` 3q ` 3q2 ` 3q3 ` 2q4 ` q5
,

. . . . . . . . .

whose coefficients turn out to match the known triangular integer sequences A123245 and A079487
of OEIS.

Comment. The matrices Tq and Sq appeared in the literature separately. The action of Tq is equivalent
to (1), and thus the matrix Tq is implicitly present already in q-integers (and everywhere in the q-calculus).
The matrix Sq appeared in [24], under the name “spinor metric”. It was also used in [2] for an elegant
expression of quantum group relations. The connection to PSLp2,Zq was not used before [14].

The shape of polynomials. An important property is the following total positivity. Given a rational

number x “ n
k , its q-analogue is a quotient rxsq “

Npqq

Kpqq
of two monic polynomials with positive integer

coefficients, Npqq and Kpqq. This statement has the following stronger version.

Theorem 2 ([14]). For every pair of rationals n
k ą n1

k1 the polynomial NpqqK 1pqq´KpqqN 1pqq has positive
integer coefficients.

In this sense, the quantization map r sq : Q Ñ Zpqq is order preserving.
The strongest result about the shape of the polynomials Npqq and Kpqq is the following unimodality

property. It was conjectured in [14], tackled by several authors [13, 5, 6], and eventually proved in [18].

Theorem 3 ([18]). The sequences of coefficients of Npqq and Kpqq are rank unimodal.
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This means that the sequence of coefficients of each polynomial form a “lonely mountain”, with no
oscillation. This is a very nice property because unimodal sequences are important in geometry and
combinatorics. Recall that unimodality of Gaussian q-binomials is a celebrated theorem of Sylvester
(1878), who solved Cayley’s conjecture formulated over 20 years before.

We have seen in Example 2 that the polynomials Npqq and Kpqq are not necessarily palindromic, i.e.,
symmetric with respect to the change q ÞÑ q´1 and renormalization. It turns out however, that this
property holds for another notable family of polynomials. To every A P PSLp2,Zq associate a matrix Aq

with coefficients depending on q as follows. Express A in terms of T and S and replace T and S by Tq

and Sq. The result does not depend on the expression.

Theorem 4 ([9]). For every A P PSLp2,Zq the trace polynomial TrpAqq is positive and palindromic.

The role of the q-trace function on PSLp2,Zq is yet to be understood. So far, it was used to construct
and study q-deformations of the Markov equation [7, 8, 9, 21]. A version of the unimodality theorem
for TrpAqq is proved in [17].

Enumerative combinatorics of q-rationals. A similarity between q-rationals and q-binomials was
observed in [14]. This similarity was reinforced in other works on the subject.

A. A combinatorial meaning of the coefficients of the polynomials Npqq and Kpqq in a q-rational
“

n
k

‰

q
“

Npqq

Kpqq
was suggested in [14] and beautifully reformulated in [19]. The statement is exactly the

same as that in the case of q-binomials, but the rectangle is replaced by the so-called “snake graph”.
Let x “ ra1, . . . , a2ℓs be the standard continued fraction expansion of a rational x ě 1. The snake

graph associated with x is the collection of a1 ` ¨ ¨ ¨ ` a2ℓ ´ 1 boxes in the square lattice, which the snake
visites when crawling: a1 ´ 1 steps up, a2 steps to the right, a3 steps up, etc., ending with a2ℓ ´ 1 steps
to the right. As in the case of q-binomials, every north-east lattice path is the boundary of a Young
diagram. But this time one only takes the paths with vertices in the snake graph.

Theorem 5 ([14, 19]). Given a rational n
k ě 1 and its q-analogue

“

n
k

‰

q
“

Npqq

Kpqq
, the coefficient of qm

in Npqq is the number of north-east lattice paths in the snake graph with m under boxes.

The denominator Kpqq has a similar interpretation with a smaller snake graph.

Example 3. Consider again 5
2 “ r2, 2s and 5

3 “ r1, 1, 1, 1s, the snake graphs of 5
2 and 5

3 are as follows

‚ ‚ ‚

‚ ‚ ‚

‚ ‚

‚ ‚

‚ ‚ ‚

‚ ‚ ‚

Counting north-east lattice paths in these snake graphs, one gets the polynomials from Example 2, a).
For instance, there are exactly two paths in the snake graph of 5

2 with one under box:

‚ ‚KS
+3 ‚

‚ ‚KS ‚

‚ +3 ‚

‚ ‚ ‚KS

‚ +3
KS ‚ +3 ‚

‚ ‚

and this corresponds to the coefficient 2 in the numerator of
“

5
2

‰

q
.

B. Nick Ovenhouse obtained the following beautiful geometric result which is also very similar to that
of the q-binomials, when q is a power of a prime integer.

Theorem 6 ([19]). Npqq is the number of points in the collection of Schubert cells in the Grassmannian
Grm,ℓpFqq with m “ a1 ` a3 ` ¨ ¨ ¨ ` a2ℓ´1 and ℓ “ a1 ` a2 ` ¨ ¨ ¨ ` a2ℓ, that correspond to all of the Young
diagrams that fit in the snake graph.
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Future work. Unimodal sequences appear in geometry and topology as Betti numbers, i.e., ranks of
(co)homology groups of varieties and manifolds. Thanks to Poincaré duality, these sequences are often
palindromic. Theorems 2–4 and 6 allow one to hope for existence of a cohomology theory in which the
polynomials associated with q-rationals play the role of Hilbert-Poincaré polynomials. Bearing in mind
the general principle of Deligne that counting over finite fields can be equivalent to computing cohomology
over C, Theorem 6 may be the key to answering this question.

Possible applications of q-rationals. Not much is known about it, but work has begun.
Relation of q-rationals to knot theory is very promising. According to John Conway, a rational n

k
parametrizes a certain class of “rational knots”. Let Jn

k
pqq be its (normalized) Jones polynomial.

Theorem 7 ([14]). The Jones polynomial of a rational knot can be expressed in terms of the numerator
and denominator of the corresponding q-rational: Jn

k
pqq “ qNpqq ` p1 ´ qqKpqq.

In [4] a somewhat “converse” approach is tasted: the Alexander polynomial was used to study q-rationals.
In [1] the authors study compactifications of the space of Bridgeland stability conditions of triangulated

categories. q-rationals appear as braid group orbits in the boundary.
The fact that the representation (2) becomes the Burau representation of S3 with t “ ´q suggests that

the results about q-rationals could be applied to study the Burau representation, which is an interesting
subject of research; see [3].

A version of the q-binomial theorem is proved in the very recent preprint [12]. The main ingredient
is the new notion of q-binomials

`

x
k

˘

q
for non-integer x. This work is a first step towards a PSLp2,Zq-

invariant q-calculus. A new version of q-Gamma function described in [12] deserves further study.

Stabilization of Taylor series: q-analogues of real numbers. Let x ě 1 be an irrational number.
Choose a sequence of rationals pxnqně1 converging to x and consider the corresponding sequence of
q-rationals rx1sq , rx2sq , . . . Can we say that this sequence of rational functions converges in any sense?

Consider the Taylor expansions of the rational function rxnsq at q “ 0, that by abusing of notation,

will be dented by the same symbol rxnsq “
ř

kě0 κn,k q
k. The following stabilization phenomenon is one

of the most surprising properties of q-rationals.

Theorem 8 ([15]). For every k ě 0, the coefficients κn,k of the Taylor series of the functions rxnsq
stabilize, as n grows, and the limit coefficients, κk :“ limnÑ8 κn,k, depend only on x.

Note also that the recurrence (1) allows one to include the case x ă 1, getting a Laurent series in q.
To illustrate this stabilization, consider once again the consecutive Fibonacci quotients that approxi-

mate the golden ratio, φ “ 1`
?
5

2 . The examples of the Taylor series are as follows
“

8
5

‰

q
“ 1 ` q2 ´ q3 ` 2q4 ´ 4q5 ` 7q6 ´ 12q7 ` 21q8 ´ 37q9 ` 65q10 ´ 114q11 ` 200q12 ¨ ¨ ¨

“

21
13

‰

q
“ 1 ` q2 ´ q3 ` 2q4 ´ 4q5 ` 8q6 ´ 17q7 ` 36q8 ´ 75q9 ` 156q10 ´ 325q11 ` 677q12 ¨ ¨ ¨

“

55
34

‰

q
“ 1 ` q2 ´ q3 ` 2q4 ´ 4q5 ` 8q6 ´ 17q7 ` 37q8 ´ 82q9 ` 184q10 ´ 414q11 ` 932q12 ¨ ¨ ¨

More and more terms coincide, and the series eventually stabilizes to

rφsq “ 1 ` q2 ´ q3 ` 2q4 ´ 4q5 ` 8q6 ´ 17q7 ` 37q8 ´ 82q9 ` 185q10

´423q11 ` 978q12 ´ 2283q13 ` 5373q14 ´ 12735q15 ` 30372q16 ¨ ¨ ¨

Quite remarkably, the sequence of coefficients in rφsq coincides (up to an alternating sign) with the
sequence A004148 of OEIS called the “generalized Catalan numbers”. In general, the combinatorial
meaning of the coefficients of the series rxsq is not understood.

Theorem 8 was first discovered by computer experimentation, and the stabilization phenomenon
seemed like a miracle at first sight. The proof is based on the total positivity property (Theorem 2).
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Analytic properties. Although we understand the stabilized Taylor series rxsq as a q-analogue of x, it
is impossible to recover x from it substituting q “ 1, as the series diverges at q “ 1. It can be proved
however that x ‰ x1 implies rxsq ‰ rx1sq, so the power series rxsq contains the “full information” about x.

Assume q P C. The radius of convergence of the series rxsq was studied in [11, 21]. The main conjecture
of [11] states that for every real x ą 0 the radius of convergence of the series rxsq is greater or equal to
3´

?
5

2 “ 0.381966..., and that equality holds only for x which is PSLp2,Zq-equivalent to φ. This statement,
provided it is true, is an analogue of the famous result due to Hurwitz claiming that the golden ratio is
the most irrational number. A much weaker statement is proved.

Theorem 9 ([11]). For every rational number x ą 0 the radius of convergence of the series rxsq is at

least 3 ´ 2
?
2 “ 0.171572...

This means that the polynomial Kpqq in rxsq “
Npqq

Kpqq
has no zeros in the disc with this radius around 0.

Quadratic irrationals. When x P R is a solution to a quadratic equation ax2 ` bx` c “ 0 with integer
coefficients a, b, c, it is called a quadratic irrational. This is the simplest class of irrationals, in this case

x “
m`

?
r

k , with integer m, k and r ě 0. Elements of the theory of quantized quadratic irrationals were
developed in [9].

Every quadratic irrational is a fixed point of an element of PSLp2,Zq under the action (2). Thanks to
the PSLp2,Zq-invariance, this property commutes with quantization.

Theorem 10 ([9]). If x is a fixed point of A P PSLp2,Zq then rxsq is a fixed point of Aq.

It follows that rxsq “
Mpqq`

?
Rpqq

Kpqq
, where M,K,R P Zrqs and, by Theorem 4, Rpqq is a palindrome.

Example 4 ([15, 9]). The series rφsq and
“?

2
‰

q
are the Taylor series of the following functions

rφsq “
q2 ` q ´ 1 `

a

pq2 ` 3q ` 1qpq2 ´ q ` 1q

2q
,

“?
2

‰

q
“

q3 ´ 1 `
a

pq4 ` q3 ` 4q2 ` q ` 1qpq2 ´ q ` 1q

2q2
.

What is the reason for the appearance of the “invisible” term q3 ´ 1 that disappears when q “ 1, and of
q2 ´ q ` 1 which is a “quantum instance” of 1? These questions are unanswered.

The radius of convergence, Rx, of the series rxsq for a quadratic irrational x is the modulus of the
smallest root of Rpqq. For the above examples we get

Rφ “
3 ´

?
5

2
and R?

2 “
1 `

?
2 ´

a

2
?
2 ´ 1

2
.

One last enigma. The theory of quantum numbers is still a baby making very first steps, and every
step raises new questions. To end this review, I will mention one of them.

The Taylor series of rπsq starts as follows

rπsq “ 1 ` q ` q2 ` q10 ´ q12 ´ q13 ` q15 ` q16 ´ q20 ´ 2q21 ´ q22 ` 2q23 ` 4q24 ` q25

´4q27 ´ 4q28 ´ 2q29 ` q30 ` 5q31 ` 8q32 ` 3q33 ´ 3q34 ´ 10q35 ´ 12q36 ´ 5q37

`8q38 ` 19q39 ` 20q40 ` 2q41 ´ 18q42 ´ 32q43 ´ 25q44 ` 31q46 ` 51q47 ` 45q48 ´ 7q49 ¨ ¨ ¨

(observe, the coefficient of q45 vanishes for unknown reasons). This is the slowest growing series among
other q-numbers that I know. It’s tempting to conjecture that the radius of convergence of rπsq is 1.

Does rπsq satisfy any equation? I calculated the first 666 terms trying to answer this question, but failed.
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