
Ptolemy Relation and Friends
Anna Felikson

To Andrei Zelevinsky who would have turned 70 now

1 Prelude: Ptolemy’s Theorem

We start with a theorem known since Ptolemy (Claudius Ptolemaeus, 2nd century AD), who used it
to create his table of chords with the aim of applying it in astronomy. The statement reads as follows:

Given a cyclic Euclidean quadrilateral ABCD, one has AB · CD +BC ·AD = AC ·BD.

When ABCD is a rectangle, Ptolemy’s theorem turns into the Pythagoras theorem.
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Figure 1: Ptolemy (left) and Ptolemy’s theorem (right). The image in the left: Illustration by unknown

author to “Les Vrais Pourtraits et vies des Hommes Illustres”, by Andre Thevet, 1584. © The Trustees of

the British Museum.

In recent decades, identities similar to the one in the Ptolemy’s theorem started to pop up in many
fields in connection to the notion of cluster algebras introduced and studied since 2000 by Fomin and
Zelevinsky [FZ1, FZ2]. In this brief note we will try to describe several animals from this big and rich
zoo.

2 Plücker relations

Consider the Grassmannian Gr2,n = {V | V ⊂ Rn, dimV = 2} of 2-dimensional subspaces in the
real n-dimensional space. A 2-dimensional subspace V ⊂ Rn can be described by two n-dimensional
vectors (ai1, . . . , ain), i = 1, 2 spanning the subspace, i.e. by a 2 × n matrix of rank 2. Denote

pij = det

(
a1i a1j
a2i a2j

)
, the Plücker coordinates on Gr2,n. The set of these determinants (considered

up to simultaneous scaling) completely defines the subspace V , so it provides coordinates on Gr2,n.
It is easy to show that pij satisfy the Plücker relation pikpjl = pijpkl + pjkpki, for i < j < k < l.

(
a11 a12 . . . aii . . . a1j . . . a1n
a21 a22 . . . a2i . . . a2j . . . a2n

)

pij = det

(
a1i a1j
a2i a2j

)
pikpjl = pijpkl + pjkpki
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Figure 2: Plücker coordinates, Plücker relation and a triangulation.
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Now, let 1, . . . , n be the vertices of a regular n-gon (see Fig. 2). Assign pij to the diagonal of
the n-gon connecting the vertices i and j. Then Plücker relation will look identical to the Ptolemy
relation above.

How many Plücker coordinates are needed in order to specify a point in Gr2,n? Plücker relations
say that one does not need all of pij . More precisely, given a triangulation of the n-gon (see Fig. 2,
right) the Plücker coordinates associated to the diagonals of the triangulation and the sides of the
polygon are sufficient to compute all other Plücker coordinates by applying Plücker relations several
times.

3 Conway-Coxeter Frieze Patterns

A frieze pattern is a grid of positive integers as in Fig. 3 with n+ 2 rows, where the first and last rows
consist of 1’s and every four numbers in every small diamond a dbc satisfy the following diamond
rule: ad− bc = 1.

. . . 1 1 1 1 1 1 1 1 1 . . .
2 1 3 4 1 2 2 3 2 1

. . . 1 2 11 3 1 3 5 5 1 . . .
2 1 7 8 2 1 7 8 2 1

. . . 1 3 5 5 1 2 11 3 1 . . .
1 2 2 3 2 1 3 4 1 2

. . . 1 1 1 1 1 1 1 1 1 . . .

b
a d

c

ad− bc = 1

Figure 3: A frieze with a highlighted diamond and zig-zags of 1’s.

Conway and Coxeter [CC1, CC2] showed that every frieze pattern is periodic. Moreover, if one
starts with two boundary rows of 1’s and a connecting zig-zag of 1’s, one can always build a frieze
pattern by reconstructing the entries one by one using the diamond rule. And the frieze constructed
in this way will be always periodic, with period n+ 3, and will always consist of positive integers.

We will now associate the diagonals of an (n + 3)-gon to entries of the frieze pattern (see Fig. 4)
so, that the boundary edges of the polygon will correspond to entries in the first and last rows of the
frieze, shifting along the frieze to the right will correspond to a clockwise rotation of the polygon, and
the adjacent entries of a diamond in the frieze correspond to diagonals with one common vertex and
the other vertex shifted by one position. A zig-zag of 1’s will in this way correspond to assigning 1’s
to the diagonals in some triangulation of the polygon (and every triangulation will correspond to a
set of entries from which the rest of the frieze can be found by the diamond rule).
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Figure 4: Entries of the frieze and diagonals of the polygon.

Notice that the diamonds in a frieze correspond to four diagonals in the polygon. More precisely,
labelling the vertices of the polygon 1, 2, 3, . . . , n clockwise, we get diagonals of the quadrilateral
i, i+1, j, j+1. So, assuming that the entries of the frieze are assigned to the corresponding diagonals,
we see that the diamond rule is exactly taking the shape of the Ptolemy’s identity (given that the
boundary sides of the polygon are assigned 1’s).

If there existed a cyclic triangulated Euclidean polygon with all sides of length 1 and all diagonals
in the triangulation also of length 1, the entries of the frieze would represent Euclidean lengths of
all the diagonals of the polygon. However, there are no Euclidean polygons with unit sides and unit
diagonals in a triangulation. Luckily, one can overcome this by considering ideal hyperbolic polygons
instead of Euclidean ones.
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4 Hyperbolic Ptolemy and triangulated surfaces

Recall that the upper half-plane model of hyperbolic plane H2 is the set {z ∈ C | Im(z) > 0} with

metric given by ds2 = dx2+dy2

y2 . In this model, geodesics are represented by half-lines and half-circles

orthogonal to the real axis. Applying the map f(z) = z−i
z+i one can transform the upper half-plane

model to the Poincaré disc model in the unit disc. See for example [S] for more detail.
Let A,B ∈ ∂H2 be two points at the boundary of the hyperbolic plane. The hyperbolic distance

between them is infinite, but the infinity is concentrated around ∂H2 and can be dealt with by using
horocycles as follows (a horocycle is a limit of a circle as the centre approaches ∂H2, in the upper half-
plane model of H2, a horocycle centred at ∞ is represented by a horizontal line, horocycles centred
at other points are represented by circles tangent to ∂H2). Choose horocycles hA and hB centred at
A and B (see Fig. 5 for the pictures in the upper half-plane and in the disc models). Let lAB be the
signed distance between the horocycles hA and hB (lAB is zero when the horocycles are tangent and
negative when the horocycles intersect each other). Denote λAB = elAB/2, the lambda length of AB.

An ideal polygon in H2 is a polygon with all vertices at ∂H2. Given an ideal quadrilateral ABCD
and a choice of horocycles around each of the vertices, one can prove that the lambda lengths for
ABCD satisfy Ptolemy identity [Pen]:

λAB · λCD + λBC · λDA = λAC · λBD.

λAB · λCD + λBC · λDA = λAC · λBD

λAB= elAB/2
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Figure 5: Lambda-lengths: removing infinity by horocycles

It is easy to show that given a, b, c > 0, one can construct (in a unique way up to isometry) an
ideal hyperbolic triangle with a choice of horocycles at its vertices such that a = λBC , b = λAC , c =
λAB . Also, triangles can be attached to each other along the edges with the same lambda lengths.
Therefore, given a triangulated polygon with positive numbers assigned to its sides and diagonals in the
triangulation, one can construct an ideal hyperbolic polygon with horocycles assigned to its vertices
such that for every diagonal the assigned number will coincide with the corresponding lambda length.
In particular, this means that every frieze pattern described above can be modelled by a hyperbolic
polygon.

In a similar way, given a triangulated surface S and a set of positive numbers assigned to the arcs of
the triangulation, one can define a unique hyperbolic structure (with a unique choice of horocycles at
all vertices of the triangulation), so that the assigned numbers will coincide with the lambda lengths
of the corresponding arcs. In other words, lambda lengths of arcs in a triangulation of S provide
coordinates on the decorated Teichmüller space of S.

5 Friezes from surfaces

Let (S,M) be a surface S with a set of marked points M . We assume that it is possible to triangulate
S so that the vertices of each triangle are marked points. Let E be the set of arcs on (S,M). One can
generalise the definition of a frieze pattern from the settings of a polygon to a general marked surface
in the following way.

A frieze ϕ from (S,M) is a map ϕ : E → R assigning a real number ϕ(γ) to every arc γ ∈ E in
such a way that the Ptolemy relation holds for every quadrilateral on the surface. A frieze ϕ is

- positive if all numbers ϕ(γ) are positive;

- integer if all numbers ϕ(γ) are integers;

- unitary if there exists a triangulation T of (S,M) such that ϕ(γ) = 1 for all γ ∈ T .
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Question: Given a marked surface (S,M), is it true that every positive integer frieze from (S,M) is
unitary?

When S is a disc with n boundary points (i.e. a polygon), Conway-Coxeter’s theorem [CC1, CC2]
gives a positive answer. So, one could expect this would be the case in general. However, it was
shown in [FP] that the answer is negative for a punctured polygon (friezes of type D). Later, a
positive answer was obtained for an annulus [GS] and for a pair of pants [CGFT]. Besides that, to
our knowledge the question of unitarity of positive integer friezes from surfaces is open.

6 Fugue: Cluster algebras

All instances appearing above can be described as various manifestations of cluster algebras. We
will sketch the idea of cluster algebra and illustrate it by an example of cluster algebras arising from
surfaces.

6.1 Quivers, seeds, clusters...

Quiver mutations. We start with a quiver Q, i.e. an oriented graph with finitely many vertices
labelled 1, . . . , n and bij ∈ Z arrows from vertex i to vertex j. We assume that the quiver contains no
loops (bii = 0) and no 2-cycles (here, p arrows from i to j are understood as −p arrows from j to i,
so that bij = −bji). When bij = 1, we omit the label on the corresponding arrow of the quiver.

Next, we will pick a vertex k of the quiver and will define a mutation µk of Q taking Q to
Q′ = µk(Q), which is only different from Q in a small neighbourhood of the vertex k and coincides
with Q away from k. The effect of µk on Q can be explained in two steps:

k kµkqp

r

qp

r′

where r + r′ = pq

(1) reverse all arrows
incident to the vertex k;

(2) for every path i
p→ k

q→ j
with p, q > 0 apply:

which corresponds to the following formula

b′ij =

{
−bij , if i = k or j = k

bij + 1
2 (|bik|bkj + bik|bkj |), otherwise.

Example 1.

1

2

3

µ2

1

2

3 1 1

2 2 55 4 4

33
µ5

Quiver mutation.

Seed mutations. A seed is a pair (Q,u), where Q is a quiver and u = (u1, . . . , un) is an n-tuple
of algebraically independent rational functions ui(x1, . . . , xn) in the variables xi. A function ui is
associated with the vertex vi of Q. In the initial seed, we assume ui = xi.

A mutation µk in the direction k will take the seed (Q,u) to (Q′,u′), where Q′ = µk(Q) is obtained
by the quiver mutation described above and u′ = (u′1, . . . , u

′
n), where u′i = ui for all i 6= k and

u′k =

∏
i→k

ubiki +
∏
j←k

u
bkj

j

uk
,

where the products are taken over all vertices i such that there is an incoming (respectively outgoing)
arrow i → k (respectively j ← k) with positive weight bik > 0 (respectively, bkj > 0). The above
relation is called exchange relation. Note that a mutation is an involution, i.e. µk(µk(Q,u)) = (Q,u).

Example 2.

x1

x2

x3

µ2

x1

x′
2 =

x1+x3
x2

x3 x1 x1

x2
x2

x′
5

x5

x4 x4

x3x3
µ5

x′5 = x1x3+x2x4
x5

Seed mutation.

The functions ui(x1, . . . , xn) obtained from x1, . . . , xn in the process of interated seed mutations
are called cluster variables. The collection of cluster variables contained in one seed is called a cluster.
Let Q(x1, . . . , xn) be the field of rational functions in the variables xi, i ∈ {1, . . . , n}. The cluster
algebra A(Q) is the Q-subalgebra of Q(x1, . . . , xn) generated by all cluster variables.
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Example 3.
x1 x2

x2 x1

x1
1+x2
x1

x2
1+x1
x2

1+x1+x2
x1x2

1+x1
x2

1+x1+x2
x1x2

1+x2
x1

µ2

µ1

µ1

µ2

µ2

Cluster algebra of type A2:

5 seeds, 5 cluster variables

(the seed after 5 mutations
coincides with the initial seed
up to a permutation of the vertices)

Laurent Phenomenon ([FZ1]): In a cluster algebra, every cluster variable ui(x1, . . . , xn) is a Lau-

rent polynomial in (x1, . . . , xn), i.e. u = P (x1,...,xn)
Q(x1,...,xn)

, where Q(x1, . . . , xn) = xd11 . . . xdnn is a monomial.

6.2 Examples of cluster algebras

Example 4 (Cluster algebra from triangulated surfaces). Given a triangulated surface, one
can construct a quiver as shown below. Each vertex i of the quiver here corresponds to some
arc ei of the triangulation. It is easy to check that a mutation µi of the quiver corresponds to
a flip of the corresponding edge ei in the triangulation.

ekek
flip fk

mutation
µkk

For a triangulated surface, the part of the quiver Q adjacent to k (and thus defining
the mutation µk) is as in Example 2 , and the exchange relation turns into

u′k =
uiuj + ulum

uk
,

which is identical to Ptolemy (or to Plücker) relation.

Given a triangulated surface and initial values x1, . . . , xn assigned to the arcs of the
triangulation, one can construct a unique hyperbolic surface with a choice of horocycles
around vertices, so that xi will coincide with the lambda lengths of the corresponding
arcs. A sequence of iterated mutations of the initial seed will then correspond to
applying a sequence of flips to a triangulation, cluster variables as functions of {xi} will
coincide with the lambda lengths of the corresponding arcs, clusters will correspond to
collections of lambda lengths of arcs in one triangulation. See [FST] and [FT].

Example 5. (Cluster algebra from GrassmannianG2,n). Given an n-gon P with a triangulation
T , one can retell the same story as in Example 4. A quiver Q is built from the triangulation:
the vertices of Q correspond to the diagonals and sides of P . A cluster variable associated
to the diagonal connecting vertices i and j is now identified with the Plücker coordinate pij .

The exchange relation takes the form pjl =
pijpkl+pjkpki

pik
and can be identified with the Plücker

relation. We obtain a cluster algebra in the ring of rational functions on G2,n, where the
clusters correspond to the collections of Plücker coordinates associated with diagonals in one
triangulation.
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Example 6. (Friezes and cluster category) Cluster categories were introduced in [BMRRT]
to give a categorical interpretation of cluster algebras. For a cluster algebra associated with a
triangulated polygon (with a good triangulation), a cluster category can be represented by a
frieze where each entry is replaced by a finitely generated module over kQ (here Q is the quiver
corresponding to the triangulation and k is an algebraically closed field). There is a tight
connection between a cluster algebra and the corresponding cluster category, in particular,
many results about cluster algebras were established using cluster categories. See [MG] for a
review about friezes and [Pr] for a bridge to cluster categories.

6.3 Conclusion

Ptolemy’s theorem is deeply tied with the recent theory of cluster algebras. Since the introduction
of cluster algebras by Fomin and Zelevinsky, cluster algebras found connections and applications to a
large range of domains in mathematics and mathematical physics. This includes (but is not exhausted
by!) the following:

Mirror symmetry 

Combinatorics of polytopes

Cluster algebras
(Fomin, Zelevinsky)

Dilogarithm identitiesHyperbolic geometry

Root systems

Frieze patterns

Coxeter groups

Teichmuller theory

Triangulated surfaces

Supersymmetric gauge theories

Conformal field theory

Poisson geometry 

Integrable systems 

Quiver representations

Tropical geometry

Solitons

Links related to cluster algebras are collected on Cluster Algebras Portal [F] maintained by Sergey
Fomin. One can start reading with [W], [M] and [FR].

Remark 1. Another train of results related to the Ptolemy relation arises from the Ptolemy inequality
stating that for any quadrilateral ABCD in the Euclidean plane, AC · BD ≤ AB · CD + BC · AD.
Metric spaces with this property are called Ptolemy spaces. A metric space is CAT(0) if and only if
it is Ptolemy and Busemann convex, see [FLS].

7 Back to Ptolemy: proof without words

There are numerous proofs of Ptolemy’s theorem and Ptolemy’s inequality based on various ideas
(similarity, inversion, triangle inequality, etc). To conclude, we provide a “proof without words”
(appeared in [DH] and popularised by the cut-the-knot portal).
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Figure 6: Ptolemy’s theorem: ef=ac+bd
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