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Chapter 1

Introduction

1.1 Introduction

The origins of this work go back to the seminal theorem of John Stallings on
groups with in�nitely many ends [St], which is an analogue of the Sphere The-
orem for 3-manifolds. This suggested that there might be group theoretic ana-
logues for some of the structural theorems from the theory of 3-manifolds. Soon
after came an announcement by F. Waldhausen [Wa] which proposed annu-
lus and torus theorems for orientable 3-manifolds and a structure theorem for
Haken manifolds with incompressible boundary. This structure theorem gives
a canonical decomposition of a Haken manifold with incompressible boundary
into ‘rigid’ pieces and ‘known’ pieces. The rigid pieces are essentially hyper-
bolic. The known pieces are �nitely covered by either a surface cross an inter-
val (I-bundles) or a surface cross a circle (Seifert �bred). The union of known
pieces is called the ‘characteristic submanifold’. Such decompositions were ac-
complished by Jaco and Shalen [JS] and Johannson [J]. These decompositions are
now referred to as JSJ decompositions. In addition, Johannson had some striking
theorems such as a Haken 3-manifold with incompressible boundary and no es-
sential annuli is determined up to homeomorphism by its fundamental group.
Further, he showed that there are only �nitely many Haken manifolds (up to
homeomorphism) having a given fundamental group.

Our attempts in this direction started with an analogue of the annulus theo-
rem for torsion-free hyperbolic groups [SS4]. Soon after Dunwoody and Swen-
son proved a complete analogue of the torus theorem for�nitely generated groups
[DS]. We brie�y describe this theorem. Here, a torus group means a virtually
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4 CHAPTER 1. INTRODUCTION

polycyclic group of some length n (VPC(n)). One considers the so-called almost
invariant sets over such subgroups. Almost invariants over a subgroup H in G

are the analogues of an immersion in the group G. The torus theorem asserts
that if G has no almost invariant sets over VPC groups of length less than n > 0
and ifG has almost invariant sets over a VPC(n) groups thenG splits over some
VPC(n) group. The case in which n = 0 is the famous theorem of Stallings.
Their method also gives one part of a JSJ decomposition for groups, namely the
I-bundle part. We used their techniques to obtain an analogue of the two-stage
JSJ decompositions for �nitely presented groups [SS2]. (See [S] for corrections.
This set of corrections has been used by several people who used the results
of[SS2]. It is added as an appendix to this paper.).

In this paper one considers almost invariant sets (a.i. sets) over VPC(i) groups
in an (almost) �nitely presented group G. One considers a.i. sets over VPC(n)
groups (which will be called annuli) and a.i. sets over VPC(n+1) groups (which
will be called tori) that do not cross the annuli. It is assumed thatn � 1 and thatG
does not have any a.i. sets over VPC(i) groups for i < n. The main theorem 13.12
of [SS2] shows that there is a bipartite graph of groups decomposition �n,n+1(G).
One type of vertices, termed V0-vertices, correspond to �bred spaces in the 3-
manifold case. The second type of vertices are termed V1-vertices. However,
some of the V0-vertices have no �bering structure, they only commensurise some
VPC(n) or VPC(n+1) groups. We also showed that the arguments do not extend
to three successive VPC groups. There is also another approach due to Guirardel
and Levitt for one stage splittings [GL1]. The complete correspondence with the
JSJ decompositin is obtained only for Poincaré duality pairs (PD pairs) which is
the subject of the three papers in these notes.

A natural question is whether one can achieve the results of Theorem 13.12
from [SS2] by considering annuli �rst and tori second. This leads to the notion
of an adapted a.i. set and carrying out the analogous work is di�cult. This is
carried out in another paper [GSS]which proves a relative torus theorem and also
has another approach to regular neighbourhoods in group theory. We mention
this in passing since Peter considered this a useful concept with other possible
applications.

From the beginning Peter Scott’s view was that JSJ decompositions can be
viewed as a regular neighbourhood of cross-connected components of immersed
annuli and tori. Here cross-connected component means that there is a chain of
annuli (or tori) where two successive elements can not be homotoped apart.

In the following notes we show that the exact analogues of JSJ decomposi-
tions holds for Poincaré duality pairs.
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We now brie�y mention some other work in which the term JSJ decomposi-
tion is used. The �rst of these is the work of Rips and Sela [RS] who considered
splittings of one ended torsion-free groups over in�nite cyclic groups. If �1 and
�2 are two such splittings over H1 and H2 (respectively), the splittings ‘cross’ if
H1 is hyperbolic with respect to �2 andH2 is hyperbolic with respect to �1. This
corresponds to what were termed strong-strong crossings in [SS2]. Rips and Sela
obtain a graph of groups decomposition ofGwith some vertex groups being sur-
face groups (quadratically hanging groups in their terminology) which enclose
all splittings over cyclic groups up to conjugacy. This has some spectacular ap-
plications described by Bestvina in [B]. Fujiwara and Papasoglu generalised this
to splittings of one-ended �nitely presented groups over all slender groups [FP].
This has found traction in the work of Girardel and Levitt [GL2] who describe
much other work in their monograph. Again the concept of regular neighbour-
hood makes an appearance in this approach (see section 6 of [GL2]).

We next describe another technique of Peter Scott which he repeatedly used
in the above papers and is called ‘good position’ for almost invariant sets. In
[NSSS] this was extended to what is called ‘very good position’ which is the
analogue of minimal surfaces for a.i. sets. This may have further application in
group theory. It is natural to expect a proof of the torus theorem using very good
position and regular neighbourhoods similar to that given by Andrew Casson in
his China notes. There are many such concepts and techniques of Peter Scott
scattered throughout these papers which may be of more general interest than
the problems addressed here.

There are three papers in these notes:

[SS1] Canonical decompositions for Poincaré duality pairs

[RSS1] Comparing decompositions of Poincaré duality pairs

[RSS2] A deformation theorem for Poincaré duality pairs in dimension 3

All three of the papers deal with the analogues of JSJ decompositions of a
compact orientable 3-manifoldM with incompressible boundary @M considered
by Jaco and Shalen [JS] and Johannson [J]. There are generalisations for (M,T )
with T a �nite union of compact incompressible surfaces in @M . The usual case
is when T = @M and this is what is generalised in the above papers.

Each of the above papers has a comprehensive introduction, so we give a
short overall introduction. In all three papers the characteristic submanifold is
conceived as a regular neighbourhood of annuli and tori.
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In [SS1] the results of [SS2] are applied to the case of an orientable Poincaré
duality pair of dimension n+ 2, n � 1. In this case it is automatic that there are
no a.i. sets over VPC(i) subgroups for i < n. Thus, following [SS2], a.i. sets over
VPC(n) groups (annuli) and a.i. sets over VPC(n+ 1) groups (tori) which do not
cross the previous ones are considered in forming regular neighbourhoods. This
last condition on crossing, which looks somewhat arbitrary, ensures that tori do
not cross the boundary. It turns out that one can also add all tori which do not
cross the boundary. The theory of [SS2] gives us a bipartite graph of groups de-
composition �n,n+1 in which there are two types of vertices V0 and V1 with the
V0-vertices corresponding to the CCCs of annuli and tori. The exact analogue
of the JSJ decomposition is a completion �c

n,n+1 of �n,n+1. The di�erence is that
some V1-vertices, which are small �bred, are transferred to V0-vertices and other
changes are made to make �c

n,n+1 bipartite. We will omit this change in the dis-
cussion below. Some parts of [SS1] about enclosing tori are relatively easy using
the torus theorem. Other parts about enclosing annuli are somewhat harder. Part
of the di�culty is due to the plague of special cases. After the completion of the
work it turned out that the double of the decomposition for (G, @G) is essentially
the decomposition of the double DG of (G, @G). This suggests that there may
be other approaches to simplify the results of [SS1]. One clari�cation from [SS1]
is that tori which do not cross annuli are among the a.i. sets which are relative
to @G.

The results of [SS1] are greatly extended in [RSS1]. We start with an example
which illustrates the necessity of some restriction on the tori considered in [SS2]
and [SS1].

Example 1.1.1 (Scott’s example). This is Example 2.13 of [SS3]. Let F be an ori-
entable surface with at least two boundary components and let C denote one of the
boundary components. Thus ⇡1(F ) is free, and ⇡1(C) is a free factor of ⇡1(F ). If
the rank of ⇡1(F ) is at least 3, then it is easy to see that there is a nontrivial splitting
of ⇡1(F ) as an amalgamated free product over ⇡1(C). Similar considerations apply
to express ⇡1(F ) as an HNN extension if it has rank 2.

We now take two copies F1, F2 of F and consider the two 3–manifolds Mi =
Fi ⇥ S

1, each with a boundary component Ti corresponding to Ci ⇥ S
1. Form a

3–manifoldM by gluing theMi’s along Ti so that the �brations do not match. The
resulting torus T is a topologically canonical torus in the JSJ splitting ofM . If each
⇡1(Fi) has rank at least 3, we have ⇡1(Mi) = Ai ⇤

Hi

Bi, i = 1, 2, whereHi = ⇡1(Ti).

If G denotes ⇡1(M), and H denotes the subgroup H1 = H2, and A = A1 ⇤
H

A2,
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B = B1 ⇤
H

B2, we have a splitting G = A ⇤
H

B of G that crosses the splitting
associated to T . Thus although T is topologically canonical, it is not algebraically
canonical. Notice that embedded essential annuli in M1 and M2, disjoint from T ,
yield splittings ofG over the �bres ofM1 andM2, so thatG also has splittings over
incommensurable cyclic subgroups of H .

Other examples are discussed in [RSS1]. A common feature of these examples
is that there are splittings over a VPC(n + 1) group H (i.e., a torus) and they do
not cross any annuli and G splits over non commensurable VPC(n) (i.e., annuli)
subgroups of H . This is taken as the de�nition of a ‘special canonical torus’. All
of them cross a.i. sets over �nite index subgroups of H , and many of them cross
splittings over H . The �rst main result of [RSS1] is the following.

Theorem 1.1.2. The edge splittings of �n,n+1 are either canonical or special canon-
ical. (Here canonical refers to those splittings over annuli and tori which do not cross
any a.i. sets over annuli and tori.)

The arguments in the proofs lead to the next result.

Theorem 1.1.3. The family En,n+1(G) of a.i. sets over VPC(n) and VPC(n + 1)
groups inG has a regular neighbourhood. It is obtained from �n,n+1(G) by collaps-
ing the edges corresponding to special canonical tori.

This �nally leads us to the question which has been lurking so far. What hap-
pens if we consider only splittings over VPC(n) groups (annuli) and VPC(n+ 1)
groups relative to the boundary and try to form a regular neighbourhood anal-
ogous to the Waldhausen decomposition of Neumann and Swarup [NS]? This is
the main content of section 5 of [RSS1]. This too can be done and, as in [NS], it
leads to a �nite number of families of �brations over small orbifolds and excep-
tional V0-vertices of �n,n+1. The analogue of the Waldhausen decomposition is
denoted ⌃n,n+1. The decomposition ⌃n,n+1 is obtained from �n,n+1 by splitting
the exceptional V0-vertices along an exceptional annulus. The theorem (5.10 of
[RSS1]) describes ⌃n,n+1 in terms of special V0-vertices and special annuli con-
tained in them.

In the case of PD(3) pairs it is shown in [RSS1] that the characteristic pieces
are the same as in the 3-manifold case. This leads to the paper [RSS2] and an
analogue of the Johannson Deformation Theorem for PD(3) pairs. As expected,
the proof is quite algebraic and seems much simpler and shorter than the known
proofs in the 3-manifold case. A consequence not mentioned there is the follow-
ing.
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Theorem 1.1.4. For a given group G there are only �nitely many PD(3) pairs
(G, @G) up to isomorphism.

This completes our brief description of the three papers.
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Chapter 2

Canonical decompositions for
Poincaré duality pairs

G. Peter Scott and Gadde A. Swarup

Abstract. The authors previously described an algebraic analogue of the JSJ–
decomposition of a 3–manifold. This analogue is de�ned for any �nitely pre-
sented, one-ended group. We study this analogue in the special case of Poincaré
duality pairs.

Dedicated to Terry Wall

Introduction
In [22], as corrected in [23], we obtained canonical decompositions for almost

�nitely presented groups analogous to the JSJ–decomposition of a 3–manifold.
In particular, for many almost �nitely presented groups G, and any integer n �
1, we de�ned a decomposition �n,n+1(G), and we showed that when G is the
fundamental group of an orientable Haken 3–manifold M with incompressible
boundary, then �1,2(G) essentially yields the JSJ–decomposition ofM . Further
details are discussed in [24]. We recall that the JSJ–decomposition of M is
given by a possibly disconnected compact submanifold V (M) which is called
the characteristic submanifold of M , such that the frontier of V (M) consists
of essential annuli and tori, and each component of V (M) is an I–bundle or a
Seifert �bre space. Further each component of the closure ofM�V (M) is simple.
The frontier of V (M) determines a graph of groups structure forG = ⇡1(M), in

11



12 CHAPTER 2. CANONICAL DECOMPOSITIONS

which all edge groups are free abelian of rank 1 or 2, and this is essentially the
same as �1,2(G).

In this paper, we consider the structure of �n,n+1(G), in the case of Poincaré
duality pairs (G, @G) of dimension n + 2, where n � 1. The results we obtain
are very closely analogous to the above description for 3–manifolds. This greatly
generalises work of Kropholler in [11] and of Castel in [4]. Kropholler described
a canonical decomposition of such Poincaré duality pairs in any dimension at
least three, and Castel described a canonical decomposition of such Poincaré
duality pairs in dimension three only, but their decompositions are analogous to
the Torus Decomposition of an orientable Haken 3–manifold. See section 2.4 for
a discussion.

A Poincaré duality pair is the algebraic analogue of an aspherical manifold
with aspherical boundary components whose fundamental groups inject. It con-
sists of a group G which corresponds to the fundamental group of the manifold,
and a family @G of subgroups which correspond to the fundamental groups of
the boundary components, and the whole setup satis�es an appropriate version
of Poincaré duality. The main di�culty in establishing the results in this paper is
that if one considers any of the decompositions ofG described in [22], then a pri-
ori there is no connection between the decomposition and the boundary groups
of the pair. In the topological case, if one considers the full characteristic subman-
ifold V (M) of an orientable Haken manifold M with incompressible boundary,
one can doubleM along its boundary to obtain a closed Haken 3–manifoldDM ,
and there is a natural submanifold DV of DM which is the double of V (M).
Further, in most cases, DV is the characteristic submanifold of DM. In the al-
gebraic context, doubling a (n + 2)–dimensional Poincaré duality pair (G, @G)
along its boundary yields a (n+2)–dimensional Poincaré duality groupDG, but
in general there is no natural way to double an algebraic decomposition of G to
obtain a corresponding decomposition ofDG. However, after establishing all the
properties of the decomposition �n,n+1(G), when (G, @G) is a Poincaré duality
pair, we will show in section 2.8 that the algebraic situation is very similar to the
topological one. In the topological setting, one can also reverse this process and
construct the full characteristic submanifold of an orientable Haken manifoldM
with incompressible boundary by starting with the characteristic submanifold
V (DM) of DM and “undoubling” to obtain the required submanifold V (M)
of M . This greatly simpli�es the construction of the characteristic submanifold
of M . If we start with the Poincaré duality group DG, and the decomposition
�n+1(DG), then the natural algebraic analogue of “undoubling” is simply to re-
strict this decomposition to G using the Subgroup Theorem. This determines a
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graph of groups structure onG, and it follows from our results in section 2.8 that
this decomposition of G is �n,n+1(G). However this does not simplify the proof
that �n,n+1(G) has the properties we require. In fact, the proof of this "undou-
bling" result in section 2.8 depends on �rst establishing all the properties of the
decomposition �n,n+1(G). The di�culty is that we are unable to show directly
that the decomposition of G obtained by restricting �n+1(DG) to G has any of
the enclosing properties required of �n,n+1(G). This is partly because our idea of
enclosing is much stronger than simply requiring certain subgroups of G to be
conjugate into certain vertex groups of a given decomposition ofG. For example
if a splitting of G is enclosed by a vertex v of a graph of groups decomposition
� of G, then we can split � at v to obtain a re�ned graph of groups structure for
G which has an extra edge associated to the given splitting.

An important point about our ideas in [22] and in this paper is that we con-
sider all almost invariant subsets of a group G rather than just those which cor-
respond to splittings. In the topological setting, this corresponds to considering
essential maps of codimension–1 manifolds rather than just essential embed-
dings. We do not know how to carry out the program in this paper using only
splittings. The main goal in [22] was to enclose the algebraic analogues of im-
mersed annuli and tori (the analogues were almost invariant sets over virtually
polycyclic groups), which is the natural generalization of the approaches in [18]
and [20]. It turns out that the analogy is stronger in the case of Poincaré duality
pairs. The decomposition �1,2(G) which we obtained in [22] was constructed to
enclose the analogues of immersions of annuli and tori whereas in JSJ theory
[7, 8, 31], the aim was to enclose essential Seifert pairs. When G is the funda-
mental group of a 3–manifold, the di�erence turns out to be minor (consisting
of small Seifert �bre spaces) and one can easily go from one decomposition to
the other. In the case of groups it seems more natural to enclose almost invariant
sets over virtually polycyclic subgroups, that is the analogues of immersions of
annuli and tori, rather than Seifert pairs and to make the distinction clear, we
will call the decompositions that we obtain Annulus–Torus decompositions. It
should be pointed out that when doubling a manifold, the JSJ–decompositions
behave better than the Annulus–Torus decompositions, and we will switch from
one to the other when it is convenient. Similar comments apply to our algebraic
decompositions of Poincaré duality pairs. This is made precise in Theorem 2.8.6
and Remark 2.8.7.

Ourmain result, Theorem 2.3.14, is a description of the decomposition�n,n+1(G),
and its completion �c

n,n+1(G), for an orientable PD(n + 2) pair (G, @G), when
n � 1. We leave the precise statement till later because it requires the intro-
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duction of a substantial amount of terminology. Some of the result is simply a
restatement of our results from [22]. But an important part of the result is that
all the edge splittings of �n,n+1(G) are induced by essential annuli and tori in
(G, @G), in a sense which we de�ne in section 2.2. This means that, for each
n � 1, the decomposition �n,n+1(G) of G is closely analogous to the JSJ–
decomposition of an orientable 3–manifold.

In section 2.1, we recall the main de�nitions and results from our work in
[22], as corrected in [23], and from our more recent paper with Guirardel [6]. In
section 2.2, we discuss the de�nition of a Poincaré duality group and pair, and
then we discuss essential annuli and tori (the terms ‘annulus’ and ‘torus’ are used
in a generalised sense) in orientable Poincaré duality pairs. We show that each
essential annulus and torus has a naturally associated almost invariant set, which
we call its dual. We also show that all almost invariant sets over V PCn groups in
an orientable PD(n+2) pair are ‘generated’ by duals of essential annuli. In sec-
tion 2.3, we give several more de�nitions which �nally allow us to state our main
theorem, Theorem 2.3.14. In section 2.4, we discuss the analogues of torus de-
compositions for orientable PD(n+2) groups and pairs. These decompositions
were already obtained by Kropholler [11] under the extra hypothesis that any
V PC subgroup has �nitely generated centraliser, a condition which he called
Max-c. In [12] Kropholler showed that the Max-c condition holds in dimension
three. However an example due to Mess [16] shows that the Max-c condition is
not always satis�ed. In dimension three, this decomposition was also obtained
by Castel [4]. The comparison between our results and Kropholler’s results in the
case of orientable PD(n + 2) groups is discussed brie�y in [22], but we discuss
this in more detail here. In section 2.5, we analyse further our torus decompo-
sition of Poincaré duality pairs. In section 2.6, we continue studying orientable
PD(n + 2) pairs, and consider the crossing of almost invariant subsets over
V PCn groups with almost invariant subsets over V PC(n + 1) groups. This is
a new feature of our arguments in this paper, which could not be handled in the
more general setting of [22]. In section 2.7, we bring together the various pieces
and prove our main result, Theorem 2.3.14. In section 2.8, we are able to prove
Theorem 2.8.6 which shows that, for an orientable PD(n+2) pair (G, @G), one
can double the decomposition �c

n,n+1(G) to obtain �c

n+1(DG). Finally in section
2.9, we discuss some natural further questions.

This paper is a revised version of [25]. The main changes are that sections 2
and 3 of that paper have been removed, as the theory therein has now been devel-
oped more thoroughly and generally in [6], and a new section, numbered 2.8, has
been added. In addition, there are several minor corrections and improvements
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in the exposition.

2.1 Preliminaries
In this section we recall the main de�nitions and results from [22], as corrected in
[23], which we will use. But we will start by brie�y discussing some 3–manifold
theory which motivates and guides all our work. Let M be an orientable Haken
3–manifold with incompressible boundary. Jaco and Shalen [7] and Johannson
[8] proved the existence and uniqueness of the characteristic submanifold ofM .
We will denote this submanifold by JSJ(M). Its frontier consists of essential
annuli and tori inM , and each component of JSJ(M) is a Seifert �bre space or
I–bundle. Further any essential map of a Seifert �bre space intoM can be prop-
erly homotoped to lie in JSJ(M), and this condition characterizes JSJ(M). In
order to compare this with algebraic generalisations, we note that, in particular,
any essential map of the annulus or torus into M can be properly homotoped
to lie in JSJ(M). This weaker condition does not characterise JSJ(M), but
does characterise a submanifold of M which we denote by AT (M). The letters
AT stand for Annulus–Torus. This is discussed in detail in chapter 1 of [22],
but the notation AT (M) is not used. Any essential map of the annulus or torus
intoM can be properly homotoped to lie in AT (M), and AT (M) is minimal, up
to isotopy, among all essential submanifolds of M with this property. (A com-
pact submanifold of M is essential if its frontier consists of essential embedded
surfaces.) We will say that the family of all essential annuli and tori in M �lls
AT (M), and we regard AT (M) as a kind of regular neighbourhood of this fam-
ily. The connection between AT (M) and JSJ(M) can be described as follows.
The submanifold JSJ(M) has certain exceptional components. These are of two
types. One type is a solid torus W whose frontier consists of three annuli each
of degree 1 in W , or of one annulus of degree 2 in W , or of one annulus of de-
gree 3 in W . The other type lies in the interior of M and is homeomorphic to
the twisted I–bundle over the Klein bottle. (Note that as M is orientable, only
one such bundle can occur.) Then AT (M) can be obtained from JSJ(M) by
discarding all these exceptional components, replacing each of them by a regu-
lar neighbourhood of its frontier, and �nally discarding any redundant product
components from the resulting submanifold.

Recall from the previous paragraph that the family of all essential annuli and
tori inM �llsAT (M), and thatwe regardAT (M) as a kind of regular neighbour-
hood of this family. However, AT (M) is �lled by a smaller family of essential
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annuli and tori inM , and this turns out to be crucial for the algebraic analogues
we are discussing in this paper. Let AT@(M) denote the union of those com-
ponents of AT (M) which meet @M , and let ATint(M) denote the union of the
remaining components of AT (M). Then any essential annulus in M can be
properly homotoped to lie inAT@(M). Thus it is clear that any essential torus in
M which is homotopic into ATint(M) cannot cross any such annulus, and that
ATint(M) must be �lled by tori which are homotopic into ATint(M). Further,
it is easy to show that AT@(M) is �lled by the family of all essential annuli in
M . We conclude that AT (M) is �lled by the family of all essential annuli in M

together with those essential tori inM which do not cross any essential annulus
in M .

For future reference, we will also need to discuss the Torus Decomposition
of M and its relationship with AT (M). As above one can characterise a sub-
manifold T (M) of M by the property that any essential map of a torus into M

can be homotoped into T (M) and that T (M) is minimal, up to isotopy, among
all essential submanifolds ofM with this property. Of course ifM admits no es-
sential annulus, thenAT (M) and T (M) are equal. In general, T (M) is obtained
from AT (M) as follows. Any component of ATint(M) is left unchanged. Now
AT@(M) has three types of component. The �rst type is a Seifert �bre space
which is not a solid torus and such that each boundary torus lies in the interior
ofM , or is contained in @M , or meets @M in vertical annuli. The second type is
a solid torus which meets @M in annuli, and the third type is an I–bundle over
a surface F which meets @M in the associated @I–bundle over F . As no essen-
tial torus inM can be homotopic into a component of AT@(M) of the second or
third type, all such components are omitted when we form T (M). Finally letW
denote a component of AT@(M) which is of the �rst type. Thus W is a Seifert
�bre space which is not a solid torus and W \ @M consists of tori and vertical
annuli in @W . By pushing into the interior of W each torus component of @W
which meets @M in annuli, we obtain a Seifert �bre spaceW 0 which is contained
in and homeomorphic toW . Note that the components of the closure ofW �W

0

are homeomorphic to T ⇥ I , and W
0 \ @M consists only of tori. Replacing W

by W
0 for each such component of AT@(M) �nally yields T (M). Note that it is

clear that T (M) ⇢ AT (M) and that an essential torus in M is homotopic into
AT (M) if and only if it is homotopic into T (M).

Next we recall the cohomological formulation of the theory of ends and of
almost invariant subsets of a group. Let G be a group and let E be a set on
which G acts on the right. Let PE denote the power set of E. Under Boolean
addition (“symmetric di�erence”) this is an additive group of exponent 2. Write
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FE for the additive subgroup of �nite subsets. We refer to two sets A and B

whose symmetric di�erence lies in FE as almost equal, and write A a
= B. This

amounts to equality in the quotient group PE/FE. Now de�ne

QE = {A ⇢ E : 8g 2 G, A
a
= Ag}.

The action ofG onPE by right translation preserves the subgroupsQE andFE,
and QE/FE is the subgroup of elements of PE/FE �xed under the induced
action. Elements ofQE are said to be almost invariant. If we takeE to beGwith
the action of G being right multiplication, then the number of ends of G is

e(G) = dimZ2 (QG/FG).

If G is �nite, all subsets are �nite and clearly e(G) = 0. Otherwise, G is an
in�nite set which is invariant (not merely “almost”), so e(G) � 1.

IfH is a subgroup ofG, and we takeE to be the coset spaceH\G of all cosets
Hg, still with the action ofG being right multiplication, then the number of ends
of the pair (G,H) is

e(G,H) = dimZ2

✓
Q(H\G)

F (H\G)

◆
.

WhenH is trivial, so that e(G,H) = e(G), this can be formulated in terms of
group cohomology as follows. The abelian group PG is naturally a (right) Z2G–
module, and the submodule FG can be identi�ed with the group ring Z2G. Thus
the invariant subgroup QG/FG equals H0(G;PG/Z2G). Now the short exact
sequence of coe�cients

0 ! Z2G ! PG ! PG/Z2G ! 0

yields the following long exact cohomology sequence.

H
0(G;Z2G) ! H

0(G;PG) ! H
0(G;PG/Z2G)

�! H
1(G;Z2G) ! H

1(G;PG) !

For any group G, the groupHn(G;PG) is zero if n 6= 0, and isomorphic to
Z2 when n = 0. And if G is in�nite, thenH

0(G;Z2G) = 0. Also when G is in�-
nite, the non-zero element ofH0(G;PG)maps to the element ofH0(G;PG/Z2G)
which corresponds to the equivalence class of G in QG/FG, under the iden-
ti�cation of these two groups. It follows that when G is in�nite, the group
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H
1(G;Z2G) can be identi�ed with the collection of all almost invariant subsets

of G modulo almost equality and complementation.
If H is nontrivial, let E denote the coset space H\G. The abelian group PE

is naturally a (right) Z2G–module, and we denote the submodule FE by Z2E.
Thus the invariant subgroup QE/FE equals H0(G;PE/Z2E). Now the short
exact sequence of coe�cients

0 ! Z2E ! PE ! PE/Z2E ! 0

yields the following long exact cohomology sequence.

H
0(G;Z2E) ! H

0(G;PE) ! H
0(G;PE/Z2E)

�! H
1(G;Z2E) ! H

1(G;PE) !

For any group G and any subgroup H , the groupHn(G;PE) is isomorphic
to H

n(H;Z2), and if the index of H in G is in�nite, then H
0(G;Z2E) = 0.

Thus, as above, when H has in�nite index in G, the image of the coboundary
mapH0(G;PE/Z2E) ! H

1(G;Z2E) can be identi�ed with the collection of all
almost invariant subsets ofH\Gmodulo almost equality and complementation.

If G is �nitely presented, this description connects very nicely with topol-
ogy. Let X be an Eilenberg-MacLane space K(G, 1) with �nite 2–skeleton, let
eX denote its universal cover, and letXH denote the cover ofX with fundamen-
tal group H . Thus XH is the quotient of eX by the (left) action of H acting as
a covering group. Because X has �nite 2–skeleton, the part of the long exact
cohomology sequence shown above is isomorphic to the corresponding part of
the following long exact cohomology sequence for XH ,

H
0
f
(XH ;Z2) ! H

0(XH ;Z2) ! H
0
e
(XH ;Z2)

�! H
1
f
(XH ;Z2) ! H

1(XH ;Z2) !

whereH i

f
(XH ;Z2) denotes cellular cohomologywith �nite supports. Thuswhen

H has in�nite index in G, the image of the coboundary map
H

0
e
(XH ;Z2) ! H

1
f
(XH ;Z2) can be identi�ed with the collection of all almost

invariant subsets of H\G modulo almost equality and complementation. If G
is �nitely generated but not �nitely presented, we can take X to be a K(G, 1)
with �nite 1–skeleton but it is no longer correct to identify H

1(G,Z2E) with
H

1
f
(XH ;Z2). In fact, cellular cohomology with �nite supports for a cell complex

which is not locally �nite is an unreasonable idea, as the coboundary of a �nite
cochain need not be �nite. However it is easy to de�ne a modi�ed version of this
theory in our particular setting. For future reference we set this out as a remark.
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Remark 2.1.1. LetG be a group which is �nitely generated but need not be �nitely
presented, and let X be a K(G, 1) with �nite 1–skeleton. Let H be a subgroup of
G, and let XH denote the cover of X with fundamental group H . We replace the
use of cochains on XH with �nite support by cochains whose support consists of
only �nitely many cells above each cell of X . Note that as X has only �nitely
many 1–cells, such 1–cochains are �nite. In this paper,H1

f
(XH ;Z2) will denote the

appropriate cohomology group of this cochain complex. This enables us to identify
H

1(G,Z2E) with H
1
f
(XH ;Z2).

This is the topological formulation of Lemma 7.4 in [3].

Recall that the invariant subgroup QE/FE equals H0(G;PE/Z2E). Thus
the elements ofH0(G;PE/Z2E) are equivalence classes of almost invariant sub-
sets ofH\G under the equivalence relation of almost equality. Also the elements
ofH0

e
(XH ;Z2) are equivalence classes of cellular 0–cochains onXH which have

�nite coboundary. The support of such a cochain is a subset of the vertex set
of XH . Thus whether or not G is �nitely presented, the isomorphism between
H

0(G;PE/Z2E) and H
0
e
(XH ;Z2) associates to an almost invariant subset Y

of H\G a subset Z of the vertex set of XH with �nite coboundary, where Z is
unique up to almost equality. This is a convenient fact which we will use on
several occasions. Note that Y is trivial, i.e. �nite or co-�nite, if and only if Z
is �nite or co-�nite. Also if Y and Y

0 are almost invariant subsets of H\G with
corresponding subsets Z and Z

0 of the vertex set of XH , then the intersections
Y \ Y

0 and Z \ Z
0 also correspond.

Next we recall some more basic facts about almost invariant sets. If X and
Y are subsets of G, the four sets X \ Y , X \ Y

⇤, X⇤ \ Y and X
⇤ \ Y

⇤ are
called the corners of the pair (X, Y ). If X is H–almost invariant and Y is K–
almost invariant, a corner of the pair (X, Y ) is small if it isH–�nite orK–�nite.
(These two conditions are equivalent so long asX and Y are both nontrivial and
G is �nitely generated.) We say that X crosses Y if all four corners of the pair
(X, Y ) are K–in�nite. The preceding parenthetical comment shows that if X
and Y are nontrivial andG is �nitely generated, thenX crosses Y if and only Y
crosses X . In [21] and [22], we de�ned a partial order  on certain families of
almost invariant subsets of a �nitely generated group G as follows. The idea of
the de�nition is that Y  X means that Y is “almost” contained in X . If E is a
family of almost invariant subsets ofG, we say that the elements ofE are in good
position if whenever U and V are elements of E such that two of the corners of
the pair are small, then one corner is empty. If the elements of E are in good
position, then we de�ned Y  X to mean that either Y \X

⇤ is empty or it is the
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only small corner of the pair (X, Y ). We showed that  is a partial order on E.
Note that if Y ⇢ X , then automatically Y  X . Note also that the requirement
of good position was needed to avoid the possibility of having distinct setsX and
Y such that Y  X andX  Y . In [19], we de�ned an even stronger condition.
If E is a family of almost invariant subsets of G, we say that the elements of E
are in very good position if whenever U and V are elements of E, either none
of the four corners of the pair is small or one is empty. This is equivalent to
the partial orders on E induced by inclusion and by  being the same. We also
showed that one can often arrange that families of almost invariant sets are in
very good position by replacing the given sets by equivalent ones.

Next we recall the theory of algebraic regular neighbourhoods. In [22], we
de�ned an algebraic regular neighbourhood (De�nition 6.1) and a reduced al-
gebraic regular neighbourhood (De�nition 6.18) of a family of almost invariant
subsets of a �nitely generated groupG. See also De�nition 9.1 in [6]. We discuss
the di�erence between these objects immediately after De�nition 2.1.4 below.
Each is a bipartite graph of groups structure � for G with certain properties.
The basic property of � is that the V0–vertices enclose the given almost invari-
ant sets. See chapters 4 and 5 of [22], or section 3 of [6], for the de�nition and
basic properties of enclosing. Algebraic regular neighbourhoods need not ex-
ist, but we showed that when they exist they are unique up to isomorphism of
bipartite graphs of groups. We also showed that if one has a �nite family of al-
most invariant sets each over a �nitely generated subgroup of G, then it always
has an algebraic regular neighbourhood and a reduced algebraic regular neigh-
bourhood. The main results of [22] were existence results for algebraic regular
neighbourhoods of in�nite families in several special cases. In this paper, we will
use the existence results for reduced algebraic regular neighbourhoods.

Before stating these existence results, we brie�y discuss how the topologi-
cal and algebraic situations are related. Groups which are virtually polycyclic
(V PC) play an important role in this paper. The Hirsch length of such a group
will simply be called the length for brevity. A group which is V PC of length
n will be called V PCn. We will often need to refer to a group which is V PC

of length at most n. Such a group will be called V PC( n). We will also use
the notation V PC(< n) in a similar way. Almost invariant sets which do not
cross other almost invariant sets play a special role. We will need the following
de�nition from [22].

De�nition 2.1.2. Let G be a one-ended �nitely generated group and let X be a
nontrivial almost invariant subset over a subgroup H of G.
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For n � 1, we will say that X is n–canonical if X crosses no nontrivial K–
almost invariant subset of G, for which K is V PC( n).

Let G denote any one-ended almost �nitely presented group. The natural
algebraic analogue of an essential annulus in a 3–manifold M is a nontrivial al-
most invariant subset of G over a V PC1 subgroup, and the natural analogue
of an essential torus in M is a nontrivial almost invariant subset of G over a
V PC2 subgroup. As AT (M) is a kind of regular neighbourhood of the family
of all essential annuli and tori in M , it would seem natural to consider the alge-
braic regular neighbourhood inG of the family of all nontrivial almost invariant
subsets of G which are over V PC subgroups of length 1 or 2. However, we
showed in Example 11.7 of [22] that, even whenG is the fundamental group of a
3–manifold, such a family need not possess an algebraic regular neighbourhood
with the right properties. But recall from our discussion on page 16 thatAT (M)
is �lled by the family of all essential annuli inM togetherwith those essential tori
inM which do not cross any essential annulus inM . The algebraic analogue of
this family is the familyF1,2 of equivalence classes of all nontrivial almost invari-
ant subsets of G which are over V PC1 subgroups and of equivalence classes of
all 1–canonical almost invariant subsets of G which are over V PC2 subgroups.
In [22], as corrected in [23], we showed that F1,2 has an algebraic regular neigh-
bourhood which is precisely analogous to the decomposition given by AT (M).
We also described analogous constructions for V PC subgroups of G of higher
length. This is contained in Theorem 2.1.16 below.

Next we need to introduce some more de�nitions which we used in [22].

De�nition 2.1.3. IfE is aG–invariant family of nontrivial almost invariant sub-
sets of a group G, we will say that an element of E which crosses no element of E
is isolated in E.

When forming an algebraic regular neighbourhood of a family E of almost
invariant sets, isolated elements yield special vertices which we also call isolated.

De�nition 2.1.4. A vertex of a graph of groups � is isolated if it has exactly two
incident edges for each of which the inclusion of the associated edge group into the
vertex group is an isomorphism.

Remark 2.1.5. If � consists of a single vertex v and a single edge, then v is not
isolated, as only one edge is incident to v.

Note that the two edges incident to an isolated vertex have the same associ-
ated edge splitting. Conversely if two distinct edges e and e

0 of a minimal graph
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� of groups have associated edge splittings which are conjugate, there is an edge
path � in �which starts with e and ends with e0 such that all the interior vertices
of � are isolated, and all the edges in � have associated edge splittings which are
conjugate. When one forms the algebraic regular neighbourhood � of a familyE
of nontrivial almost invariant subsets of a groupG, it may happen that� has such
edge paths with more than two edges. One could reduce � by simply collapsing
each maximal such edge path in � to a single edge. However � is bipartite and
one wants to preserve this property, so one may instead need to collapse such a
maximal edge path to two edges. The resulting bipartite graph of groups is the
reduced algebraic regular neighbourhood of E. It never has three distinct edges
such that the associated splittings of G are all conjugate. We formalise this in
the following de�nition.

De�nition 2.1.6. Aminimal bipartite graph of groups � is called reduced bipartite
if it does not have three distinct edges such that the associated splittings of G are
all conjugate.

Some other special types of vertices may occur when one forms an algebraic
regular neighbourhood.

De�nition 2.1.7. Let � be a minimal graph of groups decomposition of a groupG.
A vertex v of� is of V PC–by–Fuchsian type ifG(v) is a V PC–by–Fuchsian group,
where the Fuchsian group is �nitely generated and is not �nite nor two-ended, and
there is exactly one edge of � which is incident to v for each peripheral subgroupK
of G(v), and this edge carries K .

If the length of the normal V PC subgroup of G(v) is n, we will say that v is of
V PCn–by–Fuchsian type.

Remark 2.1.8. It is possible that a single edge of � can have both ends incident to
v. In this case, the two inclusions of the associated edge group into G(v) must have
images which are distinct peripheral subgroups of G(v) up to conjugacy.

Note that if G = G(v), then � must consist of v alone, and the Fuchsian
quotient group ofG corresponds to a closed orbifold. Conversely if the Fuchsian
quotient group of G(v) corresponds to a closed orbifold, then � must consist of
v alone, and G = G(v). Note also that if v is of V PCn–by–Fuchsian type, then
each peripheral subgroup of G(v) is V PC(n+ 1).

The assumption in De�nition 2.1.7 that the Fuchsian quotient of G(v) not
be �nite nor two-ended is made to ensure the uniqueness of the V PCn normal
subgroup of G(v) with Fuchsian quotient. This is immediate from the following
result.
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Lemma 2.1.9. Let G be a group with a normal V PCk subgroup L with Fuchsian
quotient �. Suppose that � is not �nite nor two-ended. If L0 is a V PCk normal
subgroup of G with Fuchsian quotient, then L

0 must equal L.

Proof. IfL0 is not contained inL, the image ofL0 in� is a nontrivial normal V PC

subgroup, which we denote byN . As no Fuchsian group can be V PC2, it follows
that N must be V PC0 or V PC1. If N is V PC0, i.e. �nite, then � must also be
�nite. IfN is V PC1, then it must be of �nite index in�. As we are assuming that
� is not �nite nor two-ended, it follows that L0 must be contained in L. Similarly
L must be contained in L

0, so that L and L
0 are equal, as required.

We note that in [22] we used the word Fuchsian to include discrete groups of
isometries of the Euclidean plane, as well as the hyperbolic plane. The additional
groups were all virtually Z⇥ Z. The reason for this abuse of language was that
we wanted to include the case of V PC groups in the statements of our results.
However in all of the main results of this paper, it will be convenient to exclude
the case of V PC groups.

Next we prove two simple results about V PC groups which will be needed
on several occasions.

Lemma 2.1.10. Let G be a V PC(n + 1) group which splits over a subgroup L.
Then L is V PCn, and is normal in G with quotient which is isomorphic to Z or
Z2 ⇤ Z2.

Proof. The result is equivalent to asserting that, for a V PC(n+1) groupG, any
minimalG–tree must be a point or a line. We will prove this by induction on the
length of G. The induction starts when G has length 1. Then G has two ends
and the result is standard. Now suppose that G has length n + 1 � 2, and that
the result is known for V PC( n) groups. Let T be a minimal G–tree. There is
a subgroup G

0 of �nite index in G which normalises some V PCn subgroup L
0.

By our induction assumption, the action of L0 on T must �x a point or have a
minimal subtree T 0 which is a line. In the second case, the minimal subtree of T
left invariant by G

0 must also be T 0. In the �rst case, we let T 0 denote the �xed
subtree ofL0, i.e. T 0 consists of all vertices and edges �xed byL0. The action ofG0

must preserve T 0, so that the quotient group L
0\G0 acts on T

0. As this quotient
group has two ends, it follows that the minimal subtree of T 0 left invariant byG0

is a point or a line. Thus in either case, the minimal subtree of T left invariant
by G

0 is a point or a line. As G0 has �nite index in G, this minimal subtree must
equal T , so that T itself is a point or a line as required.
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Lemma 2.1.11. LetG be a V PC(n+1) group with a normal V PCn subgroup L
such that L\G is isomorphic to Z or to Z2⇤Z2. LetK be a normal V PCn subgroup
of G which is commensurable with L. Then the following hold:

1. K is contained in L.

2. IfK\G is isomorphic to Z or to Z2 ⇤ Z2, then K = L.

Proof. 1) IfK is not contained in L, then the image ofK in the quotient L\G is
a nontrivial �nite normal subgroup. As neither Z nor Z2 ⇤ Z2 possesses such a
subgroup, it follows that K must be contained in L as required.

2) IfK\G is isomorphic toZ or toZ2⇤Z2, we can apply the �rst part with the
roles of K and L reversed. We deduce that L is contained in K , so that K = L

as required.

We also prove the following useful technical results aboutV PC–by–Fuchsian
groups.

Lemma 2.1.12. LetG be a group with a normal V PCn subgroup Lwith Fuchsian
quotient �, and let K be a V PC(n+ 1) subgroup of G.

1. Then L \K is a normal V PCn subgroup of K with quotient isomorphic to
Z or to Z2 ⇤ Z2.

2. If H is a normal V PCn subgroup of K with quotient isomorphic to Z or to
Z2 ⇤ Z2, and if H is commensurable with L, then H equals L \K .

Proof. 1) AsL is V PCn and normal inG, the intersectionL\K must be V PC(
n), and normal in K . Hence the quotient of K by L \ K is a V PC subgroup
of � of length at least 1. As a Fuchsian group can have no V PC2 subgroups, it
follows that k must equal n and the quotient ofK by L\K must be V PC1. As
the only V PC1 subgroups of a Fuchsian group are isomorphic to Z or to Z2 ⇤Z2,
the result follows.

2) This follows from Lemma 2.1.11.

Next we have a uniqueness result for a V PC–by–Fuchsian structure on a
group.

Lemma 2.1.13. LetG be a group with a normal V PCn subgroup Lwith Fuchsian
quotient � which is not virtually cyclic, and suppose G also has a normal V PCm

subgroup L0 with Fuchsian quotient �0 which is not virtually cyclic. Then L = L
0.
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Proof. Suppose L0 is not contained in L. Then the image of L0 in� is a nontrivial
normalV PC subgroup. But a Fuchsian groupwhich is not virtually cyclic cannot
contain such a subgroup. It follows that L0 ⇢ L. Similarly, it follows that L ⇢ L

0

so that L = L
0, as required.

Now we can state the results from [22] which play a basic role in this paper.
Recall that if H is a subgroup of a group G, the commensuriser, CommG(H), of
H in G is the subgroup of G consisting of all elements g such that the conjugate
ofH by g is commensurable withH . Trivially, CommG(H) containsH . We will
say that CommG(H) is large if it contains H with in�nite index, and is small
otherwise.

The following existence result is essentially the statement of Theorem 12.3
of [22]. We have made one slight modi�cation in the last sentence of part 3),
where we refer to the number of coends of a subgroup in a group. See page 33
of [22] for a brief discussion of this concept. It was introduced independently
by Bowditch [2] under the name of coends, by Geoghegan [5] under the name
of �ltered coends, and by Kropholler and Roller [13] under the name of relative
ends.

Theorem 2.1.14. Let n � 1, and let G be a one-ended, almost �nitely presented
groupwhich is not V PC and does not admit any nontrivial almost invariant subsets
over V PC(< n) subgroups, and let Fn denote the collection of equivalence classes
of all nontrivial almost invariant subsets of G which are over V PCn subgroups.

Then Fn has an unreduced and a reduced algebraic regular neighbourhood in
G. Let �n = �(Fn : G) denote the reduced algebraic regular neighbourhood of Fn

in G.
Then �n is a minimal, reduced bipartite, graph of groups decomposition of G.

Each V0–vertex v of �n satis�es one of the following conditions:

1. v is isolated, and G(v) is V PCn.

2. v is of V PC(n � 1)–by–Fuchsian type, and elements of Fn enclosed by v

cross strongly if at all.

3. G(v) is the full commensuriser CommG(H) for some V PCn subgroup H ,
such that e(G,H) � 2, and elements of Fn enclosed by v cross weakly if at
all.
Further, ifH is a V PCn subgroup ofG such that e(G,H) � 2, then �n will
have a non-isolated V0–vertex v such that G(v) = CommG(H) if and only
if H has at least 4 coends in G.
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�n consists of a single vertex if and only if Fn is empty, or G itself satis�es
condition 2) or 3). In the �rst case, �n consists of a single V1–vertex. In the second
case, �n consists of a single V0–vertex.

Remark 2.1.15. The assumption thatG is not V PC is made to simplify the state-
ment of this result. If G is V PC(n + 1), then �n consists of a single V0–vertex v

with associated groupG. In this case, v may not satisfy any of the conditions in the
above theorem.

We will say that a V0–vertex in case 3) is of commensuriser type if v is not iso-
lated, and is of large commensuriser type if, in addition,H has large commensuriser.

Note that we showed in Example 11.1 of [22] that, even ifG is �nitely presented,
the group associated to a V0–vertex of commensuriser type need not be �nitely gen-
erated.

The statement at the end of part 3) with the assumption that H has at least 4
coends inG comes from the proofs of Propositions 7.16, 7.17, 8.1 and 8.6 of [22]. Note
that if H has large commensuriser in G, the proof of Proposition 8.1 of [22] shows
that H has in�nitely many coends in G. This uses the fact that we have excluded
the case when G is V PC .

When n = 2, this result is the algebraic analogue of the torus decomposition
T (M) of a closed orientable Haken 3–manifold M . See the start of this section
for a discussion of T (M). As M is compact, its fundamental group G is �nitely
presented. As M is irreducible, it follows that G is also one-ended. As M is
closed, our discussion in [24] implies that G does not admit any nontrivial al-
most invariant subsets over V PC1 subgroups. Now the above result asserts that
�2(G) exists, and we showed in [22] that it is the graph of groups structure forG
determined by the frontier of T (M) inM . The V0–vertices of �2(G) correspond
to the components of T (M). In this case, �2(G) has no V0–vertices of commen-
suriser type. An isolated V0–vertex of �2(G) corresponds to a component of
T (M) homeomorphic to T ⇥ I . A V0–vertex of �2(G) which is of V PC1–by–
Fuchsian type corresponds to a component of T (M) which is homeomorphic to
a Seifert �bre space.

Next we come to the following more general result which is essentially the
statement of Theorem 13.12 of [22]. Again we assume that G is not V PC in
order to simplify the statement.

Theorem 2.1.16. Let n � 1, and let G be a one-ended, almost �nitely presented
groupwhich is not V PC and does not admit any nontrivial almost invariant subsets
over V PC(< n) subgroups, and let Fn,n+1 denote the collection of equivalence
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classes of all nontrivial almost invariant subsets of G which are over a V PCn

subgroup, together with the equivalence classes of all n–canonical almost invariant
subsets of G which are over a V PC(n+ 1) subgroup.

Then Fn,n+1 has an unreduced and a reduced algebraic regular neighbourhood
in G. Let �n,n+1 = �(Fn,n+1 : G) denote the reduced algebraic regular neighbour-
hood of Fn,n+1 in G.

Then �n,n+1 is a minimal, reduced bipartite, graph of groups decomposition of
G. Each V0–vertex v of �n,n+1 satis�es one of the following conditions:

1. v is isolated, and G(v) is V PC of length n or n+ 1.

2. v is of V PCk–by–Fuchsian type, where k equals n� 1 or n, and elements of
Fn,n+1 enclosed by v cross strongly if at all.

3. G(v) is the full commensuriser CommG(H) for some V PC subgroup H of
length n or n+ 1, such that e(G,H) � 2, and elements of Fn,n+1 which are
enclosed by v and are over groups commensurable with H cross weakly if at
all.

Further, if H is a V PC subgroup of G of length n or n + 1, such that
e(G,H) � 2, then �n,n+1 will have a non-isolated V0–vertex v such that
G(v) = CommG(H) if and only if H has at least 4 coends in G.

�n,n+1 consists of a single vertex if and only if Fn,n+1 is empty, or G itself
satis�es condition 2) or 3). In the �rst case, �n,n+1 consists of a single V1–vertex. In
the second case, �n,n+1 consists of a single V0–vertex.

When n = 1, this result is the algebraic analogue of the Annulus-Torus de-
compositionAT (M) of an orientable Haken 3–manifoldM with incompressible
boundary. See the start of this section for a discussion of AT (M). AsM is com-
pact, its fundamental group G is �nitely presented. As M is irreducible and has
incompressible boundary, it follows that G is also one-ended. Now the above
result asserts that �1,2(G) exists, and we showed in [22] that it is the graph of
groups structure for G determined by the frontier of AT (M) in M . The V0–
vertices of �1,2(G) correspond to the components of AT (M). An isolated V0–
vertex of�1,2(G) corresponds to a component ofAT (M) homeomorphic toA⇥I

or T ⇥ I . A V0–vertex of V PC1–by–Fuchsian type corresponds to a component
ofAT (M)which is a Seifert �bre space notmeeting @M . A V0–vertex of V PC0–
by–Fuchsian type corresponds to a component of AT (M) which is an I–bundle
and meets @M in the associated S

0–bundle. A V0–vertex v of commensuriser
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type, where G(v) is the full commensuriser CommG(H) for some V PC1 sub-
group H , corresponds to a component of AT (M) which is a Seifert �bre space
and meets @M . Finally, in this case, �1,2(G) has no V0–vertex v of commensu-
riser type, where G(v) is the full commensuriser of a V PC2 subgroup of G.

In the special case whenM is closed or admits no essential annuli, thenG has
no nontrivial almost invariant subsets over any V PC1 subgroup, so that �2(G)
is de�ned and equals �1,2(G).

Recall that JSJ(M) can be obtained from AT (M) by adding certain excep-
tional submanifolds of M . We will describe analogous algebraic constructions
for any n and any groupG for which �n+1(G) or �n,n+1(G) exist. The results of
these constructions are graphs of groups structures �c

n+1(G) and �c

n,n+1(G) for
G, which we call the completions of �n+1(G) and �n,n+1(G) respectively.

De�nition 2.1.17. Let G be a group for which the decompositions �n+1(G) or
�n,n+1(G) exist. The completions of these decompositions, denoted �c

n+1(G) and
�c

n,n+1(G) respectively are graphs of groups structures for G obtained as follows:
If �n+1(G) or �n,n+1(G) has a V1–vertexw such thatG(w) is V PC(n+1), and

if w has a single incident edge e with G(e) of index 2 in G(w), then we subdivide
e into two edges. The new vertex is a V1–vertex and w becomes a V0–vertex. If the
original V0–vertex of e is isolated, then in addition we collapse e to a point, which
becomes a new V0–vertex.

If �n,n+1(G) has a V1–vertex w such thatG(w) is V PCn, and if w has a single
incident edge e withG(e) of index 2 or 3 inG(w), or if w has exactly three incident
edges each carrying G(w), then we subdivide each of the incident edges into two
edges. The new vertices are V1–vertices and w becomes a V0–vertex. If the original
V0–vertex of any of the edges incident to w is isolated, then in addition we collapse
that edge.

Making all these changes for every such V1–vertex of �n+1(G) and �n,n+1(G)
yields �c

n+1(G) and �c

n,n+1(G) respectively.

Remark 2.1.18. If n = 1, andG is the fundamental group of an orientable Haken
3–manifold M with incompressible boundary, then the discussion in [22] shows
that �c

1,2(G) is the graph of groups determined by the frontier of JSJ(M) in M .
The V0–vertices of �c

1,2(G) correspond to the components of JSJ(M). Those V0–
vertices of �c

1,2(G)which are obtained from V1–vertices of �1,2(G) correspond to the
exceptional components of JSJ(M). If M is closed or admits no essential annuli,
then �c

2(G) is de�ned and equals �c

1,2(G). Also those V0–vertices of �c

2(G) which
are obtained from V1–vertices of �2(G) correspond to the exceptional components
of JSJ(M).
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2.2 Poincaré duality pairs and essential annuli and
tori

We refer to Brown [3], Bieri and Eckmann [1], Kapovich and Kleiner [9], andWall
[34] for various de�nitions of Poincaré duality groups and pairs. The de�nition
of Bieri and Eckmann is that G is a Poincaré duality group of dimension n+2 if
H

i(G;ZG) is 0, when i 6= n+2, and is isomorphic to Zwhen i = n+2. Further
G is orientable if the action ofG onH

n+2(G;ZG) is trivial. In the following, we
will be mostly concerned with orientable Poincaré duality groups and pairs. A
Poincaré duality pair is a pair (G, @G), where @G = {S1, ..., Sm} is a system of
subgroups of G, such that the double of G along @G is a Poincaré duality group.
Theorem 8.1 of [1] shows that each Si must be a PD(n + 1) group. Note that
the order of the Si’s is irrelevant, and that repetitions are allowed. However,
if any repetition occurs, or even if two distinct Si’s are conjugate, there is a
PD(n+ 1) group H , such that the pair (G, @G) equals (H, {H,H}), which is a
trivialPD(n+2) pair analogous to the product of a closed (n+1)–manifold with
the unit interval. We will usually assume that n � 1, so that our Poincaré duality
groups and pairs are at least 3–dimensional. Bieri and Eckmann [1] show that
their de�nition implies thatG is almost �nitely presented, which su�ces for the
accessibility results that we use. IfG is �nitely presented then the corresponding
K(G, 1) space is dominated by a �nite complex (see Theorem 7.1 in Chapter 8
of [3]) and then G is a Poincaré duality group in the sense of Wall [34].

A Poincaré duality pair is a special case of what the authors of [6] call a group
system, but it seems natural to use the language of pairs in the setting of this pa-
per. In [6], many of our results require that the group system be of �nite type, but
this condition is automatic for Poincaré duality pairs. An important idea which
we �rst introduced in [25], and is worked out in more detail in [6], is that of
an almost invariant subset of a group G being adapted to a family of subgroups.
As this idea will play an important role in this paper, we reproduce the de�ni-
tion from [6], and some of the following remarks. Lemma 2.2.5 summarises the
properties of adapted almost invariant sets which we will need in this paper.

De�nition 2.2.1. (De�nition 5.1 of [6]) Let G be a group and let H and S be
subgroups. Let S = {Si}i2I be a family of subgroups ofG, with repetitions allowed.

A H–almost invariant subset X of G is strictly adapted to the subgroup S if,
for all g 2 G, the coset gS is contained in X or in X

⇤.
A H–almost invariant subset X of G is adapted to S, or is S–adapted, if it is

equivalent to aH 0–almost invariant subsetX 0 ofG such thatX 0 is strictly adapted
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to S.
A H–almost invariant subset X of G is adapted to the family S , or is S–

adapted, if it is adapted to each Si.

Remark 2.2.2. If X is S–adapted, then so is any almost invariant subset of G
which is equivalent to X .

IfX is adapted to the family S , and we replace each Si by some conjugate, then
X is also adapted to the new family. For if X is strictly adapted to a subgroup S,
and k 2 G, then Xk is H–almost invariant and equivalent to X , and is strictly
adapted to k�1

Sk.
Note that ifX is adapted to the family S , then, for each i, there is aKi–almost

invariant subsetXi of G which is equivalent toX and is strictly adapted to Si, but
theXi’s may all be di�erent. In general, it is di�cult for an almost invariant set to
be strictly adapted to more than one subgroup of G.

The following de�nition, due to Müller [17], is natural when one considers
splittings of a group.

De�nition 2.2.3. Let K be a group with a splitting � over a subgroup H , and let
S = {Si} be a family of subgroups of K . The splitting � of K is adapted to S , or
is S–adapted, if each Si is conjugate into a vertex group of �.

There is also a natural generalisation of De�nition 2.2.3 to graphs of groups.

De�nition 2.2.4. Let K be a group with a graph of groups structure �, and let
S = {Si} be a family of subgroups ofK . Then � is adapted to S , or is S–adapted,
if each Si is conjugate into a vertex group of �.

In [6], it is shown that these terminologies are all compatible.
In topological terms, this concept seems very natural when one considers

manifolds with boundary, and this is how Muller’s de�nition arose. Consider a
manifold M , and a codimension–1 embedded submanifold F in the interior of
M , such that F is two-sided, closed and ⇡1–injective. Then clearly the splitting
of ⇡1(M) over ⇡1(F ) determined by F is adapted to the family S of subgroups of
M carried by the components of @M . On the other hand, if F has boundary and
is properly embedded, then the corresponding splitting of ⇡1(M) over ⇡1(F ) is
likely not to be adapted to S .

For the purposes of this paper we need to recall from [6] some properties of
adapted almost invariant subsets of a group, which we summarize in the follow-
ing lemma.
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Lemma 2.2.5. Let G be a group with subgroups H and G, such that H ⇢ G, and
suppose that G has a minimal graph of groups decomposition � with a vertex V

whose associated group is G. Let S denote the family of subgroups of G associated
to the edges of � which are incident to V .

1. If X is a H–almost invariant subset of G which is enclosed by V , and if X
denotes theH–almost invariant subsetX \G ofG, thenX is adapted to the
family S .

2. Suppose that the group system (G,S) is of �nite type. If X is a nontrivial
S–adapted H–almost invariant subset of G, then X has an extension X to
G, i.e. there is a H–almost invariant subset X of G which is enclosed by V ,
such that X \G = X . Further if X is associated to a splitting of G over H ,
then X is associated to a splitting of G over H .

Remark 2.2.6. As Poincaré duality pairs are automatically group systems of �nite
type, this condition in part 2) of the lemma can be ignored in this paper.

We will collect here some useful basic results about Poincaré duality groups
and pairs. The following result due to Kropholler and Roller is Lemma 2.2 of [14].
It will be needed at several points in this paper. Similar results are well known in
the topology of 3–manifolds. In this setting, cases 1) and 2) of the lemma below
occur when one has an I–bundle over a closed surface.

Lemma 2.2.7. (Kropholler and Roller) Let (G, @G) be a PD(n+ 2) pair with @G

non-empty. Then one of the following holds:

1. G is a PD(n+1) group and @G consists of a single group S which has index
2 in G.

2. G is a PD(n+1) group and the pair (G, @G) is the trivial pair (G, {G,G}).

3. For each group S in @G, the index of S in G is in�nite, and CommG(S) =
S. Further if S and S

0 are distinct groups in @G, they are not conjugate
commensurable.

It will also be convenient to state separately the following easy consequences.

Corollary 2.2.8. Let (G, @G) be an orientable PD(n+ 2) pair. Then
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1. If @G consists of a single group S which has index 2 in G, then G itself must
be a non-orientable PD(n+ 1) group.

2. If S is a group in @G, and K is an orientable PD(n + 1) subgroup of G
commensurable with S, then K is contained in S.

3. If (G, @G) splits, adapted to @G, over a PD(n+ 1) subgroupH , and ifH is
commensurable with an orientable PD(n + 1) subgroup K of G, then K is
contained in H .

Proof. 1) As (G, @G) is an orientable PD(n + 2) pair, S must be an orientable
PD(n+ 1) group. Thus G is also a PD(n+ 1) group. If G were orientable, the
fact that S has index 2 in G would imply that the induced map Z ⇠= Hn+1(S) !
Hn+1(G) ⇠= Z would be multiplication by 2. But this map must be zero as S =
@G. This contradiction shows that G must be non-orientable.

2) We apply Lemma 2.2.7. If case 3) of that lemma holds, the fact that K
must commensurise S implies thatK is contained in S. If case 2) of that lemma
holds, the result is trivial. If case 1) of that lemma holds, then part 1) of this
lemma tells us that G is a non-orientable PD(n + 1) group. Hence S is the
orientation subgroup of G, so that any orientable PD(n + 1) subgroup of G
must be contained in S.

3) First suppose that @G is empty so thatG is an orientable PD(n+2) group.
As G splits over H we have G equal to A ⇤H B or to A⇤H for some subgroups
A or B. In the �rst case, Theorem 8.1 of [1] tells us that each of the pairs (A,H)
and (B,H) is an orientable PD(n + 2) pair. In the second case, there are two
inclusions ofH into A whose images we denote byH1 andH2, and Theorem 8.1
of [1] tells us that the pair (A, {H1, H2}) is an orientable PD(n+ 2) pair. AsK
is commensurable withH , it must be conjugate into A or B. Now part 2) shows
that K is contained in H , as required.

If @G is not empty, we recall that the given splitting of G over H is adapted
to @G. Thus if we consider DG, the double of G over @G, and apply part 2) of
Lemma 2.2.5, the given splitting of G over H induces a splitting of DG over H .
Now we can apply the above argument to the orientable PD(n + 2) group DG

to deduce that K is contained in H , as required.

The following observation will also be useful at several points in this paper.
In the setting of 3–manifolds, the corresponding result is that if a Hakenmanifold
M with non-empty incompressible boundary has V PC fundamental group, than
M must be an I–bundle over the torus or Klein bottle.
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Corollary 2.2.9. Let (G, @G) be a PD(n+ 2) pair, and suppose that G is V PC .
Then one of the following holds:

1. @G is empty and G is V PC(n+ 2).

2. @G is non-empty, G is V PC(n + 1), and either (G,@G) is the trivial pair
(G, {G,G}), or @G is a single group S, and G contains S with index 2.

Proof. If @G is empty, thenG has cohomological dimension n+2, and soGmust
be V PC(n+ 2). Thus we have case 1) of the corollary.

If @G is non-empty, each group in @G is PD(n+ 1), and is also V PC. Thus
each group in @G is V PC(n + 1). Now G must have cohomological dimension
n+1, and soG is also V PC(n+1). As this implies that any group in @G has �nite
index in G, Lemma 2.2.7 implies that we must have case 2) of the corollary.

Nowwe will begin our discussion of almost invariant sets in Poincaré duality
groups and pairs. But �rst here are two important facts about such sets which
follow immediately from Lemma 4.3 of Kropholler in [11].

Lemma 2.2.10. (Kropholler and Roller) Let n � 1, and let (G, @G) be aPD(n+2)
pair. Then

1. G has no nontrivial almost invariant subset over a V PC(< n) subgroup.

2. If @G is empty, so that G is a PD(n + 2) group, then G has no nontrivial
almost invariant subset over a V PC( n) subgroup.

Remark 2.2.11. In the 3–manifold setting, so that n = 1, part 1) corresponds to
the fact that a Haken manifoldM with incompressible boundary must have a one-
ended fundamental group, and part 2) corresponds to the additional fact that when
M is closed it cannot admit essential annuli.

The analogy between ⇡1–injective maps of surfaces into 3–manifolds and
almost invariant subsets of groups was one of the guiding principles in [21] and
[22]. In particular, essential maps of annuli and tori into orientable 3–manifolds
have corresponding nontrivial almost invariant sets.

We start by describing the analogous correspondence when one considers an
orientablePD(n+1) subgroupH of an orientablePD(n+2) groupG. AsG and
H are orientable, it follows that e(G,H) = 2. ThusG has a nontrivialH–almost
invariant subset XH which is unique up to equivalence and complementation.
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This is the almost invariant subset of G which we associate to H . We call it the
dual of H . The restriction that H and G be orientable is not crucial to ensure
that e(G,H) = 2, but it does simplify the statements somewhat. What is crucial
is that when we consider the inclusion of H into G, it should commute with
the orientation homomorphisms. For otherwise e(G,H) = 1, so that G has
no nontrivial H–almost invariant subsets. In topological terms, we want our
codimension–1 manifolds to have trivial normal bundle or equivalently to be
two-sided. Our higher dimensional algebraic analogue of a torus is an orientable
PD(n+1) groupH which is also V PC(n+1), and then a torus in an orientable
PD(n + 2) group G is an injective homomorphism � : H ! G. Note that a
PD(n + 2) group G is torsion free, so that a V PC(n + 1) subgroup of G is
always PD(n+ 1).

Next we consider PD(n + 2) pairs. If (G, @G) is an orientable PD(n + 2)
pair with nonempty boundary, and if H is an orientable PD(n + 1) subgroup
of G, then e(G,H) may not equal 2. Thus it is no longer clear how to naturally
associate a H–almost invariant subset of G to H . However in the topological
context, a map of a codimension–1 closed orientable manifold into an orientable
manifold determines a corresponding almost invariant set in a natural way. For
simplicity, consider the case when n = 1, and G is the fundamental group of an
orientable 3–manifoldM with incompressible boundary, andH is isomorphic to
the fundamental group of a closed orientable surface F . Pick a map of F into the
interior of M so that ⇡1(F ) maps to H by the given isomorphism, and consider
its lift to the coverMF ofM with fundamental groupH . ThenMF need not have
two ends, so that the group H does not determine a unique H–almost invariant
subset of G. But, as F is two-sided in M , the lift of F into MF separates MF

into two pieces, and so F does determine a uniqueH–almost invariant subset Y
of G. Note that Y will be trivial if and only if F is homotopic into a component
of @M . Note also that as F does not meet @M , the associated almost invariant
set Y is adapted to @G, the family of subgroups of G = ⇡1(M) carried by the
components of @M .

In the algebraic setting, where (G, @G) is an orientable PD(n+2) pair with
nonempty boundary and H is an orientable PD(n + 1) subgroup of G, we will
also associate to H a H–almost invariant subset of G which is adapted to @G.
We do this by considering the doubleDG ofG along @G. SinceDG is orientable,
H determines a nontrivialH–almost invariant subsetXH ofDG. TheH–almost
invariant subset of G which we associate to H is the intersection Y = XH \G.
It is clear that Y is a trivialH–almost invariant subset ofG ifH is conjugate to a
subgroup of one of the Si’s. The following result shows that, as in the topological



2.2. POINCARÉ DUALITY PAIRS AND ESSENTIAL ANNULI AND TORI 35

situation, this is the only way in which Y can be trivial.

Lemma 2.2.12. Let (G, @G) be an orientable PD(n + 2) pair with nonempty
boundary, and letH be an orientable PD(n+1) subgroup ofG. LetXH denote the
H–almost invariant subset ofDG determined byH , and let Y denote theH–almost
invariant subset XH \G of G.

Then Y is adapted to @G. Further, if Y is trivial, then H is conjugate to a
subgroup of one of the Si’s.

Proof. To prove this result, we need to use some techniques from [22]. Let �
denote the graph of groups structure for DG corresponding to its construction
by doubling. Thus � has two vertices w and w, and edges corresponding to
the groups in @G, each joining the two vertices. We identify G with the vertex
group G(w). As DG is an orientable PD(n + 2) group, each Si determines, up
to complementation and equivalence, a unique Si–almost invariant subsetXi of
DG. Thus Xi is associated to the edge splitting of � which is over Si. Since
each of H and Si has two coends in DG, Proposition 7.4 of [22] shows that the
associated almost invariant sets XH and Xi must cross strongly if they cross at
all. As H ⇢ G = G(w), it is clear that XH cannot cross any Xi strongly, and so
does not cross anyXi at all. ThusXH must be enclosed by one of the vertices of
�.

If XH is enclosed by w, then H must be a subgroup of G(w). As H is also a
subgroup of G(w), this implies that H is conjugate into some Si, as required. It
also implies that Y is trivial, and so is automatically adapted to @G, completing
the proof in this case.

For the rest of this proof, we will assume that XH is enclosed by w. Thus
Lemma 2.2.5 shows that Y = XH \ G is adapted to @G, which proves the �rst
part of the lemma.

Now suppose that Y is trivial, so that one of Y or Y ⇤ isH–�nite. We consider
the action of DG on the universal covering DG–tree T of �. There is a vertex
v of T with stabiliser G = G(v) which lies above w such that XH is enclosed
by v. Corollary 4.16 of [22] tells us that XH determines a nontrivial partition
of the edges of T which are incident to v. Suppose that Y is H–�nite and let e
be an edge of T which is incident to v and on the XH–side of v. Then XH is
equivalent to an almost invariant subset W of G which contains G(e). The fact
that Y = XH \ G(v) is H–�nite implies that W \ G(v) is also H–�nite, and
hence in particular that G(e) itself is H–�nite. Thus H \ G(e) has �nite index
inG(e). NowG(e) is a conjugate of some Si. AsH and Si are both PD(n+1), a
subgroup ofG(e) of �nite index is also PD(n+1) and hence of �nite index inH .
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It follows that H is commensurable with a conjugate of Si. As H is orientable,
part 2) of Corollary 2.2.8 shows that H is conjugate to a subgroup of Si. This
completes the proof of the lemma.

The conclusion of the above discussion is that if (G, @G) is an orientable
PD(n + 2) pair with non-empty boundary, and H is an orientable PD(n + 1)
subgroup of G, we can associate to H a H–almost invariant subset Y of G, and
Y will be nontrivial so long as H is not conjugate into some Si. Further Y is
adapted to @G. We will say that Y is dual to H . When H is V PC(n + 1) and
Y is nontrivial, we will say that H is an essential torus in (G, @G). If G is an
orientable PD(n + 2) group, then, as above, we associate XH itself to H . In
this case, we may also refer to H as an essential torus in G, though the word
‘essential’ is redundant in this case.

For later reference, we brie�y consider the situation where (G, @G) is an
orientable PD(n+2) pair with non-empty boundary, andH is a non-orientable
PD(n + 1) subgroup of G. Unlike the case when @G is empty, G may possess
nontrivial H–almost invariant subsets. However the following result says that
no such subset of G can be adapted to @G.

Lemma 2.2.13. Let (G, @G) be an orientable PD(n + 2) pair with non-empty
boundary, let H be a non-orientable PD(n + 1) subgroup of G, and let X be a
nontrivial H–almost invariant subset of G. Then X is not adapted to @G.

Proof. As usual we let DG denote the double of G along @G, so that DG is an
orientable PD(n+2) group. We recall that ifK is a PD(n+1) subgroup ofDG,
then e(DG,K) equals 2 if K is orientable and equals 1 otherwise. In particular,
DG has no nontrivial H–almost invariant subset.

Suppose that X is adapted to @G. Then Lemma 2.2.5 tells us that there is
a H–almost invariant subset X of DG such that X \ G equals X . As X is a
nontrivial almost invariant set, so isX . This contradiction shows thatX cannot
be adapted to @G, as required.

For the rest of this section, we will discuss essential maps of higher dimen-
sional ‘annuli’ into orientable PD(n + 2) pairs. It turns out that we need two
types of higher dimensional analogue of an annulus. The �rst and most obvious
type is a trivial orientable PD(n+1) pairAH = (H; {H,H}), where n � 1, and
H is an orientable PDn group which is also V PCn. We call this an untwisted
annulus. The second type is an orientable PD(n+1) pair ⇤H = (H,H0), where
H is a non-orientable PDn group which is also V PCn, and H0 is the orienta-
tion subgroup of H . We call this a twisted annulus. When n = 2, an example
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of a 3–manifold of this type is the twisted I–bundle over the Klein bottle with
orientable total space. Note that there are no twisted annuli when n = 1, as
any PD1 group is orientable. In particular, there are no twisted annuli in a 3–
manifold. Algebraically, an annulus in a PD(n+ 2) pair (G, @G) is an injective
homomorphism of group pairs ⇥ : AH ! (G, @G), or ⇥ : ⇤H ! (G, @G). This
means that ⇥ maps H to G and also maps each group in @⇤H to a conjugate
of some group in @G. Again the above orientation restrictions are not crucial,
but they do simplify the statements. What is crucial is that ⇥ should commute
with the orientation homomorphisms, so that, in topological terms, our annuli
have trivial normal bundle or equivalently are two-sided. The reason for this is
that we need to associate a nontrivial H–almost invariant subset of G to each
essential annulus. We will do this in De�nition 2.2.19.

It will be very helpful to consider a map ✓ of aspherical spaces such that
the induced map on fundamental groups is ⇥. For this we need to choose a
K(H, 1), and use a mapping cylinder construction to make a K(G, 1) with the
K(Si, 1)’s as disjoint subcomplexes, for i � 1. To simplify the notation for an
untwisted annulus, we write A forK(H, 1)⇥ I , and @A forK(H, 1)⇥ @I . The
two components of @A will be denoted by @0A and @1A. If n = 1, then A can be
chosen to be the usual annulus S1⇥ I . For a twisted annulus, we write A for the
twisted I–bundle over K(H, 1) determined by the orientation homomorphism
ofH , and write @A for the induced S0–bundle. Finally we writeM forK(G, 1),
and @M for the union of the K(Si, 1)’s, for i � 1. Then ⇥ is induced by a
map ✓ : (A, @A) ! (M, @M). Note that in the untwisted case, such a map ✓ is
determined up to homotopy by choosing a copy ofH in two conjugates of groups
in @G, such that the two copies ofH are conjugate inG. And in the twisted case,
✓ is determined up to homotopy by choosing a copy ofH inG and a conjugate of
some group in @G such that the intersection of H with this conjugate contains
H0. Thus an annulus can be thought of purely algebraically. We will say that
⇥ is essential if ✓ cannot be homotoped relative to @A into @M . It is clear that
the essentiality of an annulus is also a purely algebraic property. An untwisted
annulus is essential if and only if the images of the two boundary groups are not
conjugate in a group in @G. And a twisted annulus is essential if and only if H0

lies in a boundary group K in @G, and H \K = H0. Note that as G is �nitely
generated, we can chooseM to have �nite 1–skeleton. IfG is �nitely presented,
we can also chooseM to have �nite 2–skeleton, as each Si is �nitely generated.

Now suppose that ✓ is an essential map of an untwisted annulus A into M ,
where ⇡1(A) is equal to H , and identify H with its image in G under ✓⇤. Let
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MH denote the cover of M with fundamental group H , and let fM denote the
universal cover of M . Let ✓H : (A, @A) ! (MH , @MH) be the lift of ✓. The
induced map on homology sends the fundamental class [A] 2 Hn+1(A, @A;Z)
to an element ↵ of Hn+1(MH , @MH ;Z). Let ⌃ denote the component of @MH

which contains ✓H(@0A). We will assume that the base point ofA lies in @0A. As
MH and ⌃ are aspherical and the inclusion of ⌃ inMH induces an isomorphism
of fundamental groups, ⌃ is a deformation retract of MH . As ✓ is essential, it
follows that ✓H(@1A)must lie in a di�erent component ⌃0 of @MH . This implies
that ↵ is a nontrivial element of Hn+1(MH , @MH ;Z).

If ✓ is an essential map into M of a twisted annulus A with ⇡1(A) equal
to H , we again identify H with its image in G under ✓⇤. Recall that ⇡1(@A)
equals the orientation subgroup H0 of H . Let MH denote the cover of M with
fundamental group H , and let ✓H : (A, @A) ! (MH , @MH) be the lift of ✓.
Again we let ↵ denote the image inHn+1(MH , @MH ;Z) of the fundamental class
[A] 2 Hn+1(A, @A;Z). Let ⌃ denote the component of @MH which contains
✓H(@A), and consider the inclusions H0 = ⇡1(@A) ⇢ ⇡1(⌃) ⇢ ⇡1(MH) = H .
If ⇡1(⌃) equals H , then MH deformation retracts to ⌃, which contradicts the
hypothesis that ✓ is essential. It follows that we must have ⇡1(⌃) = H0. In turn
this implies that ↵ is a nontrivial element of Hn+1(MH , @MH ;Z). We note that
the double cover A0 of A with ⇡1(A0) equal to H0 is an untwisted annulus, and
the induced map ✓0 : A0 ! M0 is also essential, where M0 is the cover of M
with fundamental group H0.

Remark 2.2.14. The above discussion shows that if A is an annulus, twisted or
untwisted, and ✓ : (A, @A) ! (M, @M) is an essential map, then in either case
the image of the fundamental cycle [A] with Z2-coe�cients is also nontrivial in
Hn+1(MH , @MH ;Z2) and is the specialization of ↵.

We also note that, whether or notA is twisted, the induced action ofH on the
universal cover fM ofM preserves the union of two distinct components of @fM .
If some element of H interchanges these two components, then A is twisted.
Otherwise, A is untwisted.

Conversely, suppose that two distinct components ⌃ and T of @fM are each
stabilised by an orientablePDn subgroupH ofG. Then there is an essential map
✓ of an untwisted annulus A to M with ⇡1(A) equal to H , and a lift ✓H : A !
MH which maps @0A to H\⌃ and maps @1A to H\T . We denote this essential
untwisted annulus in (M, @M) by H⌃,T .

If the union of ⌃ and T is stabilised by a PDn subgroupH of G and if some
element of H interchanges ⌃ and T , let H0 denote the subgroup of H of index
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2 which stabilises both ⌃ and T . If H0 is the orientation subgroup of H , there is
an essential map ✓ of a twisted annulus A to M with ⇡1(A) equal to H , and the
induced essential map ✓0 of the double cover A0 of A with ⇡1(A0) equal to H0

has a lift to MH0 which maps @0A0 to H\⌃ and maps @1A0 to H\T . We denote
this essential twisted annulus in (M, @M) by H⌃,T .

In order to associate an almost invariant subset of G to an essential annulus,
we will need the following result, which was proved by Swarup in [30]. See
[15] for a purely algebraic proof. The statement we give here is equivalent to
Theorem 2 of [30].

Lemma 2.2.15. (Swarup) Let G be a �nitely generated group, and letH be a sub-
group of in�nite index inG. If ' is a homomorphism fromH toZ, denote the kernel
of ' by N . Suppose that whenever ' is non-zero, we have e(G,N) = 1. Then the
restriction map r : H1(G;Z[H\G]) ! H

1(H;Z) is trivial.

Proof. As before, we letM denote aK(G, 1) with theK(Si, 1)’s as disjoint sub-
complexes, for i � 1. Recall fromRemark 2.1.1, thatwe can identifyH1(G,Z[H\G])
with H

1
f
(MH ;Z). If G is �nitely generated but not �nitely presented, we need

to modify the usual de�nition of H1
f
(MH ;Z) as discussed there. In any case, M

need not be locally �nite, so any reference we make to the number of ends of a
cover of M really refers to the number of ends of the 1–skeleton of the cover.
We also let r denote the natural map H

1
f
(MH ;Z) ! H

1(MH ;Z).
Let � denote an element ofH1

f
(MH ;Z), and let � 2 H

1(MH ;Z) denote r(�).
Thus � can be represented by a map g : MH ! S

1. Represent � by a �nite
cocycle c : M

(1)
H

! Z on the 1–skeleton M
(1)
H

of MH , and let ⌃ denote the
support of c. Thus ⌃ is a �nite subcomplex of M (1)

H
, and c restricted to any

simplex of M (1)
H

� ⌃ is trivial. As c also represents �, for any component L of
M

(1)
H

� ⌃, the map ⇡1(L) ! ⇡1(S1) induced by g is trivial. Since ⌃ is �nite,
M

(1)
H

�⌃ has at least one unbounded component L whose coboundary �Lmust
be �nite, as �L ⇢ �⌃.

Now suppose that � is non-zero. We consider the induced map g⇤ : H ! Z,
let N denote the kernel of g⇤, and consider the cover qN : MN ! MH . As
the map ⇡1(L) ! ⇡1(S1) induced by g is trivial, L lifts to MN . As the in�nite
quotient group H/N acts on MN , it follows that L has in�nitely many disjoint
lifts to MN . This implies that MN has in�nitely many ends, which contradicts
the hypothesis that e(G,N) = 1. It follows that � must be zero which completes
the proof of the lemma.
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We will want to apply this result to Poincaré duality pairs. The result we
obtain is the following.

Lemma 2.2.16. Let (G, @G) be an orientable PD(n + 2) pair, and let H be a
PDn subgroup of G. Then the restriction map r : H1(G;Z[H\G]) ! H

1(H;Z)
is trivial.

Remark 2.2.17. The PDn subgroup H need not be orientable.

Proof. As before, we letM denote aK(G, 1) with theK(Si, 1)’s as disjoint sub-
complexes, for i � 1. We need to check all the hypotheses of Lemma 2.2.15.
Certainly G is �nitely generated and H has in�nite index in G. Now suppose
that N is the kernel of a non-zero homomorphism from H to Z. We need to
show that e(G,N) = 1. AsN has in�nite index in the PDn groupH , a theorem
of Strebel [29] tells us that N has cohomological dimension  n � 1. Hence
Hk(N ;Z) = 0, for any k � n, and the same holds for any subgroup ofN . In par-
ticular, Hn+1(MN ;Z) and Hn(@MN ;Z) are both zero. It follows from the exact
sequence of the pair (MN , @MN) that Hn+1(MN , @MN ;Z) is zero. By Poincaré
duality, this implies thatH1

f
(MN ;Z) is zero, so thatMN has only one end. Hence

e(G,N) = 1 as required.

Our real interest lies in the corresponding restrictionmapwithZ2 coe�cients
in place of Z. This map need not be trivial, but the fact that r is trivial yields
enough information about the case of Z2 coe�cients for our purposes.

Corollary 2.2.18. Let (G, @G) be an orientable PD(n + 2) pair, and let H be
a PDn subgroup of G. Let ⇢ denote the map of cohomology groups given by re-
duction of the coe�cients modulo 2. Then the image of ⇢ : H1(G;Z[H\G]) !
H

1(G;Z2[H\G]) is contained in the image of the coboundarymap � : H0(G;P [H\G]/Z2[H\G]) !
H

1(G;Z2[H\G]), given on page 18.

Proof. As before, we letM denote aK(G, 1) with �nite 1–skeleton, and letMH

denote the cover ofM with fundamental group H .
Consider the diagram

H
1(G;Z[H\G])

r! H
1(H;Z)

# ⇢ # ⇢

H
0(G;P [H\G]/Z2[H\G])

�! H
1(G;Z2[H\G])

r! H
1(H;Z2)

⇠=# ⇠=# ⇠=#
H

0
e
(MH ;Z2)

�! H
1
f
(MH ;Z2)

r! H
1(MH ;Z2)
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where the bottom two rows come from the long exact cohomology sequences
given before Remark 2.1.1. Lemma 2.2.16 tells us that the map r is zero. As the
image of � equals the kernel of the map r, it follows immediately that the image
of ⇢ is contained in the image of �.

Now we can associate an almost invariant set to an essential annulus as
promised.

De�nition 2.2.19. Let (G, @G) be an orientable PD(n+ 2) pair, and let ✓ be an
essential annulus in (M, @M) with fundamental group H .

As discussed before Lemma 2.2.15, the essential annulus ✓ determines a non-
zero element ↵ 2 Hn+1(MH , @MH ;Z) ⇠= Hn+1(G, @G;Z[H\G]). The Poincaré
dual of ↵, regarded as an element of this second group, is a nontrivial element �
of H1(G;Z[H\G]). Corollary 2.2.18 shows that ⇢(�) is contained in the image of
�, and so, as discussed on page 18, determines an almost invariant subset of H\G
modulo almost equality and complementation. The pre-image in G of such a set is
a H–almost invariant subset X✓ of G.

We will say that X✓ is dual to the essential annulus ✓. On occasion, it will also
be convenient to say that the almost invariant subset H\X of H\G is dual to ✓.

If (G, @G) is an orientable PD(n + 2) pair, and the almost invariant subset
of G associated to a splitting is dual to an essential annulus or torus, we will say
that the splitting itself is dual to an essential annulus or torus, as appropriate.

If (G, @G) is an orientable PD(n+2) pair which admits an essential annulus,
the dual almost invariant subset ofG is nontrivial and is over a V PCn subgroup.
The converse is not true. In general G will have many nontrivial such subsets
which are not dual to any essential annulus. In the following two results, we
consider this in more detail. In particular, we show that if G has a nontrivial
almost invariant subset over aV PCn subgroup, then (G, @G) admits an essential
annulus.

Proposition 2.2.20. Let (G, @G) be an orientable PD(n + 2) pair and let H
be a V PCn subgroup of G. Let ↵ be an element of Hn+1(MH , @MH ;Z), so that
@↵ 2 Hn(@MH ;Z) is supported by some �nite number k of components of @MH .
Then the following statements hold:

1. If ↵ is non-zero, then k is non-zero.

2. If ↵ is non-zero, then each of the k components of @MH which support @↵
carries a subgroup of �nite index in H . If H is orientable then k � 2.
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3. If G has a nontrivial H–almost invariant subset, then (G, @G) admits an
essential map of an annulus whose fundamental group is a subgroup of �nite
index in H .

Proof. 1) Consider the exact sequence.

Hn+1(MH ;Z) ! Hn+1(MH , @MH ;Z)
@! Hn(@MH ;Z) ! Hn(MH ;Z)

Since H is a PDn group, it follows that Hn+1(MH ;Z) is zero. Thus the map @

in this sequence is injective. If ↵ is non-zero, it follows that @↵ is non-zero, and
hence that k is non-zero.

2) If ⌃ is one of the components of @MH which supports @↵, then Hn(⌃;Z)
must be nontrivial. Note that the fundamental group of any component of @MH

is a subgroup ofH . AsH is PDn, Strebel’s result in [29] implies that a subgroup
of H of in�nite index has cohomological dimension less than n. Hence ⇡1(⌃)
must have �nite index d in H , so that Hn(⌃;Z) is in�nite cyclic. Now suppose
that H is orientable. Then Hn(MH ;Z) must also be in�nite cyclic. Further the
mapHn(⌃;Z) ! Hn(MH ;Z) is multiplication by d, and so is injective. We know
that the map Hn(@MH ;Z) ! Hn(MH ;Z) has nontrivial kernel as it contains
@↵. It follows that @MH has a second boundary component ⌃0 which carries @↵.
Thus when H is orientable, we must have k � 2.

3) If G has a nontrivial H–almost invariant subset, Corollary 2.2.18 implies
thatH1(G;Z[H\G]), and henceHn+1(MH , @MH ;Z), is nontrivial. Suppose �rst
that H is orientable. Then part 2) shows that there are two distinct components
⌃ and ⌃0 of @MH such that each of ⇡1(⌃) and ⇡1(⌃0) is a subgroup of �nite
index in H . It follows that (G, @G) admits an essential map of an untwisted
annulus whose fundamental group is a subgroup of �nite index inH . IfH is non-
orientable, we consider the orientation subgroup H0 of H which is of index 2.
AsH0 is a subgroup ofH of �nite index,G has a nontrivialH0–almost invariant
subset. Now we apply the above discussion to H0 in place of H and obtain an
essential map of an untwisted annulus whose fundamental group is a subgroup
of �nite index inH0, and hence of �nite index inH , as required. This completes
the proof of the proposition.

In the next result, we prove more.

Proposition 2.2.21. Let (G, @G) be an orientable PD(n + 2) pair and let H be
a V PCn subgroup of G. Then we have the following results.

1. No nontrivial H–almost invariant subset of G can be adapted to @G.
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2. If G has a nontrivial H–almost invariant subset X , there is an orientable
subgroup H 0 of �nite index in H , such that X is equivalent to a sum of H 0–
almost invariant subsets of G each dual to an untwisted annulus.

3. If @MH has k components each of which carries a subgroup of �nite index in
H , then the number of coends of H in G is at least k.

4. If the number of coends of H in G is at least k, then H has a subgroup L of
�nite index such that @ML has k components each of which carries L.

5. IfG has a nontrivialH–almost invariant subsetX which crosses no nontriv-
ial almost invariant subset ofG over any �nite index subgroup ofH , thenX
is dual to an annulus.

Proof. 1) Suppose there is a nontrivialH–almost invariant subset Y ofGwhich is
adapted to @G. We will consider the PD(n+2) groupDG obtained by doubling
G along @G, and the corresponding graph of groups decomposition � of DG,
which has a vertex w with associated group G. Lemma 2.2.5 tells us that there is
a nontrivialH–almost invariant subsetX ofGwhich is enclosed by w such that
X \G equals Y . But part 2) of Lemma 2.2.10 tells us that DG has no nontrivial
almost invariant subsets over V PCn subgroups. This contradiction shows that
no nontrivialH–almost invariant subset ofG can be adapted to @G, as required.

2) Let X be a nontrivial H–almost invariant subset of G, and let Y denote
the almost invariant subsetH\X ofH\G. As discussed before Remark 2.1.1, the
equivalence class ofY under almost equality is an element ofH0(G;P [H\G]/Z2[H\G]).
We let [Y ] denote the image of this equivalence class in H

1(G;Z2[H\G]) under
the coboundary map � given on page 18. Thus [Y ] is represented by any almost
invariant subset of H\G which is almost equal to Y or to Y

⇤. As H is V PCn,
and torsion free, it is PDn. Thus Corollary 2.2.18 tells us that there is an ele-
ment � of H1(G;Z[H\G]) such that ⇢(�) = [Y ]. Let ↵ denote the element of
Hn+1(G, @G;Z[H\G]) which is Poincaré dual to �. Regard ↵ as an element of
Hn+1(MH , @MH ;Z), and consider @↵ 2 Hn(@MH ;Z). From Proposition 2.2.20,
@↵ is non-zero, so there is at least one component of @MH which lies in its sup-
port. Each component ⌃ of @MH which supports @↵ carries a subgroup of H
of �nite index. Let H 00 denote the intersection of all conjugates in H of these
subgroups, letH0 denote the maximal orientable subgroup ofH of index at most
2, and let H 0 denote the intersection H

00 \H0. Thus H 0 is an orientable normal
subgroup of H of �nite index. By replacing H by H

0, we can assume that H
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is orientable and that the �nitely many components ⌃1, . . . ,⌃k of @MH which
support @↵ all carry H . As H is orientable, we must have k � 2.

If i and j are distinct integers, there is an essential untwisted annulus Aij in
MH with fundamental group H and whose boundary components lie in ⌃i and
⌃j . Let↵ij denote the image of the fundamental class ofAij inHn+1(MH , @MH ;Z).
Then @↵ij 2 Hn(@MH ;Z) is supported by ⌃i and ⌃j . Regard ↵ij as an element
ofHn+1(G, @G;Z[H\G]), and let �ij 2 H

1(G;Z[H\G]) be Poincaré dual to ↵ij .
Recall that ⇢ denotes reduction of coe�cients mod 2, and that Corollary 2.2.18
tells us that ⇢(�ij) 2 H

1(G;Z2[H\G]) equals [Yij], for some almost invariant
subset Yij of H\G which is said to be dual to Aij .

LetY denote ⇢@↵ 2 Hn(@MH ;Z2), and letYij denote ⇢@↵ij 2 Hn(@MH ;Z2).
Then Yij is supported by ⌃i and ⌃j . Let � denote any nontrivial element of
Hn+1(MH , @MH ;Z2) whose image in Hn(@MH ;Z2) is supported by some sub-
set of the ⌃i’s. As each ⌃i carries H , this image must be supported by at least
two components of @MH . Thus a simple induction argument on k shows that Y
must be equal to a sum of Yij ’s.

Now consider the following commutative diagram. The vertical maps are
Poincaré duality isomorphisms, the top horizontal map is the boundary map in
the long exact homology sequence of the pair (MH , @MH), and the bottom hor-
izontal map is induced by the inclusion of @MH into MH .

Hn+1(MH , @MH ;Z2)
@! Hn(@MH ;Z2)

#⇠= #⇠=
H

1
f
(MH ;Z2)

i
⇤
! H

1
f
(@MH ;Z2)

As H is PDn, it follows that Hn+1(MH ;Z2) is zero. Thus the map @ in this
diagram must be injective, so that i⇤ is also injective.

Recall that H1(G;Z2[H\G]) and H
1
f
(MH ;Z2) are naturally isomorphic, so

that we can identify [Y ] and [Yij] with elements of H1
f
(MH ;Z2). Now, under

Poincaré duality, i⇤[Y ] corresponds to Y 2 Hn(@MH ;Z2), and i
⇤[Yij] corre-

sponds to Yij . As Y is equal to a sum of Yij ’s, and i
⇤ is injective, it follows that

[Y ] is equal to a sum of [Yij]’s. Thus Y is equivalent to a sum of Yij ’s and their
complements. HenceX is equivalent to a sum ofH–almost invariant subsets of
G each dual to an untwisted annulus inMH , as required.

3) Suppose that @MH has k components each of which carries a subgroup of
�nite index in H . In order to show that the number of coends of H in G is at
least k, it su�ces to show there is a subgroup H

0 of H of �nite index such that
e(G,H

0) is at least k. As in part 2), by replacingH by a suitable subgroup of �nite
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index, we can suppose that @MH has components ⌃1, . . . ,⌃k each carrying H .
Consider the composite map

H
0
e
(MH ;Z2)

�! H
1
f
(MH ;Z2)

i
⇤
! H

1
f
(@MH ;Z2)

⇠=! Hn(@MH ;Z2).

If 1  i < j  k, the almost invariant subset Yij ofH\G in part 2) determines an
element ofH0

e
(MH ;Z2) whose image Yij inHn(@MH ;Z2) under this composite

map is supported by⌃i and⌃j . As the Yij ’s span a (k�1)–dimensional subgroup
of Hn(@MH ;Z2), and the kernel of � is nontrivial, it follows that H0

e
(MH ;Z2)

has dimension at least k, so that e(G,H) is at least k, as required.
4) If the number of coends ofH in G is at least k, thenH has a subgroupH1

of �nite index such that e(G,H1) � k. It follows from part 2) of this proposition
thatH1 has a subgroupL of �nite index such that the space ofL–almost invariant
subsets of G spanned by such sets which are dual to an untwisted annulus has
dimension at least k. Pick a �nite family of L–almost invariant subsets of G,
each dual to an untwisted annulus, which together span a space with dimension
at least k. The corresponding annuli inML have boundaries in a �nite family of
components of @ML. As in part 2), we can replaceL by a subgroup of �nite index
so that all these boundary components carryL. It follows immediately that there
must be at least k such components of @ML, as required.

5) Let X be a nontrivial H–almost invariant subset of G which crosses no
nontrivial almost invariant subset of G over any �nite index subgroup of H . In
part 2) of this lemma, we showed that, after replacing H by a suitable subgroup
of �nite index, the almost invariant subset Y = H\X of H\G is equivalent to
a sum of almost invariant subsets Yij , i 6= j, of H\G where Yij is dual to an
untwisted annulus in MH with boundary in ⌃i [ ⌃j . By re-labelling the ⌃i’s if
needed, we can assume that 1  i, j  m and that each index between 1 and m

occurs.
Ifm = 2, then Y is equivalent to Y12, and we are done. We will show that no

other case is possible.
If m = 3, then, after renumbering, Y must be equivalent to Y12 + Y23. But

this implies that Y is supported on ⌃1 and ⌃3 which contradicts our assumption
that m = 3.

Now suppose that m � 4. Recall that an almost invariant subset Y of H\G
determines an element [Y ] of H0

e
(MH ;Z2) which can be represented by a 0–

cochain with �nite coboundary. The support Z of this cochain is an in�nite
subset of vertices inMH , with in�nite complement Z⇤. Similarly each Yij yields
a corresponding in�nite subset of vertices Zij in MH , with in�nite complement
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Z
⇤
ij
. It will be convenient to consider Z and the Zij ’s rather than Y and the

Yij ’s. Lemma 2.2.22 below shows that there are distinct integers i, j, k and l such
that the vertex set of ⌃k is almost contained in Zij , and the vertex set of ⌃l is
almost contained in Z

⇤
ij
. This implies that the four corners of the pair (Z,Zij)

are in�nite, as Z and Z
⇤ each meet both ⌃k and ⌃l in an in�nite set of vertices.

Hence the four corners of the pair (Y, Yij) are in�nite, so that Y crosses Yij .
This contradicts our hypothesis that X crosses no nontrivial almost invariant
subset of G over any �nite index subgroup of H , which completes the proof of
the lemma.

In the next lemmawe consider how two untwisted annuli can cross, by which
we mean that the dual almost invariant sets cross. The corresponding picture in
the 3–manifold setting is very simple. Start with a 2–disc D with four disjoint
open intervals in its boundary. Then remove the rest of @D. The resulting sur-
face has four boundary components, and it is trivial that of the six arcs which join
pairs of distinct boundary components, there are two which cross. The product
of this manifold with S

1 is a 3–manifoldM with four annulus boundary compo-
nents, and there are two annuli inM which cross.

Lemma 2.2.22. Let (G, @G) be an orientable PD(n + 2) pair and let H be an
orientable V PCn subgroup ofG. Suppose that ⌃1, . . . ,⌃4 are distinct components
of @MH each with fundamental groupH . Let Yij denote the almost invariant subset
of H\G dual to the annulus Aij in MH which has fundamental group H and has
boundary in ⌃i and ⌃j . Then there are distinct integers i, j, k and l such that Yij

crosses Ykl.

Proof. As at the end of the previous lemma, it will be convenient to consider
Zij rather than Yij , where Zij is the support of a 0–cochain on MH with �nite
coboundary which represents the element of H0

e
(MH ;Z2) determined by Yij .

For three distinct integers i, j and k, the vertex set of ⌃k must be almost
contained in Zij or Z⇤

ij
. For simplicity we will say that ⌃k is almost contained in

Zij to mean that the vertex set of ⌃k is almost contained in Zij . Note that ⌃i and
⌃j are not almost contained in Zij or in Z

⇤
ij
.

Now let i, j, k and l be distinct integers. We will say that Zij separates ⌃k

and ⌃l if ⌃k is almost contained in Zij , and ⌃l is almost contained in Z
⇤
ij
, or vice

versa.

Claim: Yij crosses Ykl if and only if Zij separates ⌃k and ⌃l, and Zkl separates
⌃i and ⌃j .
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Suppose �rst that Zij separates ⌃k and ⌃l. Then Yij must cross Ykl, because
all four corners of the pair (Zij, Zkl) will be in�nite as each has in�nite intersec-
tion with ⌃k or ⌃l.

Next suppose that Zij does not separate ⌃k and ⌃l. Without loss of gen-
erality, we can assume that ⌃k and ⌃l are both almost contained in Zij . Thus
each of the corners Z⇤

ij
\ Zkl and Z

⇤
ij
\ Z

⇤
kl
intersects ⌃k and ⌃l in a �nite set.

As each of ⌃i and ⌃j is almost contained in one of Zkl or Z⇤
kl
, it follows that

one of these two corners intersects at most one of ⌃i and ⌃j in an in�nite set.
Without loss of generality, we can suppose that this corner is Z⇤

ij
\ Zkl, which

we denote by V . Let W denote Y ⇤
ij
\ Ykl. Thus W is an almost invariant subset

of H\G and the corresponding element [W ] of H1
f
(MH ;Z2) is represented by a

1–cocycle equal to the coboundary �V . Our choice of V means that at most one
component of @MH is not almost contained in V

⇤. This implies that the element
W of Hn(@MH ;Z2) is supported on at most one component of @MH . As H is
orientable, part 2) of Proposition 2.2.20 implies thatW must be trivial. It follows
that Yij and Ykl do not cross, which completes the proof of the claim.

Now suppose that the lemma is false. Then the above claim shows that, for
any four distinct integers i, j, k and l, the boundary components ⌃k and ⌃l must
both be almost contained in Zij or both in Z

⇤
ij
. By replacing each of Z12 and Z23

by its complement if needed, we can arrange that Z12 meets each of ⌃3 and ⌃4

in a �nite set and that Z23 meets each of ⌃1 and ⌃4 in a �nite set. Note that we
cannot have Y12  Y23 as Z12 meets ⌃1 in an in�nite set, and Z23 meets ⌃1 in
a �nite set. And we cannot have Y23  Y12 as Z23 meets ⌃3 in an in�nite set
and Z12 meets ⌃3 in a �nite set. It follows that Y12 [ Y23 is equivalent to Y13 or
its complement. Thus Z12 [ Z23 is almost equal to Z13 or Z⇤

13. Now Z12 [ Z23

meets ⌃4 in a �nite set, and has in�nite intersection with ⌃2. Hence it is not
the case that ⌃2 and ⌃4 are both almost contained in Z13 or in Z

⇤
13, so that Z13

separates ⌃2 and ⌃4. Now the above claim shows that Y13 and Y24 must cross.
This contradicts our supposition, which completes the proof of the lemma.

Let (G, @G) be an orientable PD(n + 2) pair and, as usual, let M be an as-
pherical space with fundamental group G and with aspherical subspaces corre-
sponding to @Gwhose union is denoted @M . LetDM denote the space obtained
by doublingM along @M , and letDG denote the fundamental group ofDM . If
M is a 3–manifold, an annulus in M can be doubled to yield a torus in DM . If
the annulus is inessential, it can be homotoped to have image a loop in @M . Thus
the torus can be homotoped to have the same image and so is not ⇡1–injective.
However, if the annulus is essential, then the torus will be ⇡1–injective. The same
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construction works in the more general setting of this section. Doubling a topo-
logical annulus f : (A, @A) ! (M, @M) yields a map Df : DA ! DM , where
DA denotes the double ofA along its boundary. ThusDf is a map of a torus into
DM . Again, if f is inessential, Df will not be ⇡1–injective, but if f is essential,
then Df will be ⇡1–injective. To see this, �rst suppose that A is untwisted, so
that (A, @A) is of the form (C ⇥ I, C ⇥ @I), let H = ⇡1(A), and consider the
lift fH of f to the cover MH of M such that ⇡1(MH) = H . As f is essential in
(M, @M), the images fH(C ⇥ {0}) and fH(C ⇥ {1}) must lie in distinct com-
ponents of @MH . It follows that a component of the pre-image of Df(DA) in
(DM)H is homeomorphic to C ⇥ R, so that Df must be ⇡1–injective. If A is
twisted, we simply apply the above argument to the untwisted double cover of
A. Now part 3) of Proposition 2.2.20 implies that if G has any nontrivial almost
invariant subset over a V PCn subgroup, then there is an essential torus inDG.

In terms of almost invariant sets, the preceding discussion shows that if Y is
a nontrivialH–almost invariant set dual to an essential annulus in an orientable
PD(n + 2) pair (G, @G), then there is a natural way to double Y . One obtains
a nontrivial almost invariant subset X of DG, such that X \ G equals Y , and
X is over the double of H , i.e. an essential torus in DG. At �rst sight, this
result sounds somewhat similar to that in Lemma 2.2.5, as both results are about
constructing an almost invariant subsetX ofDG from an almost invariant subset
Y of G. However they are completely di�erent as Lemma 2.2.5 requires that Y
be adapted to @G, whereas a nontrivial H–almost invariant set over a V PCn

subgroup of G is never adapted to @G, by part 1) of Proposition 2.2.21.

2.3 The main theorem
In the previous section, we discussed the analogues in an orientable PD(n+ 2)
pair of annuli and tori in a 3–manifold. In this section we will �nally state our
main theorem, but �rst we need to discuss the analogues of the various types
of component of the characteristic submanifold of a 3–manifold. Recall that if
(G, @G) is a Poincaré duality pair our aim is to produce a bipartite graph of
groups structure for G in which V0–vertices are analogous to components of
the characteristic submanifold. In particular if G is the fundamental group of
a Haken 3–manifold M , this graph of groups structure is dual to the frontier
of the characteristic submanifold of M . In our earlier discussion in section 2.1,
we described only two types of such component, namely I–bundles and Seifert
�bre spaces. But in order to describe the algebraic analogues correctly, we will
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need to subdivide into several cases. There are special cases when an I–bundle
has in�nite cyclic fundamental group, and we also need to distinguish between
Seifert �bre spaces depending on how they meet @M .

We start by considering a componentW of the characteristic submanifold of
an orientable Haken 3–manifold M such that W is an I–bundle over a surface
F , and F is not an annulus or Moebius band. Thus ⇡1(W ) equals ⇡1(F ), so is
not �nite nor two-ended, and the frontier of W in M consists of the restriction
of the I–bundle to @F and so consists of essential annuli. In addition, if F is
orientable, the I–bundle is trivial and W meets @M in two copies of F , and if
F is non-orientable, then the I–bundle is nontrivial and W meets @M in one
copy of the orientable double cover of F . Let eF , fW and fM denote the universal
covers of F ,W andM respectively. ThusfW is homeomorphic to eF ⇥ I . Further
each component of the pre-image in fM of W consists of a copy of fW such that
fW \ @fM = eF ⇥ {0, 1}, and eF ⇥ {0} and eF ⇥ {1} lie in distinct components
of @fM . Thus the induced action of ⇡1(W ) on fM preserves the union of two
distinct components of @fM . If some element of ⇡1(W ) interchanges these two
components, then W is a twisted I–bundle. Otherwise, W is untwisted. This
leads to the following de�nition.

De�nition 2.3.1. Let (G, @G) be an orientable PD(n+ 2) pair, and letM be an
aspherical space with fundamental group G and with aspherical subspaces corre-
sponding to @G whose union is denoted @M . Let � be a minimal graph of groups
decomposition ofG, and let v be a vertex of �which is of V PC(n�1)–by–Fuchsian
type. (See De�nition 2.1.7. Note that each peripheral subgroup of G(v) is V PCn.)

Then v is of I–bundle type if there are two distinct components ⌃ and T of @fM
such that

1. the induced action of G(v) on fM preserves the union of ⌃ and T , and

2. for each peripheral subgroupK of G(v), if eK denotes the edge of � which is
incident to v and carries K , then the edge splitting associated to eK is given
by the essential annulusK⌃,T . (See the discussion just before Lemma 2.2.15.)

Next we consider a component W of the characteristic submanifold of M
such that W is a Seifert �bre space, and the orbifold fundamental group of the
base orbifold of W is not �nite nor two-ended. Thus ⇡1(W ) is V PC1–by–
Fuchsian, the frontier of W in M consists of boundary torus components or of
vertical annuli in its boundary, andW meets @M in boundary torus components
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or vertical annuli in its boundary. We distinguish three types of such components
W .

Wewill say thatW is an interior component if it lies in the interior ofM . Oth-
erwiseW is a peripheral component. Our �rst de�nition is the algebraic analogue
of an interior component of the characteristic submanifold of a 3–manifold.

De�nition 2.3.2. Let (G,@G) be an orientable PD(n + 2) pair, and let � be a
minimal graph of groups decomposition of G. Let v be a vertex of � which is of
V PCn–by–Fuchsian type. (See De�nition 2.1.7.)

Then v is of interior Seifert type if each edge of � which is incident to v deter-
mines a splitting of G over an essential torus.

Recall that Lemma 2.1.9 shows that the V PCn normal subgroup L of G(v)
with Fuchsian quotient is unique. Note that asG is torsion free, so is L, so that L
is PDn. The following little result applied to any edge groupK of v tells us that
if v is of interior Seifert type, then L must be orientable. Note that L is normal
in K with quotient which must be isomorphic to Z or to Z2 ⇤ Z2, as these are
the only possible peripheral subgroups of a �nitely generated Fuchsian group.
Of course this question did not arise in the case of a 3–manifold as then L was
the fundamental group of a closed 1–manifold, and the only such manifold is
orientable.

Lemma 2.3.3. Let K be an orientable PD(n + 1) group, and let L be a V PCn

normal subgroup of K with quotient isomorphic to Z or to Z2 ⇤ Z2. Then L is an
orientable PDn group.

Proof. AsK is torsion free, so isL, and henceL isPDn. AsZ2⇤Z2 has an in�nite
cyclic subgroup of index 2, there is a subgroupK0 ofK , of index at most 2, such
that K0 contains L, and L is normal in K0 with in�nite cyclic quotient. As K is
orientable, so is K0. Now Theorem 7.3 of [1] shows that L is orientable.

We will say that a Seifert �bre space componentW of the characteristic sub-
manifold ofM is adapted to @M if there are no annuli in its frontier. In this case
each boundary torus ofW is either a component of @M or lies in the interior of
M and so is a component of the frontier of W in M . Our next de�nition is the
algebraic analogue of such a component of the characteristic submanifold of a
3–manifold.

De�nition 2.3.4. Let (G,@G) be an orientable PD(n + 2) pair, and let � be a
minimal graph of groups decomposition of G. Let v be a vertex of � such that
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G(v) is a V PCn–by–Fuchsian group, where the Fuchsian group is not �nite nor
two-ended.

Then v is of Seifert type adapted to @G if the following conditions hold:

1. IfK is a peripheral subgroup ofG(v), then eitherK is a conjugate of a group
in @G, or K is carried by an edge of � which is incident to v.

2. For each peripheral subgroup K of G(v), there is at most one edge which is
incident to v and carries K .

3. Each edge of � which is incident to v carries a peripheral subgroup of G(v)
and determines a splitting of G over an essential torus in G.

Remark 2.3.5. If v is of Seifert type adapted to @G, the two possibilities in 1) for
each peripheral subgroup K of G(v) are mutually exclusive. For an essential torus
in G cannot be a conjugate of a group in @G.

Note that if v is of interior Seifert type, it is automatically of Seifert type adapted
to @G.

IfW is not adapted to @M , we can push into the interior ofW those compo-
nents of @W which meet @M in annuli to obtain a Seifert �bre space W 0 which
is homeomorphic to W and adapted to @M . Note that each component of the
closure ofW �W

0 is homeomorphic to T ⇥I . Recall that the annuli in whichW

meets @M must be vertical in W . Our next de�nition is the algebraic analogue
of such a component of the characteristic submanifold of a 3–manifold M .

De�nition 2.3.6. Let (G,@G) be an orientable PD(n + 2) pair, and let � be a
minimal graph of groups decomposition ofG. Let v be a vertex of � such thatG(v)
is a V PCn–by–Fuchsian group, where the Fuchsian group is not �nite nor two-
ended. Let L denote the V PCn normal subgroup of G(v) with Fuchsian quotient.

Then v is of Seifert type if � can be re�ned by splitting at v to a graph of groups
structure �0 of G with the following properties:

1. There is a vertex v
0 of �0 with G(v0) = G(v) such that v0 is of Seifert type

adapted to @G. Thus each edge of�0 which is incident to v0 carries a peripheral
subgroup of G(v0) and determines a splitting of G over an essential torus in
G.

2. The projection map �0 ! � sends v0 to v and is an isomorphism apart from
the fact that certain edges incident to v0 are collapsed to v.
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3. Let e denote an edge of �0 which is incident to v0 and collapsed to v. ThusG(e)
is a peripheral subgroupK ofG(v0). Let w denote the other vertex of e. Then
G(w) = K , and there is at least one other edge incident to w. Further for
each such edge the associated edge splitting is dual to an essential annulus,
and the boundary of each such annulus carries L.

Remark 2.3.7. When comparing this de�nition with the topological situation,
think of � as being dual to the frontier ofW , and the re�nement �0 as being dual to
the union of the frontiers of W and of W 0. Note that if v is of Seifert type adapted
to @G, then v is trivially of Seifert type. One simply takes �0 equal to � in the above
de�nition.

Part 3) of the de�nition corresponds to the facts that each component of the
closure of W � W

0 is homeomorphic to T ⇥ I , and that the frontier annuli of W
must be vertical in W . The reason for the formulation involving the boundary of
each annulus is that some of the annuli involved may be twisted, a phenomenon
with no analogue in 3–manifold theory.

There are some special cases which are not covered by the above de�nitions.
These occur when the Fuchsian quotient group of a vertex group is �nite or
two-ended. In the case of the characteristic submanifold of an orientable Haken
3–manifold, such a vertex corresponds to a component which is homeomorphic
to one of S1 ⇥D

2, T ⇥ I , or a twisted I–bundle over the Klein bottle.

De�nition 2.3.8. Let (G,@G) be an orientable PD(n + 2) pair, and let � be a
minimal graph of groups decomposition ofG. Let v be a vertex of � such thatG(v)
is a V PCn group.

Then v is of solid torus type if it is not isolated, and for each edge of � which is
incident to v the associated edge splitting is dual to an essential annulus, and there
is a V PCn subgroupH of �nite index inG(v) such that the boundary of each such
annulus carries H .

A vertex of solid torus type is of special solid torus type if either v has valence 3
and H = G(v), or if v has valence 1 and H has index 2 or 3 in G(v).

Remark 2.3.9. As mentioned after the previous de�nition, the annuli involved in
this de�nition may be twisted. However, in the special case when v is of special solid
torus type, the conditions imply that each of the annuli must be untwisted. This is
proved during the proof of Theorem 2.3.14 in section 2.7.

De�nition 2.3.10. Let (G,@G) be an orientable PD(n + 2) pair, and let � be a
minimal graph of groups decomposition of G.
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A vertex v of � is of special Seifert type if v has only one incident edge e, the
splitting of G associated to e is dual to an essential torus, and G(e) is a subgroup
of index 2 in G(v).

Remark 2.3.11. As G(v) is a �nite, torsion free extension of G(e), it follows that
G(v) is also PD(n+ 1). Also part 3) of Corollary 2.2.8 implies that G(v) must be
non-orientable.

Our last de�nition is the algebraic analogue of a component W of the char-
acteristic submanifold of a 3–manifold which is homeomorphic to T ⇥ I or to
K e⇥I , but has some annuli in its frontier. There are subcases here, depending on
whether or notW has a component of its frontier which is a torus, and whether
or not W contains a torus component of @M . It is not possible to have both.
Note that in all cases, there is a Seifert �bration of W for which all the annuli
in its frontier are vertical. As W is T ⇥ I or K e⇥I , this is equivalent to the con-
dition that all the frontier annuli carry the same subgroup of ⇡1(W ) and that
⇡1(W ) splits over this subgroup. This is what we generalise in the de�nition
below. Recall that as G is torsion free, a V PC(n+ 1) subgroup is automatically
PD(n+ 1).

De�nition 2.3.12. Let (G,@G) be an orientable PD(n + 2) pair, and let � be a
minimal graph of groups decomposition of G. A vertex v of � is of torus type if
G(v) is V PC(n+ 1) and one of the following cases hold:

1. G(v) is orientable and is one of the groups in @G, and for each edge of�which
is incident to v the associated edge splitting is dual to an essential annulus.
Further there is a V PCn subgroupH ofG(v) such that the boundary of each
such annulus carries H , and G(v) splits over H .

2. G(v) is orientable, one of the edges of � incident to v carries G(v), and the
associated edge splitting is dual to an essential torus in G. For each of the
remaining edges of � incident to v, the associated edge splitting is dual to an
essential annulus. Further there is a V PCn subgroup H of G(v) such that
the boundary of each such annulus carries H , and G(v) splits over H .

3. G(v) is orientable, and for each edge of � which is incident to v the associ-
ated edge splitting is dual to an essential annulus. Further there is a V PCn

subgroupH of G(v) such that the boundary of each such annulus carriesH ,
and G(v) splits over H . In addition � can be re�ned by splitting at v to a
graph of groups structure �0 of G such that the projection map �0 ! � sends
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an edge e to v and otherwise induces a bijection of edges and vertices. The
groupG(e) associated to e is equal toG(v), and the edge splitting associated
to e is dual to an essential torus in G.

4. G(v) is non-orientable, and we denote the orientable subgroup of index 2 by
G(v)0. For each edge of � which is incident to v the associated edge splitting
is dual to an essential annulus. Further there is a V PCn subgroup H of
G(v)0 such that the boundary of each such annulus carriesH , andG(v) splits
over H . In addition � can be re�ned by splitting at v to a graph of groups
structure �0 of G such that the projection map �0 ! � sends an edge e to v
and otherwise induces a bijection of edges and vertices. The group associated
to e is equal toG(v)0, and the associated edge splitting is dual to an essential
torus in G. Finally one vertex of e has valence 1, and associated group G(v).

Remark 2.3.13. In part 3) of this de�nition, the comparable 3–manifold situation
occurs when W is T ⇥ I , and the frontier of W consists of annuli. Think of � as
being dual to the frontier ofW , and the re�nement �0 as being dual to the union of
the frontier ofW with the torus T ⇥ {1

2}.
In part 4) of this de�nition, the comparable 3–manifold situation occurs when

W is K e⇥I , and the frontier of W consists of annuli. Think of � as being dual to
the frontier of W , and the re�nement �0 as being dual to the union of the frontier
of W with a torus in the interior ofW which is parallel to @W .

In all cases, the reason for the formulation involving the boundary of each an-
nulus is that some of the annuli involved may be twisted, a phenomenon with no
analogue in 3–manifold theory.

Note that Lemma 2.1.10 tells us that if a V PC(n+1) groupG splits over a sub-
group H , then H is V PCn, and is normal in G with quotient which is isomorphic
to Z or Z2 ⇤ Z2.

Now we are ready to state the main result of this paper. Lemma 2.2.10 im-
plies that if (G, @G) is an orientable PD(n + 2) pair, then the decomposition
�n,n+1(G) of Theorem 2.1.16 exists. That theorem tells us that for any group
G, the V0–vertices of �n,n+1(G) are of four types, namely they are isolated, of
V PCk–by–Fuchsian type, where k is n�1 or n, or of commensuriser type. Our
main result is the following theorem which asserts that �n,n+1(G) and its com-
pletion �c

n,n+1(G) (see De�nition 2.1.17) have properties analogous to the topo-
logical picture in dimension 3. If n = 1, and G is the fundamental group of an
orientable Haken 3–manifoldM , then �1,2(G) is dual to the frontier of AT (M),
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and �c

1,2(G) is dual to the frontier of JSJ(M), where AT (M) and JSJ(M) are
the submanifolds of M discussed at the start of section 2.1.

Theorem 2.3.14. (Main Result) Let n � 1, and let (G, @G) be an orientable
PD(n+ 2) pair such that G is not V PC . Let Fn,n+1 denote the family of equiva-
lence classes of all nontrivial almost invariant subsets ofG which are over a V PCn

subgroup, together with the equivalence classes of all n–canonical almost invariant
subsets of G which are over a V PC(n + 1) subgroup. Finally let �n,n+1 denote
the reduced algebraic regular neighbourhood of Fn,n+1 in G, and let �c

n,n+1 denote
the completion of �n,n+1. Thus �n,n+1 and �c

n,n+1 are bipartite graphs of groups
structures for G, with vertices of V0–type and of V1–type.

Then �n,n+1 and �c

n,n+1 have the following properties:

1. Each V0–vertex v of �n,n+1 satis�es one of the following conditions:

(a) v is isolated, and G(v) is V PC of length n or n + 1, and the edge
splittings associated to the two edges incident to v are dual to essential
annuli or tori in G.

(b) v is of V PC(n � 1)–by–Fuchsian type, and is of I–bundle type. (See
De�nition 2.3.1.)

(c) v is of V PCn–by–Fuchsian type, and is of interior Seifert type. (See
De�nition 2.3.2.)

(d) v is of commensuriser type. Further v is of Seifert type (see De�nition
2.3.6), or of torus type (see De�nition 2.3.12) or of solid torus type (see
De�nition 2.3.8).

2. The V0–vertices of �c

n,n+1 obtained by the completion process are of special
Seifert type (see De�nition 2.3.10) or of special solid torus type (see De�nition
2.3.8).

3. Each edge splitting of �n,n+1 and of �c

n,n+1 is dual to an essential annulus or
torus in G.

4. Any nontrivial almost invariant subset of G over a V PC(n + 1) group and
adapted to @G is enclosed by some V0–vertex of �n,n+1, and also by some
V0–vertex of �c

n,n+1.

5. If H is a V PC(n + 1) subgroup of G which is not conjugate into @G, then
H is conjugate into a V0–vertex group of �c

n,n+1.
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Remark 2.3.15. Part 3) follows immediately from parts 1) and 2), as the de�nitions
of the various types of V0–vertex in the statements of parts 1) and 2) all contain the
requirement that the edge splittings be dual to an essential annulus or torus.

Part 4) does not follow from the properties of an algebraic regular neighbourhood
as an almost invariant subset ofG over a V PC(n+1) group which is adapted to @G
need not be n–canonical, and so need not lie in the family Fn,n+1. Note that, from
[24], we know that there may be almost invariant subsets of G over V PC(n + 1)
subgroups which are not adapted to @G.

Part 5) also does not follow from the properties of an algebraic regular neigh-
bourhood as a V PC(n+ 1) subgroup H of G may be non-orientable.

2.4 Torus Decompositions for PD(n + 2) Groups
and Pairs

Before embarking on the proof of Theorem 2.3.14, we will consider a simpler
graph of groups structure analogous to the torus decomposition T (M) of a 3–
manifold M , discussed in section 2.1.

We will start this section by considering an orientable PD(n + 2) group G,
where n � 1, and the graph of groups structure �n+1(G) = �(Fn+1 : G) of
Theorem 2.1.14. Recall from Lemma 2.2.10 that such a group cannot admit any
nontrivial almost invariant subset over a V PC( n) subgroup, so that �n+1(G)
does exist. It is a reduced algebraic regular neighbourhood of Fn+1 in G, where
Fn+1 is the collection of equivalence classes of all nontrivial almost invariant
subsets of G which are over V PC(n + 1) subgroups. Since G is orientable,
the nontrivial almost invariant sets in Fn+1 are automatically over orientable
V PC(n+ 1) groups. Recall that if H is an orientable V PC(n+ 1) subgroup of
G, we call H an essential torus in G, and G possesses a unique nontrivial H–
almost invariant subset, up to equivalence and complementation. ThusFn+1 can
be thought of as the collection of all essential tori in G. It will be convenient to
denote �n+1(G) by Tn+1(G), and we will call Tn+1(G) the torus decomposition of
G. We will also use T c

n+1(G) to denote the completion �c

n+1(G) of �n+1(G). See
De�nition 2.1.17.

In chapter 12 of [22], we brie�y discussed the connection between Tn+1(G)
and Kropholler’s decomposition in [11] in the case of orientable PD(n + 2)
groups. Using the present notation, it follows from Theorem 2.4.1 below that
T

c

n+1(G) is the same as Kropholler’s decomposition. We will show shortly that
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the analogous statement holds for the case of a PD(n+2) pair. In dimension 3, it
is clear that T2(G) is the same as Castel’s decomposition in [4] as his decomposi-
tion is de�ned to be �2(G). As discussed in section 2.1, ifM is a closed orientable
Haken 3–manifold and G equals ⇡1(M), then the topological torus decomposi-
tion T (M) determines the decomposition T

c

2 (G) of G. As in the statement of
Theorem 2.1.14, it will be convenient to state Theorem 2.4.1 excluding the case
when G is V PC . For if G is a V PC(n + 2) group, then �n+1(G) consists of a
single V0–vertex.

Theorem 2.4.1. Let n � 1. If G is an orientable PD(n + 2) group which is not
V PC , then Tn+1(G) and T c

n+1(G) have the following properties:

1. Each V0–vertex v of Tn+1(G) satis�es one of the following conditions:

(a) v is isolated, and G(v) is a torus in G.

(b) v is of interior Seifert type. (See De�nition 2.3.2.)

2. The V0–vertices of T c

n+1(G) obtained by the completion process are of special
Seifert type. (See De�nition 2.3.10.)

3. Each edge splitting of Tn+1(G) and of T c

n+1(G) is dual to an essential torus
in G.

4. If H is a V PC(n + 1) subgroup of G, then H is conjugate into a V0–vertex
group of T c

n+1(G).

Remark 2.4.2. If G has no nontrivial almost invariant subsets which are over
V PC(n + 1) subgroups, then Fn+1 is empty and Tn+1(G), and hence T c

n+1(G),
consists of a single V1–vertex.

Proof. 1) Theorem 2.1.14 tells us that Tn+1(G) is a minimal, reduced bipartite,
graph of groups decomposition of G, and that each V0–vertex of Tn+1(G) is iso-
lated, of V PCn–by–Fuchsian type, or of commensuriser type. If v is a V0–vertex
of commensuriser type, then v encloses an element X of Fn+1 which is over
some V PC(n + 1) group H , and G(v) is of the form CommG(H). Further X
crosses weakly some of its translates by CommG(H). In the present situation,G
is PD(n+2) andH is V PC(n+1), so that the number of coends ofH inG is 2.
Now Proposition 7.4 of [22] implies that no almost invariant set can cross X or
any of its translates weakly, so that V0–vertices of commensuriser type cannot
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occur. It follows that each V0–vertex of Tn+1(G) is isolated or of V PCn–by–
Fuchsian type. As each edge splitting is over a V PC(n + 1) subgroup of G, it
follows that each edge splitting of Tn+1(G) is dual to an essential torus in G.
Hence any V0–vertex of Tn+1(G) which is of V PCn–by–Fuchsian type must be
of interior Seifert type. This completes the proof of part 1) of the theorem.

2) The construction of T c

n+1(G) from Tn+1(G) described in section 2.1 can
only introduce V0–vertices of special Seifert type, so part 2) of the theorem holds.

3) Part 3) of the theorem follows immediately from parts 1) and 2).
4) First note that as G is torsion free, so is H . Thus H must be PD(n+ 1).
If H is orientable, the pair (G,H) has two ends, so there is a nontrivial

H–almost invariant subset X of G. As X is enclosed by some V0–vertex v of
Tn+1(G), it follows that H is conjugate into G(v). Hence H is also conjugate
into a V0–vertex group of T c

n+1(G), as required.
IfH is non-orientable, letH0 denote its orientable subgroup of index 2. As the

pair (G,H0) has two ends, there is a nontrivialH0–almost invariant subset ofG.
As Tn+1(G) has no V0–vertices of commensuriser type, it follows from Theorem
2.1.14 and Remark 2.1.15 that H0 must have small commensuriser, which we
denote by K . This means that K contains H0 with �nite index, so that K is
itself V PC(n + 1) and PD(n + 1). Note that K must contain H , so that K is
non-orientable. We let K0 denote its orientable subgroup of index 2. Note that
K0 is a maximal torus subgroup ofG. The preceding paragraph shows that there
is a V0–vertex v of Tn+1(G) such thatK0 is conjugate into G(v). AsK contains
K0 with �nite index, it follows that there is a vertex w of Tn+1(G) such that K
is conjugate into G(w). If w is a V0–vertex, then K , and hence H , is conjugate
into a V0–vertex group of T c

n+1(G), as required. So we now consider the case
when w is a V1–vertex. In particular, v and w must be distinct. Thus there is
an edge e of Tn+1(G) which is incident to w such that, after a conjugation, G(e)
containsK0. As all the edge groups of Tn+1(G) are torus groups, the groupG(e)
must equalK0. IfE(w) denotes the family of subgroups ofG(w)which are edge
groups for the edges incident to w, then Theorem 8.1 of [1] tells us that the pair
(G(w), E(w)) is PD(n+2). The commensuriser inG(w) ofG(e) = K0 contains
a conjugate of K and so is not equal to K0. Thus Lemma 2.2.7 shows that K0

is the only element of the family E(w), and G(w) contains K0 with index 2.
Thus w has valence 1, and G(w) equals a conjugate of K . Now it follows that
w becomes a V0–vertex in the completion T

c

n+1(G), so that K , and hence H , is
conjugate into a V0–vertex group of T c

n+1(G), as required.

Next we discuss the torus decomposition of an orientable PD(n + 2) pair
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(G, @G) with non-empty boundary. Recall from section 2.2 the discussion of an
essential torus in G. In particular, we let DG denote the orientable PD(n + 2)
group obtained by doubling G along its boundary. Then given an orientable
PD(n + 1) subgroup H of G, there is a H–almost invariant subset XH of DG

associated toH , and the intersection YH = XH \G is aH–almost invariant sub-
set of G which is nontrivial unless H is conjugate into @G. Let Tn+1 denote the
family of equivalence classes of all such nontrivial subsets YH of G, where H is
V PC(n+1). Then the torus decomposition Tn+1(G, @G) of (G, @G) will be the
reduced algebraic regular neighbourhood inG of Tn+1. This is the natural de�ni-
tion, but it is not obvious that this algebraic regular neighbourhood exists. One
immediate problem is that G may have nontrivial almost invariant subsets over
V PCn subgroups, so this decomposition is di�erent from any of those proved to
exist in [22]. In order to show that Tn+1(G, @G) exists, we will use the fact that
DG does not have nontrivial almost invariant subsets over V PCn subgroups,
so we can apply results from [22].

Theorem 2.4.3. Let (G, @G) be an orientable PD(n + 2) pair, such that @G is
non-empty, and let Tn+1 denote the family of equivalence classes of almost invari-
ant subsets YH of G described above. Then Tn+1 has a reduced algebraic regular
neighbourhood Tn+1(G, @G) in G. Further Tn+1(G,@G) is adapted to @G.

Proof. If G is V PC , part 2) of Corollary 2.2.9 tells us that either (G,@G) is the
trivial pair (G, {G,G}), or that @G is a single group S, and G contains S with
index 2. In either case, the pair (G, @G) admits no essential tori, so that Tn+1 is
empty. Thus Tn+1 has a reduced algebraic regular neighbourhood which consists
of a single V1–vertex, and this is trivially adapted to @G. For the rest of this proof
we will assume that G is not V PC .

Recall our discussion at the start of section 2.2. The natural graph of groups
structure� for the orientablePD(n+2) groupDG has two verticesw andw and
edges joining them which correspond to the groups of @G. Given an orientable
PD(n + 1) subgroup H of G, there is a H–almost invariant subset XH of DG

associated to H , and the intersection YH = XH \ G is a H–almost invariant
subset of G. An important point about XH is that it is enclosed by the vertex w
of �, where we identify G with G(w), so that YH is adapted to @G.

Now consider Fn+1(DG), which is the collection of equivalence classes of
all nontrivial almost invariant subsets of DG which are over V PC(n + 1) sub-
groups. Recall that asDG is PD(n+ 2), it is torsion free so that a V PC(n+ 1)
subgroup K of DG must be PD(n + 1). Further, as DG is orientable, if there
is a nontrivial almost invariant subset of DG which is over K , then K must
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be orientable, and all such almost invariant subsets of DG are equivalent up to
complementation. Also recall from Theorem 2.4.1 that the reduced algebraic reg-
ular neighbourhood �(Fn+1(DG) : DG) exists, and is denoted Tn+1(DG), and
its V0–vertices are either isolated or of V PCn–by–Fuchsian type. As we will
need to use our construction of unreduced algebraic regular neighbourhoods in
[22], as corrected in [23], we note that Theorem 2.1.14 tells us that the unreduced
algebraic regular neighbourhood of Fn+1(DG) in DG also exists. We will use
the notation �(Fn+1(DG) : DG) for this unreduced algebraic regular neigh-
bourhood. As in the case of the reduced algebraic regular neighbourhood, its
V0–vertices are either isolated or of V PCn–by–Fuchsian type.

Let En+1(DG) denote the subfamily of Fn+1(DG) which consists of non-
trivial almost invariant subsets of DG which are over subgroups of G which
are non-peripheral in G. Note that En+1(DG) is G–invariant but is not DG–
invariant. We claim that En+1(DG) possesses an unreduced algebraic regular
neighbourhood �(En+1(DG) : DG) in DG, and hence a reduced algebraic reg-
ular neighbourhood �(En+1(DG) : DG). We recall from [22] that any �nite
subset of Fn+1(DG) possesses an unreduced algebraic regular neighbourhood
in DG. As �(Fn+1(DG) : DG) has no V0–vertices of commensuriser type, the
same holds for an algebraic regular neighbourhood of any subset of Fn+1(DG).
Thus the proof of Theorem 2.1.14 which we gave in chapter 12 of [22] shows
that the V0–vertices of the unreduced algebraic regular neighbourhood of a �-
nite subset ofFn+1(DG)must be either isolated or of V PCn–by–Fuchsian type.
Now we consider the construction in the proof of Theorem 9.2 of [22]. This con-
structs �(En+1(DG) : DG) by expressing En+1(DG) as an ascending union of
�nite subsets Ek

n+1. We obtain a sequence of bipartite graphs of groups decom-
positions �k ofDG for each of which, every V0–vertex must be either isolated or
of V PCn–by–Fuchsian type. The accessibility results of section 13 of [6] imply
that the sequence must stabilise so that �(En+1(DG) : DG) exists as required.
Further each V0–vertex of �(En+1(DG) : DG) is either isolated or of V PCn–
by–Fuchsian type.

Let TDG denote the universal covering DG–tree of �(En+1(DG) : DG), and
recall that the V0–vertices of TDG are the CCC’s of all the translates by DG of
elements of En+1(DG). Now we consider the construction of the unreduced al-
gebraic regular neighbourhood of Tn+1 described in chapter 6 of [22]. One starts
by choosing one element of Tn+1 from each equivalence class, and then consid-
ers the CCC’s of these elements. There is a natural map ' from the equivalence
classes of Tn+1 to the equivalence classes of En+1(DG), given by sending the
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class of YH to the class of XH . Recall that YH = XH \ G. Clearly if two ele-
ments of Tn+1 cross, then the corresponding elements of En+1(DG) also cross.
Now recall that elements of En+1(DG) which cross must do so strongly. It fol-
lows that if two elements of En+1(DG) cross, then the corresponding elements
of Tn+1 also cross. Hence ' induces a G–equivariant bijection between the col-
lection P of all CCC’s of Tn+1 and a subset Q of the V0–vertices of TDG. It also
follows that the pretree structures on P and Q are the same. In particular, the
pretree structure on the collection P of all CCC’s of Tn+1 is discrete. Now the
proof of Theorem 3.8 of [22] shows that there is a bipartite G–tree TG whose
quotient by G is the unreduced algebraic regular neighbourhood of Tn+1 in G.
Thus Tn+1 also has a reduced algebraic regular neighbourhood inG, so the torus
decomposition Tn+1(G, @G) of G exists.

Recall that each of the edge splittings of� crosses no element of En+1(DG),
and so must be enclosed by some V1–vertex of the unreduced algebraic regular
neighbourhood �(En+1(DG) : DG). Thus we can re�ne �(En+1(DG) : DG)
by splitting at V1–vertices to obtain a graph of groups decomposition �� ofDG

which also re�nes �. Recall that each element of En+1(DG) is enclosed by the
vertex w of �. Thus if we remove the interiors of the edges of �� which corre-
spond to the edges of�, we will be left with a connected graph of groups �w, and
the single vertex w. The fundamental group of �w is G(w), which we continue
to identify with G.

Claim: �w is isomorphic to the unreduced algebraic regular neighbourhood of
Tn+1 in G.

This claim immediately implies that the graph of groups �w obtained by re-
ducing �w is isomorphic to the torus decomposition Tn+1(G, @G). It also implies
that each group in @G is conjugate into some vertex group of Tn+1(G, @G), so
that Tn+1(G,@G) is adapted to @G.

To prove our claim, recall from two paragraphs previously that the map '

induces a G–equivariant injection from the V0–vertices of TG to the V0–vertices
of TDG. It follows that ' induces aG–equivariant injection from the V0–vertices
of TG to the V0–vertices of T��. Let T denote the subtree of T�� spanned by the
V0–vertices in the image of '. As TG is a minimalG–tree, T must be the minimal
G–invariant subtree of T��. It follows that T is the universal covering G–tree
of �w, proving that �w is isomorphic to the unreduced algebraic regular neigh-
bourhood of Tn+1 in G, as claimed. Note that it also follows that Tn+1(G, @G) is
the decomposition of G induced from �(En+1(DG) : DG).
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The properties of Tn+1(G,@G)when @G is non-empty are similar to those in
the case when @G is empty. The fact that Tn+1(G,@G) is adapted to @G plays an
important role. Before listing these properties, it will be convenient to introduce
the completion T

c

n+1(G,@G) of Tn+1(G,@G)which is de�ned in the same way as
we de�ned the completions of �n+1(G) and �n,n+1(G) in De�nition 2.1.17.

The following result lists the properties of Tn+1(G,@G) and its completion
T

c

n+1(G,@G) when @G is non-empty. As usual, it will be convenient to exclude
the case when G is V PC . For in that case Tn+1(G,@G) and T

c

n+1(G,@G) are
equal and consist of a single V1–vertex.

Theorem 2.4.4. Let n � 1, and let (G,@G) be an orientable PD(n+2) pair, such
that @G is non-empty. If G is not V PC , then Tn+1(G,@G) and T c

n+1(G,@G) have
the following properties:

1. Each edge splitting of Tn+1(G,@G) and of T c

n+1(G, @G) is dual to an essential
torus in (G,@G).

2. Each V0–vertex v of Tn+1(G, @G) satis�es one of the following conditions:

(a) v is isolated, and G(v) is an essential torus in G.

(b) v is of Seifert type adapted to @G. (See De�nition 2.3.4. Note that this
includes the possibility that v is of interior Seifert type.)

3. The V0–vertices of T c

n+1(G, @G) obtained by the completion process are of
special Seifert type. (See De�nition 2.3.10.)

4. If H is a V PC(n + 1) subgroup of G which is not conjugate into @G, then
H is conjugate into a V0–vertex group of T c

n+1(G,@G).

Remark 2.4.5. It follows from property 4) thatT c

n+1(G,@G) is the same as Kropholler’s
decomposition in [11]. In dimension 3, it is also easy to see that T2(G,@G) is the
same as Castel’s decomposition in [4]. Finally if M is an orientable Haken 3–
manifold and (G,@G) is the corresponding Poincaré duality pair, then the topo-
logical torus decomposition T (M) determines the decomposition T

c

2 (G, @G) of G.

Proof. It follows from the proof of Theorem 2.4.3 that the reduced graphs of
groups decompositions �(En+1(DG) : DG) and � have a common re�nement
��, obtained from �(En+1(DG) : DG) by splitting at V1–vertices, which con-
sists of Tn+1(G, @G) and a single extra vertex w which is joined to Tn+1(G, @G)
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by edges e1, . . . , em whose associated splittings are those of �. Note that the
V0–vertices of �(En+1(DG) : DG) and their incident edges are una�ected by
the re�nement process. Thus we will refer to the vertices of �� which are ob-
tained from V0–vertices of �(En+1(DG) : DG) as V0–vertices of ��. As the
V0–vertices of �(En+1(DG) : DG) are isolated or of V PCn–by–Fuchsian type,
the same holds for the V0–vertices of ��.

1) Each edge of Tn+1(G, @G), regarded as an edge of ��, determines a split-
ting of the orientable PD(n + 2) group DG over a V PC(n + 1) subgroup. It
follows that this splitting is dual to an essential torus in DG. Hence each edge
splitting of Tn+1(G,@G) is dual to an essential torus in (G,@G), proving part 1)
of the theorem.

2) Let v be an isolated V0–vertex of ��. If one of the ei’s is incident to v, then
v has only one incident edge e in Tn+1(G, @G) and the inclusion of G(e) into
G(v) is an isomorphism. But this contradicts the minimality of Tn+1(G, @G).
Thus no ei is incident to v, and v must be an isolated V0–vertex of Tn+1(G, @G).

Now let v be a V0–vertex of �� of V PCn–by–Fuchsian type. If no ei is
incident to v, then v is a V0–vertex of Tn+1(G, @G) of V PCn–by–Fuchsian type.
As each edge splitting of Tn+1(G,@G) is dual to an essential torus in (G,@G), it
follows that v is of interior Seifert type. If some ei is incident to v, the associated
edge group is a group in @G. It follows that v is a V0–vertex of Tn+1(G, @G)
which is of Seifert type adapted to @G.

Thus the V0–vertices of Tn+1(G, @G) are isolated, or of Seifert type adapted
to @G, which completes the proof of part 2) of the theorem.

3) The construction of T c

n+1(G, @G) from Tn+1(G, @G) described in section
2.1 can only introduceV0–vertices of special Seifert type, so part 3) of the theorem
holds.

4) First note that as G is torsion free, so is H . Thus H must be PD(n+ 1).
Suppose that H is orientable. The hypothesis that H is not conjugate into

@G implies that H is an essential torus in (G, @G), so that there is a nontrivial
H–almost invariant subset X of G dual to H . As X is enclosed by some V0–
vertex v of Tn+1(G, @G), it follows that H is conjugate into G(v). Hence H is
also conjugate into a V0–vertex group of T c

n+1(G), as required.
Now suppose that H is non-orientable, and let H0 denote its orientable sub-

group of index 2. IfH0 is conjugate into a groupS in @G, this conjugate ofH0 will
be a PD(n+1) subgroup of the PD(n+1) group S and so will be of �nite index.
Thus S must itself be V PC(n + 1) and be conjugate commensurable with H0.
As H is not conjugate into S, it follows that CommG(S) 6= S, so Lemma 2.2.7
implies that G contains S with index 2. But this implies that G is V PC(n + 1)
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which contradicts the hypothesis that G is not V PC . This contradiction shows
that H0 is not conjugate into @G.

It follows from the discussion in section 2.2 that H0 is an essential torus in
(G, @G), so that there is a nontrivial H0–almost invariant subset of G which is
dual toH0. As Tn+1(G, @G) has no V0–vertices of commensuriser type, it follows
from Theorem 2.1.14 and Remark 2.1.15 thatH0 must have small commensuriser,
which we denote byK . This means thatK containsH0 with �nite index, so that
K is itself V PC(n + 1) and PD(n + 1). Note that K must contain H , so that
K is non-orientable. We let K0 denote its orientable subgroup of index 2. Note
that K0 is a maximal torus subgroup of G, and is not conjugate into @G. Thus
there is a nontrivial K0–almost invariant subset of G which must be enclosed
by some V0–vertex of Tn+1(G, @G). It follows that there is a V0–vertex v of
Tn+1(G, @G) such thatK0 is conjugate into G(v). AsK containsK0 with �nite
index, it follows that there is a vertex w of Tn+1(G, @G) such thatK is conjugate
into G(w). If w is a V0–vertex, then K , and hence H , is conjugate into a V0–
vertex group of T c

n+1(G, @G), as required. So we now consider the case when
w is a V1–vertex. In particular, v and w must be distinct. Thus there is an edge
e of Tn+1(G, @G) which is incident to w such that G(e) contains K0. As all the
edge groups of Tn+1(G, @G) are torus groups, the group G(e) must equal K0.
Let E(w) denote the family of subgroups ofG(w) which are edge groups for the
edges incident to w.

Recall that each edge splitting of Tn+1(G, @G) is over a PD(n + 1) group.
If @G were empty so that G was a PD(n + 2) group, then Theorem 8.1 of [1]
would tell us that the pair (G(w), E(w)) is PD(n+ 2). As @G is not empty this
need not be the case, but instead we apply Theorem 8.1 of [1] to the graph of
groups structure �� of DG. This shows that the pair (G(w), E(w)) becomes
PD(n+2)whenE(w) is augmented by suitable groups in @G. LetE(w) denote
this augmented family of subgroups of G(w), so that the pair (G(w), E(w)) is
PD(n + 2). As the commensuriser in G(w) of the group G(e) = K0 is not
equal toK0, Lemma 2.2.7 shows thatK0 is the only element of the family E(w),
and G(w) contains K0 with index 2. Thus w has valence 1, and G(w) equals a
conjugate of K . Now it follows that w becomes a V0–vertex in the completion
T

c

n+1(G, @G), so that K , and hence H , is conjugate into a V0–vertex group of
T

c

n+1(G, @G), as required.
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2.5 Further properties of Torus Decompositions
In the previous section, we showed that any PD(n + 2) pair has a torus de-
composition, and established the basic properties of this decomposition. In this
section, we will establish more detailed information about the vertices of this
decomposition.

Let (G, @G) be an orientable PD(n + 2) pair, and let w be a V1–vertex of
Tn+1(G, @G). Let E(w) denote the family of subgroups of G(w) which are edge
groups for the edges incident tow. Recall that each edge splitting of Tn+1(G, @G)
is over a PD(n+1) group. If @G is empty so that G is a PD(n+2) group, then
Theorem 8.1 of [1] tells us that the pair (G(w), E(w)) is an orientable PD(n+2)
pair. In general, the pair (G(w), E(w)) need not be PD(n + 2), but instead we
apply Theorem 8.1 of [1] to the graph of groups structure �� of DG described
in the proof of Theorem 2.4.4. This shows that the pair (G(w), E(w)) becomes
PD(n+2) when E(w) is augmented by suitable groups in @G. As any essential
torus in (G, @G) is enclosed by some V0–vertex of Tn+1(G, @G), it follows that
any orientable V PC(n+1) subgroup ofG(w) is conjugate into one of the groups
in E(w). It will be convenient to give a name to this property of a PD(n + 2)
pair.

De�nition 2.5.1. An orientable PD(n + 2) pair (G, @G) is atoroidal if any ori-
entable V PC(n+ 1) subgroup of G is conjugate into one of the groups in @G.

Remark 2.5.2. As G is torsion free, a V PC(n + 1) subgroup of G is also tor-
sion free and hence is PD(n + 1). Thus it makes sense to say that such a sub-
group is orientable. Recall from the preceding paragraph that if w is a V1–vertex
of Tn+1(G, @G), then the pair (G(w), E(w)) becomes PD(n + 2) when E(w) is
augmented by suitable groups in @G. The resulting PD(n+ 2) pair is atoroidal.

This is precisely analogous to the de�nition of atoroidal for a 3–manifold. In
the case when an orientable atoroidal 3–manifoldM has incompressible bound-
ary, it is easy to show that M admits no essential annulus, unless M is homeo-
morphic to T ⇥ I or to a twisted I–bundle over the Klein bottle. We will now
prove the algebraic analogue of this fact.

Proposition 2.5.3. Let (G, @G) be an orientable atoroidal PD(n+2) pair, where
n � 1. Let A and B be V PC(n + 1) groups in @G, possibly A = B. Let S and
T be V PCn subgroups of A and B respectively, and let g be an element of G such
that gSg�1 = T . Then one of the following holds:



66 CHAPTER 2. CANONICAL DECOMPOSITIONS

1. A and B are the same element of @G, and g 2 A.

2. A and B are distinct elements of @G, are the only groups in @G, and A =
G = B. Thus (G, @G) is the trivial pair (G, {G,G}).

3. A andB are the same element of @G. FurtherA is the only group in @G, and
has index 2 in G.

Remark 2.5.4. The hypothesis that there is g in G such that gSg�1 = T means
that the pair (G, @G) admits an annulus. The conclusion of the proposition is that
either this annulus is inessential (case 1) or that we have the special cases in 2) or
3).

Proof. As (G, @G) is atoroidal, any orientable V PC(n + 1) subgroup of G is
conjugate into one of the groups in @G. Suppose thatG contains a non-orientable
V PC(n + 1) subgroup K . Then K has a subgroup of index 2 which must be
conjugate into a groupH of @G. AsH andK are orientable PD(n+ 1) groups,
it follows that H and K are conjugate commensurable. As H cannot contain a
non-orientable V PC(n+1) subgroup, this implies that CommG(H) 6= H . Now
Lemma 2.2.7 shows that @G consists of a single group H which has index 2 in
G, so that we have case 3) of this proposition.

Thus in what follows we will assume that every V PC(n + 1) subgroup of
G is orientable, and show that we have case 1) or case 2) of the proposition. We
will consider separately the cases when A and B are the same or distinct.

Case: A and B are distinct elements of @G.

In this case, we will show that A and B are conjugate commensurable. Then
Lemma 2.2.7 shows that we must have case 2) of the proposition.

We suppose thatA andB are not conjugate commensurable, andwill obtain a
contradiction. After a suitable conjugation, we can arrange thatA\B is V PCn.
Thus A, B and A \ B contain respectively �nite index subgroups A0, B0 and L

such that L is normal in each of A0 and B0, and L\A0 and L\B0 are both in�nite
cyclic (see Lemma 13.2 of [22]). ThusA0 andB0 are orientable PD(n+1) groups,
and L is PDn. Now letK denote the amalgamated free productA0 ⇤LB0, so that
L is normal in K with quotient a free group F of rank 2. We identify F with
the fundamental group of a surface M which is a disc with two holes, in such
a way that two of the boundary components of M carry the groups L\A0 and
L\B0. Thus F together with the subgroups L\A0 and L\B0 and a third in�nite
cyclic subgroup forms a PD2 pair. The pre-images in K of the three boundary
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groups of this pair yield three PD(n + 1) subgroups of K . Theorem 7.3 of [1]
implies that K together with these subgroups forms a PD(n + 2) pair. Two of
these three boundary subgroups of K are equal to A

0 and B
0. As A0 and B

0 are
orientable and together generateK , it follows that the pair (K, @K) is orientable.
The inclusions ofA0 andB0 intoG determine a homomorphism ofK intoG, and
we consider the imageH inG of the third boundary subgroup @3K ofK . As @3K
is an extension of L by an in�nite cyclic group, H is an extension of the V PCn

group L by a cyclic group. Thus H is V PC(n+ 1) or V PCn.
If H is V PC(n + 1), it must be orientable as we are assuming that every

V PC(n + 1) subgroup of G is orientable. As (G, @G) is atoroidal, this implies
that H is conjugate into a group in @G. Thus the map from K to G can be
regarded as a map of PD(n+ 2) pairs. Recall that the maps from the boundary
subgroups A0 and B

0 of K to the boundary subgroups A and B of G each have
non-zero degree. As A and B are distinct, and K has only one other boundary
group, it follows that the map from K to G must also have non-zero degree.
Hence the image of K in G is a subgroup G

0 of �nite index. Further L must be
normal in G

0. Recall that we are considering the case where (G, @G) admits an
annulus with fundamental group L whose boundary lies in the groups A and B

of @G. As we are also assuming that A and B are distinct elements of @G, this
annulus is automatically essential. As in De�nition 2.2.19, an essential annulus
with fundamental group L determines a nontrivial L–almost invariant subset
of G. In particular, it follows that e(G,L) > 1, so that e(G0

, L) > 1. As L is
normal in G

0, it follows that e(L\G0) > 1. Now we apply Stallings’ structure
theorem [27][28] for groups with more than one end. If e(L\G0) = 2, then L\G0

is virtually in�nite cyclic, so that G0, and hence G, must be V PC(n + 1). But
then Corollary 2.2.9 implies thatG, A and B are all equal, which contradicts our
assumption that A and B are not commensurable. If e(L\G0) = 1, then either
L\G0 is of the form P ⇤R Q, where R is �nite, P 6= R 6= Q and one of P and Q

contains R with index at least 3, or L\G0 is of the form P⇤R, where R is �nite
and at least one of the inclusions of R into P is not an isomorphism. In either
case, it is easy to see that L\G0 contains in�nitely many conjugacy classes of
maximal in�nite cyclic subgroups. It follows that L\G0 contains in�nitely many
conjugacy classes of maximal two-ended subgroups. As a group is two-ended if
and only if it is V PC1, the pre-images of these subgroups in G

0 form an in�nite
collection of conjugacy classes of maximal V PC(n+ 1) subgroups of G0. Recall
that we are assuming that every V PC(n + 1) subgroup of G is orientable. As
G

0 is of �nite index in G, there is a �nite family @G
0 of V PC(n + 1) subgroups

of G0 such that (G0
, @G

0) is an orientable atoroidal PD(n + 2) pair. Thus any
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maximal V PC(n+1) subgroup of G0 must be conjugate to one of the groups in
@G

0. As @G0 is a �nite family, this is a contradiction, which completes the proof
that H cannot be V PC(n+ 1).

Now consider the case when H is V PCn. Recall that L is normal in @3K

with in�nite cyclic quotient. Thus L is normal inH with �nite cyclic quotient of
some order d. There is a d–fold regular coverMd of the surfaceM in which the
pre-image of the third boundary component of M is a single circle C . Now Md

determines a subgroupKd ofK of index d, and L is normal inKd with quotient
⇡1(Md). The boundary component C of Md determines a boundary subgroup
@C of Kd. By construction the image of @C in G is equal to L. We let M be
obtained from Md by gluing a disc onto C , and let K denote the corresponding
quotient of Kd. Thus L is normal in K with quotient ⇡1(M), and K yields an
orientable PD(n + 2) pair with one less boundary subgroup than Kd. Further
the homomorphism from Kd to G factors through K . Each boundary subgroup
of K maps to a conjugate of A or B, so that the map from K to G is a map of
PD(n + 2) pairs. Again we have a map of non-zero degree, as it is of non-zero
degree on the boundary. Now we argue exactly as in the preceding paragraph to
obtain a contradiction. This completes the proof that ifA andB are not conjugate
commensurable, we have a contradiction, thus completing the proof that ifA and
B are distinct elements of @G, then we have case 2) of the proposition.

Case: A and B are the same element of @G.

Recall that we are assuming that every V PC(n + 1) subgroup of G is ori-
entable. Thus case 3) cannot occur. Also recall that, as A = B, there are V PCn

subgroups S and T of A, and an element g of G such that gSg�1 = T . If g lies
in A, we have case 1) of the proposition. Thus for the rest of this proof, we will
suppose that g does not lie in A, and will obtain a contradiction.

As g does not lie in A, it follows that (G, @G) admits an essential annulus
with both ends in A. Let K denote the double of G along A. As (G, @G) is an
orientable PD(n+2) pair, andA is one of the groups in the family @G, there is a
natural structure of an orientablePD(n+2) pair onK . As discussed at the end of
section 2.2, we can double this essential annulus in (G, @G) to obtain an essential
torus in (K, @K) which clearly crosses the torus in K represented by the sub-
group A. Now we consider the uncompleted torus decomposition Tn+1(K, @K)
of the orientable PD(n+2) pair (K, @K). AsK admits an essential torus, either
this decomposition consists of a single V0–vertex or it has at least one edge.

If Tn+1(K, @K) has at least one edge, then the associated splitting � of K
along an essential torus cannot cross any torus in K . In particular, it cannot
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cross the torus A, nor can it equal this torus. It follows that � determines an
essential torus in (G, @G). But this contradicts the fact that (G, @G) is atoroidal.
It follows that Tn+1(K, @K) must consist of a single V0–vertex, so that eitherK
is V PC or the pair (K, @K) is V PCn–by–Fuchsian.

IfK is V PC , thenGmust also be V PC , so Corollary 2.2.9 tells us that either
G has two boundary groups each equal toG, orG has one boundary groupwhich
is a subgroup ofG of index 2. The �rst case is not possible as we assumed g does
not lie in A, and the second case is not possible, as part 1) of Corollary 2.2.8
shows that G would be V PC(n + 1) and non-orientable which contradicts our
assumption that every V PC(n+ 1) subgroup of G is orientable.

If the pair (K, @K) is V PCn–by–Fuchsian, we let L denote the V PCn nor-
mal subgroup and let� denote the quotient Fuchsian group. We can assume that
K is not V PC , so Lemma 2.1.9 tells us that L is unique. Also part 1) of Lemma
2.1.12 tells us that as A is V PC(n + 1) the intersection A \ L must be V PCn

and hence of �nite index in L. As K is the double of G along A, it follows that
L must be conjugate into a vertex group of this splitting. As L is normal in K ,
it now follows that A must contain L. Thus G is itself isomorphic to a V PCn–
by–Fuchsian group, where the normal V PCn subgroup is L. We denote the
quotient group by ⇥. As A is a V PC(n + 1) subgroup of G, the group ⇥ must
be in�nite. If ⇥ is two-ended, then G is V PC(n + 1), and we have a contradic-
tion by the preceding paragraph. Thus we can assume that ⇥ is not two-ended.
This implies that there are elements � and " in ⇥ of in�nite order such that �
and " have non-zero geometric intersection number. The pre-images in G of the
in�nite cyclic subgroups of ⇥ generated by � and " are V PC(n+ 1) subgroups
D and E of G. Note that D \ E = L. By replacing � and " by their squares if
needed, we can ensure that they are orientable elements of �, so that D and E

will be orientable. As � and " have non-zero geometric intersection number, it
follows that D and E are tori in K which cross. As D and E are subgroups of
G, it follows that D and E are tori in (G, @G) which cross. But this contradicts
the hypothesis that (G, @G) is atoroidal. This contradiction completes the proof
of the proposition.

We now apply Proposition 2.5.3 to get information about the V1–vertices of
the torus decomposition of a Poincaré duality pair.

Proposition 2.5.5. Let (G, @G) be an orientable PD(n + 2) pair, and let w be
a V1–vertex of the uncompleted torus decomposition Tn+1(G, @G). Let s and t be
edges of Tn+1(G, @G) which are incident to w, where possibly s = t. Let S and
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T be V PCn subgroups of G(s) and G(t) respectively, and let g be an element of
G(w) such that gSg�1 = T . Then one of the following holds:

1. s = t, and g 2 G(s).

2. s and t are distinct and v is isolated, so that s and t are the only edges incident
to w, and G(s) = G(w) = G(t).

3. s = t, the vertex w has valence 1, and G(s) has index 2 in G(w).

Remark 2.5.6. If n = 1 and M is an orientable Haken 3–manifold, and a com-
ponentW ofM � T (M) admits a ⇡1–injective annulus with boundary in fr(W ),
then either this annulus can be homotoped into fr(W ), or W is homeomorphic to
T ⇥ I or to a twisted I–bundle over the Klein bottle.

Proof. Let E(w) denote the family of subgroups of G(w) which are edge groups
for the edges incident tow. If @G is empty, then Theorem 8.1 of [1] shows that the
pair (G(w), E(w)) is PD(n+ 2). In general, as discussed just before De�nition
2.5.1, the pair becomes PD(n+ 2) when E(w) is augmented by some groups in
@G, and the PD(n+2) pair obtained this way is atoroidal. Applying Proposition
2.5.3 to this pair yields three cases, which yield the three cases of this proposition.

Remark 2.5.7. If we consider the completed torus decomposition T
c

n+1(G, @G) of
the PD(n+ 2) pair, then the third case in Proposition 2.5.5 cannot occur. For such
V1–vertices of Tn+1(G, @G) become V0–vertices when Tn+1(G, @G) is completed to
T

c

n+1(G, @G).

We will also need information about the V0–vertices of the torus decomposi-
tion of a Poincaré duality pair. Part 1) of Theorem 2.4.4 states that a V0–vertex of
the uncompleted torus decomposition Tn+1(G, @G)must be isolated or of Seifert
type adapted to @G. In the next result, we consider the second type of V0–vertex.

Lemma 2.5.8. Let (G, @G) be an orientable PD(n + 2) pair, and let v be a V0–
vertex of the uncompleted torus decomposition Tn+1(G, @G)which is of Seifert type
adapted to @G. (See De�nition 2.3.4.) Let L denote the V PCn normal subgroup of
G(v) with Fuchsian quotient �. Let s and t be edges of Tn+1(G, @G) which are
incident to v, where possibly s = t. Let S and T be V PCn subgroups of G(s) and
G(t) respectively, and let g be an element of G(v) such that gSg�1 = T . Then one
of the following holds:
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1. s = t, and g 2 G(s).

2. S is commensurable with L.

Remark 2.5.9. If n = 1 and M is an orientable Haken 3–manifold, then any
component of T (M) is a Seifert �bre space. The corresponding result is a standard
result about Seifert �bre spaces. Namely that if W is a Seifert �bre space with
incompressible boundary which admits a ⇡1–injective annulus with boundary in
@W , then either this annulus can be homotoped into @W , or this annulus is vertical
inW .

Proof. Let E(v) denote the family of subgroups of G(v) which are edge groups
for the edges incident to v. If @G is empty, then as discussed just before De�-
nition 2.5.1, the pair (G(v), E(v)) is orientable PD(n + 2). In general, the pair
becomes PD(n+ 2) when E(v) is augmented by some groups in @G. Let E(v)
denote this augmented family of groups. As v is of Seifert type adapted to @G, the
normal subgroup L of G(v) is contained in each group in E(v). Let @� denote
the family of subgroups of � obtained by taking the quotient by L of each group
in E(v). Thus the pair (�, @�) is the orbifold fundamental group of a compact
2–dimensional orbifold (F, @F ). Note that as v is of Seifert type adapted to @G,
the group � is not �nite nor two-ended.

Let S 0, T 0 and g
0 denote the images of S, T and g in �, so that we have the

equation g0S 0
g
0�1 = T

0 in�. If S 0 is �nite, then S\L has �nite index in S, so that
S is commensurable with L, and we have case 2) of the lemma. Otherwise S 0 is
an in�nite subgroup of a groupH in @�. LetA denote an in�nite cyclic subgroup
of S 0, and let FA denote the orbifold cover of F with fundamental groupA. Thus
FA has a boundary component which carriesA. Also, asA is torsion free, FA is a
surface. If g0 does not lie inH , then this surface admits an essential annulus, and
so must be an annulus. In particular, FA is compact and hence a �nite cover of
F . As � is not two-ended, this is impossible so that g0 must lie in H , and hence
so does T 0. Thus S 0, T 0 and g

0 all lie in the same group H in @�, which means
that we have case 1) of the lemma.

An important consequence of Proposition 2.5.5 is the following.

Lemma 2.5.10. Let (G, @G) be an orientable PD(n + 2) pair, let V be a non-
isolated V0–vertex of the uncompleted torus decomposition Tn+1(G, @G) which is
of Seifert type adapted to @G, and let L denote the V PCn normal subgroup of
G(V ) with Fuchsian quotient. Then

G(V ) = NG(L) = CommG(L),
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where NG(L) denotes the normalizer of L in G.

Remark 2.5.11. If n = 1 and M is an orientable Haken 3–manifold, then any
component of T (M) is a Seifert �bre space, and so its fundamental group has an
in�nite cyclic normal subgroup. LetW be a component of T (M), andL this normal
subgroup. Then the corresponding result is that ⇡1(W ) is equal to the commensu-
riser of L in ⇡1(M).

Proof. The inclusions G(V ) ⇢ NG(L) ⇢ CommG(L) are all clear. Thus it re-
mains to prove that CommG(L) ⇢ G(V ).

Let T denote the universal covering G–tree of Tn+1(G, @G) and let v de-
note a vertex of T above V with stabiliser G(v) equal to G(V ). Suppose that
CommG(L) does not equal G(V ). Then there is an element g of CommG(L)
which does not �x v, and we let L0 denote the intersection L \ gLg

�1. Thus L0

is a V PCn subgroup ofGwhich �xes both v and gv, and hence �xes every edge
on the path � joining v to gv.

If w is a V1–vertex of �, then L
0 �xes w and two distinct incident edges. Now

Proposition 2.5.5 shows thatw has valence 2 in T and that the two incident edges
each have the same stabiliser. It also implies that G(w) contains this stabiliser
with index 1 or 2, but we will not need to distinguish these cases. Recall that any
V0–vertex of Tn+1(G, @G) is isolated or of Seifert type adapted to @G. If v0 is an
interior V0–vertex of � which is of Seifert type adapted to @G, then Lemma 2.5.8
shows that L0 must be commensurable with the V PCn subgroup L0 of G(v0)
which is normal in G(v0) with Fuchsian quotient.

Now let µ denote the subinterval of � between v and the �rst V0–vertex w

of � which is of Seifert type adapted to @G. Possibly µ equals �. The preceding
discussion shows that any pair of adjacent edges of µ have the same stabiliser.
Thus the stabiliser of µ equals an edge group H of G(v), which is also an edge
group ofG(w). Hence the subgroupK ofG generated byG(v) andG(w) equals
G(v) ⇤H G(w), andK has the natural structure of an orientable PD(n+2) pair.
The splitting of K over H is over an essential torus in K . Recall that L is the
V PCn normal subgroup of G(v) with Fuchsian quotient, and let L00 denote the
corresponding V PCn normal subgroup of G(w). If w equals gv, then L

00 =
gLg

�1, so that L0 is a subgroup of L00. If w is not equal to gv, then the discussion
in the preceding paragraph shows that L0 is commensurable with L

00. As L0 is
contained in L, it follows that in either case L and L

00 are commensurable. As
each is a normal subgroup ofH with quotient isomorphic to Z or to Z2 ⇤Z2, part
2) of Lemma 2.1.11 shows that L and L

00 must be equal. Thus the pair (K, @K)
is V PCn–by–Fuchsian. It follows that there is an essential torus in K which
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crosses the essential torus determined by H , and hence an essential torus in G

which crosses the torus determined by H . But this contradicts the fact that the
edge splittings of Tn+1(G, @G) do not cross any essential torus in G.

We conclude that every element of CommG(L) lies in G(V ). Thus G(V ) =
NG(L) = CommG(L) as required.

There is another more technical consequence of Proposition 2.5.5 which will
only be needed in the case whenG is a PD(n+2) group, i.e. when @G is empty,
but the general result is no more di�cult. Before stating this result it will be
convenient to have the following de�nition.

De�nition 2.5.12. Let � be a minimal graph of groups structure for a groupG, let
v be a vertex of �, and letX be aH–almost invariant subset ofG which is enclosed
by v.

ThenX is peripheral in v ifX is equivalent to the almost invariant subset ofG
associated to some edge of � which is incident to v.

The word peripheral here is very natural, but the reader should note that
when (G, @G) is a Poincaré duality pair, this idea may have nothing to do with
@G.

Lemma 2.5.13. Let (G, @G) be an orientable PD(n+2) pair, and letH andH 0 be
essential tori in (G, @G)whose dual almost invariant setsX andX 0 are enclosed by
V0–vertices V and V 0 of Tn+1(G, @G). Suppose that H \H

0 is a V PCn subgroup
K of G. Suppose further that X is not peripheral in V . Then V must be of Seifert
type adapted to @G, each of X and X 0 is enclosed by V , and K is commensurable
with the V PCn normal subgroup L of G(V ) with Fuchsian quotient.

Proof. As X is not peripheral in V , the vertex V of Tn+1(G, @G) cannot be iso-
lated. Thus Theorem 2.4.4 implies it must be of Seifert type adapted to @G. Now
part 1) of Lemma 2.1.12 tells us that the intersectionH \L must be V PCn, and
hence of �nite index in L.

Suppose that V equals V 0. Then part 1) of Lemma 2.1.12 tells us that the
intersection H

0 \ L must also be V PCn, and hence of �nite index in L. Thus
the intersectionH \H

0\L is of �nite index in L, and so is also V PCn. AsK =
H\H 0 is assumed to be V PCn, it follows thatK andLmust be commensurable,
as required.

In what follows, we will suppose that V and V 0 are distinct. Let T denote the
universal covering G–tree of Tn+1(G, @G). Let v be a vertex above V which is
�xed by H , and let v0 be a vertex above V 0 which is �xed by H

0. Then K �xes



74 CHAPTER 2. CANONICAL DECOMPOSITIONS

the path � joining v to v0. Now we are in much the same situation as in the proof
of Lemma 2.5.10, with v

0 in place of gv. Thus if w is a V1–vertex of �, then w has
valence 2 in T and the two incident edges each have the same stabiliser, and if v0
is an interior V0–vertex of �which is of Seifert type adapted to @G, thenK must
be commensurable with the V PCn normal subgroup L0 ofG(v0)with Fuchsian
quotient.

Now we consider the edge e of � which is incident to v. As K �xes e, it is a
subgroup of the torus group G(e). Our hypothesis thatX is not peripheral in V

implies thatH \G(e) is commensurable with the normal V PCn subgroup L of
G(v). As K is a V PCn subgroup of G(e) and of H , it follows that K must be
commensurable with L. It remains to prove that X 0 must be enclosed by V .

As in the proof of Lemma 2.5.10, we let µ denote the subinterval of � between
v and the �rst V0–vertex v00 of �which is of Seifert type adapted to @G. As before
any pair of adjacent edges of µ have the same stabiliser. Thus the edge group
G(e) is equal to an edge subgroup of G(v00).

If v00 is not equal to v0, so that µ is properly contained in �, the above discus-
sion shows that K must be commensurable with the normal V PCn subgroup
L
00 ofG(v00). AsK is commensurable with L and L00, it follows that L and L00 are

commensurable. As each is a normal subgroup ofG(e)with quotient isomorphic
toZ or toZ2⇤Z2, Lemma 2.1.11 shows thatL andL00 must be equal. Now Lemma
2.5.10 yields a contradiction. We deduce that µ must equal �.

Let e0 denote the edge of � which is incident to v
0. As all consecutive edges

of � have the same stabiliser, it follows thatG(e) = G(e0). IfX 0 is not peripheral
in v

0, the preceding argument with the roles ofX andX 0 reversed shows thatK
must be commensurablewith the normal subgroupL0 ofG(v0). IfX 0 is peripheral
in v

0 but is not equivalent to the almost invariant set associated to the edge e0,
then Lemma 2.5.8 shows that K must be commensurable with L

0. Thus either
K is commensurable with L

0, or X 0 is equivalent to the almost invariant subset
of G associated to e

0. In the �rst case, we derive a contradiction as before. In
the second case, we recall that each interior vertex of � is isolated or of special
Seifert type. Thus consecutive edges of � not only have the same stabilisers but
they have equivalent associated almost invariant subsets of G. Hence X 0 must
be equivalent to the almost invariant subset of G associated to e, so that X 0 is
enclosed by v, and hence by V , as required. This completes the proof of the
lemma.
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2.6 Enclosing properties ofAnnulus-TorusDecom-
positions

LetG denote any almost �nitely presented group which has no nontrivial almost
invariant subsets over V PC(< n) subgroups. Recall that Fn,n+1 denotes the
family of equivalence classes of all nontrivial almost invariant subsets ofGwhich
are over V PCn subgroups and of equivalence classes of all n–canonical almost
invariant subsets of G which are over V PC(n+ 1) subgroups. The decomposi-
tion �n,n+1 of G is the reduced algebraic regular neighbourhood of Fn,n+1, and
its V0–vertices correspond to the cross connected components ofFn,n+1. Some of
its properties are described in Theorem 2.1.16. For brevity, we will denoteFn,n+1

byF in the rest of this section. In the case when (G, @G) is a PD(n+2) pair, we
will also consider the familyF 0 of equivalence classes of all nontrivial almost in-
variant subsets ofGwhich are over V PCn subgroups together with equivalence
classes of all nontrivial almost invariant subsets ofGwhich are over V PC(n+1)
subgroups and are adapted to @G. Note that, by Lemma 2.2.13, nontrivial almost
invariant subsets of G which are over V PC(n + 1) subgroups and are adapted
to @G are dual to essential tori in (G, @G). Thus from the topological point of
view, it seems very natural to consider the family F 0. However, one obvious
reason why our theory in [22] discusses algebraic regular neighbourhoods of
F = Fn,n+1 rather than F 0 is that, for general groups, there is no analogue of
F 0. Another reason is that elements of F 0 �F need not be n–canonical and our
methods in [22] cannot handle this situation. In this section, we will show that
F is contained in F 0 (Corollary 2.6.4) and that F and F 0 have the same reduced
algebraic regular neighbourhoods (Theorem 2.6.17). This technical result will be
used in section 2.7 of this paper in a crucial way. It is the algebraic analogue of
the situation discussed in the second paragraph of section 2.1, with �n,n+1 being
the algebraic analogue of AT (M), the family F 0 being the algebraic analogue
of the family of all essential annuli and tori in M , and the family F being the
algebraic analogue of the family of all essential annuli inM together with those
essential tori inM which do not cross any essential annulus inM .

First we will show that F is contained in F 0. To do this we need to consider
almost invariant subsets of G which are not adapted to @G. We start with the
following simple result.

Lemma 2.6.1. Let n � 1, and let (G, @G) be an orientable PD(n + 2) pair.
Suppose that X is a nontrivial almost invariant subset of G over a V PC(n + 1)
groupH and thatX is not adapted to @G. Then there is a subgroup Si of G with a
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conjugate in @G such that H \ Si is V PCn.

Proof. As X is not adapted to @G, there is Si in @G, and g 2 G, such that both
X \ gSi and X

⇤ \ gSi are not H–�nite. By replacing Si by a conjugate, we can
arrange that bothX\Si andX⇤\Si are notH–�nite. Thus both of them are not
(H\Si)–�nite. LetK denoteH\Si. ThenX\Si is a nontrivial almost invariant
subset of Si which is over K , so that e(Si, K) > 1. As K is a subgroup of the
V PC(n+1) groupH , it must be V PC( n+1). AsK must have in�nite index
in the PD(n+1) group Si, Strebel’s result [29] shows thatK has cohomological
dimension  n. ThusK is V PC( n).

Recall the following long exact cohomology sequence from page 18.

H
0(G;Z2E) ! H

0(G;PE) ! H
0(G;PE/Z2E) ! H

1(G;Z2E) ! H
1(G;PE) !

HereH is a subgroup of a groupG, andE denotesH\G. AlsoH0(G;PE) ⇠=
Z2, and e(G,H) equals the dimension over Z2 of H0(G;PE/Z2E). Thus if
e(G,H) > 1, thenH

1(G;Z2E) is non-zero. In the setting of the present lemma,
as e(Si, K) > 1 we see that H1(Si;Z2(K\Si)) must be non-zero. As Si is
PD(n + 1), this last group is isomorphic to Hn(Si;Z2(K\Si)) which is in turn
isomorphic to Hn(K,Z2). Thus Hn(K,Z2) is non-zero. As K is torsion free
and V PC( n), it follows that K must be V PCn, so that H \ Si is V PCn as
required.

Now we can prove the following.

Proposition 2.6.2. Let (G, @G) be an orientable PD(n+2) pair. Suppose thatX
is a nontrivial almost invariant subset ofGwhich is over a V PC(n+1) subgroupH
and is not adapted to @G. Then X crosses some nontrivial almost invariant subset
of G which is over some V PCn subgroup of G and is dual to an essential annulus.

Remark 2.6.3. In particular, if suchX exists, then there are essential annuli in the
pair (G, @G) which are over V PCn subgroups of H .

Proof. The proof of this result is suggested by our arguments in [21]. SinceX is
not adapted to @G, the proof of Lemma 2.6.1 shows that, after conjugation, there
is a group Si in @G such thatX \Si is a nontrivial almost invariant subset of Si

overH \Si, andH \Si is V PCn. We denoteH \Si byK . By replacingH by a
subgroup of �nite index if necessary, we can arrange thatH is orientable, thatK
has a �nite index subgroup L which is normal in H , and that the quotient L\H
is in�nite cyclic. Theorem 7.3 of [1] now implies that L is orientable.
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As in section 2.2, we choose an aspherical spaceM with fundamental group
G and with aspherical subspaces corresponding to @G whose union is denoted
@M . We denote the cover of M corresponding to L by ML. As Si contains L,
there is a component ⌃ of @ML with fundamental group L. Since L is normal in
H with in�nite cyclic quotient, the quotient L\H acts naturally on ML, and we
obtain in�nitely many components of @ML which are translates of ⌃ and have
fundamental groupL. LetZ denote the support of a 0–cochain onMH with �nite
coboundary which represents the element ofH0

e
(MH ;Z2) determined byH\X .

Let p : ML ! MH denote the covering projection. As X \ Si is a nontrivial
L–almost invariant subset of Si, the vertices of p(⌃) inMH meet both Z and Z⇤

in in�nite sets. As X is H–invariant, the vertices of the image of each translate
of ⌃ also meet both Z and Z

⇤ in in�nite sets.
As the number of these translates of⌃ is in�nite, we can apply Lemma 2.2.22.

As in that lemma, let ⌃1, ⌃2, ⌃3 and ⌃4 denote four distinct translates of ⌃ by
elements of L\H , and letAij denote the annulus inML with fundamental group
L and joining ⌃i and ⌃j . Let Yij denote the L–almost invariant subset of G dual
to Aij . Let Zij denote the support of a 0–cochain onML with �nite coboundary
which represents the element of H0

e
(ML;Z2) determined by L\Yij . The proof

of Lemma 2.2.22 shows that there are distinct integers i, j, k and l such that Zij

separates⌃k and⌃l, i.e. ⌃k is almost contained in Zij and⌃l is almost contained
in Z

⇤
ij
, or vice versa. It follows that X must cross Yij because each of the four

corners of the pair (Z, pZij) is in�nite, as it has in�nite intersection with p⌃k

or p⌃l. As Yij is dual to an essential annulus, this completes the proof of the
lemma.

The point of this proposition is the following corollary.

Corollary 2.6.4. Let (G, @G) be an orientable PD(n + 2) pair, and let F and
F 0 be de�ned as above. If X is a n–canonical almost invariant subset of G over
a V PC(n + 1) subgroup H , then X is automatically adapted to @G. Thus F is
contained in F 0.

Remark 2.6.5. As X is adapted to G, it follows from Lemma 2.2.13 that H must
be orientable.

Proof. If X is not adapted to @G, then Proposition 2.6.2 tells us that X crosses
some nontrivial almost invariant set over some V PCn subgroup of G, which
contradicts the hypothesis that X is n–canonical. Hence the de�nitions of F
and F 0 show that F is contained in F 0, as claimed.
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Next we give several results about how elements ofF 0�F can cross elements
of F .

Lemma 2.6.6. Let (G, @G) be an orientable PD(n+2) pair, and let F and F 0 be
de�ned as above. LetX be an element of F 0 �F which crosses a nontrivial almost
invariant set Y over a V PCn group K . Then the following hold:

1. If Y is dual to an essential annulus, then X crosses Y strongly.

2. There is an almost invariant set Y 0 over a group K 0 commensurable with K

such that Y 0 is dual to an essential annulus and X crosses Y 0 strongly.

Remark 2.6.7. If n = 1 and M is an orientable Haken 3–manifold, the corre-
sponding result holds. ForX corresponds to a torus which must be homotopic into a
componentW of T (M) which meets @M . SuchW is a Seifert �bre space whose in-
tersection with @M consists of tori and vertical annuli. ThusW is �lled by vertical
annuli, so X must cross one of them.

Note that in this topological situation, an annulus can never cross a torus strongly,
for the intersection of their fundamental groups must be of �nite index in the fun-
damental group of the annulus.

Proof. As X lies in F 0 �F , it is a nontrivial almost invariant subset of G which
is over an orientable V PC(n+ 1) group H and is adapted to @G.

1) Suppose that Y is dual to an essential annulus A. As discussed immedi-
ately after the proof of Lemma 2.2.22, the double DG of G along @G contains a
torus which is the double of the annulus A. We let DY denote the DK–almost
invariant subset of DG associated to this torus. As X is adapted to @G, Lemma
2.2.5 yields a H–almost invariant subset X of DG such that X \ G equals X .
As X and Y cross, it follows that X and DY must also cross. As H and DK

are both orientable V PC(n + 1) subgroups of the orientable PD(n + 2) group
DG, each has two coends inDG. Now Proposition 7.4 of [22] shows thatX and
DY must cross each other strongly. This implies thatX crosses Y strongly, thus
completing the proof of part 1).

2) As in section 2.2, we choose an aspherical spaceM with fundamental group
G and with aspherical subspaces corresponding to @G whose union is denoted
@M . Consider the coverMK , the element ofH1

f
(MK ;Z) corresponding toK\Y

and its dual class ↵ in Hn+1(MK , @MK ;Z). The boundary of ↵ has support in
only �nitely many components⌃1, . . . ,⌃k of @MK . Note that Proposition 2.2.20
tells us that there must be at least one such component of @MK , and each such
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component must carry a subgroup of �nite index in K . By replacing K by a
suitable subgroup of �nite index, we can arrange that K is orientable and that
each of ⌃1, . . . ,⌃k carries K itself. As K is orientable, we know that k � 2.
For each pair of distinct integers i and j between 1 and k, there is an essential
untwisted annulusAij inMK whose boundary lies in ⌃i[⌃j . Let Yij denote the
dualK–almost invariant subset of G. Let Zij denote the support of a 0–cochain
on MK with �nite coboundary which represents the element of H0

e
(MK ;Z2)

determined by K\Yij . We will show that X must cross one of these Yij ’s. This
will be the required Y

0. Now part 1) will imply that X crosses Y 0 strongly.
LetZ denote the support of a 0–cochain onMH with �nite coboundarywhich

represents the element ofH0
e
(MH ;Z2) determined byH\X . AsX is adapted to

@G, we know that for each component ⌃ of @MH the vertices of ⌃ are almost
all in Z or almost all in Z

⇤. Further the vertices of ⌃ are H–in�nite, as X is
nontrivial, so that the vertices of ⌃ cannot be almost all in Z and almost all in
Z

⇤. Thus if X crosses none of the Yij ’s, it follows that, after replacing X by X
⇤

if needed, the vertices of the images in MH of each ⌃i, 1  i  k, almost all
lie in Z . As X and Yij do not cross, it now follows that Yij  X or Y ⇤

ij
 X .

By replacing Yij by its complement if needed, we can arrange that Yij  X , for
all i and j. Part 2) of Proposition 2.2.21 tells us that Y is equivalent to a sum of
some of the Yij ’s and their complements. If there are no complements in the sum,
then we have Y  X , which contradicts the assumption that X crosses Y . The
same inequality holds if the number of complements in the sum is even. If the
number of complements in the sum is odd, then we have X⇤  Y , which again
contradicts the assumption that X crosses Y . This contradiction shows that X
must cross some Yij and so completes the proof of the lemma.

Two easy consequences are the following results.

Lemma 2.6.8. Let (G, @G) be an orientable PD(n+2) pair, and let F and F 0 be
de�ned as above. Let X be an element of F 0 � F which crosses nontrivial almost
invariant sets Y and Y

0 over V PCn groups L and L
0 respectively. Then L and L

0

are commensurable.

Remark 2.6.9. Ifn = 1 andM is an orientable Haken 3–manifold, the correspond-
ing result holds. For X corresponds to a torus which crosses an annulus in M , and
so must be homotopic into a component W of T (M) which meets @M . Such W is
a Seifert �bre space whose intersection with @M consists of tori and vertical annuli.
IfW has a unique Seifert �bration, up to isotopy, it follows that all essential annuli
inM which are homotopic intoW carry commensurable groups as this group must
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be commensurable with the �bre group of W . Otherwise, W is homeomorphic to
T ⇥ I or toK e⇥I , and in either caseW \ @M must consist of annuli alone. In this
case, all essential annuli in M which are homotopic into W carry commensurable
groups as their boundaries lie inW \ @M .

Proof. As X lies in F 0 �F , it is a nontrivial almost invariant subset of G which
is over an orientable V PC(n + 1) group H and is adapted to @G. By part 2) of
Lemma 2.6.6, we may assume thatX crosses Y and Y 0 strongly. AsX crosses Y
strongly, it follows that e(H,H \ L) � 2. As H is V PC(n + 1), it follows that
H\L is V PCn and hence of �nite index inL. Thus by replacingL by a subgroup
of �nite index, we can assume that it is a subgroup ofH . Similarly we can assume
thatL0 is also a subgroup ofH . IfL andL0 are not commensurable, it follows that
some element of L0 is hyperbolic with respect to Y which implies that Y 0 crosses
Y strongly. Now Corollary 7.10 of [22] implies that L has small commensuriser
which contradicts the fact that H commensurises L. This contradiction shows
that L and L

0 must be commensurable as required.

Lemma 2.6.10. Let (G, @G) be an orientable PD(n + 2) pair, and let F and F 0

be de�ned as above. LetX be an element of F 0 �F and letX 0 be an element of F 0

dual to a torus in (G, @G). Suppose thatX crossesX 0, and also crosses a nontrivial
almost invariant set Y over a V PCn group L. ThenX 0 crosses a nontrivial almost
invariant set Y 0 over a V PCn group L

0 commensurable with L. In particular, X 0

lies in F 0 � F .

Remark 2.6.11. If n = 1 and M is an orientable Haken 3–manifold, the corre-
sponding result is clear. For X corresponds to a torus which crosses an annulus in
M , and so must be homotopic into a component W of T (M) which meets @M . As
X crosses X 0, the corresponding tori cross, so both must be homotopic into W . In
addition, each of these tori cannot be homotopic to a boundary component of W .
Now any such torus in W must cross an annulus inW , so that X 0 lies in F 0 � F .

Proof. The hypotheses imply thatX andX 0 are nontrivial almost invariant sub-
sets of G which are over orientable V PC(n + 1) subgroups H and H

0 respec-
tively, and are adapted to @G. As they are adapted to @G, they can be extended
to almost invariant sets in DG over the same groups H and H

0. As DG is
PD(n + 2), and H and H

0 are each PD(n + 1), it follows that H and H
0 each

has two coends in DG, so that these extended almost invariant sets must cross
strongly if at all. As X and X

0 cross, it follows that they must cross each other
strongly. Let L0 denote the intersection H \ H

0, which is V PCn. By part 2) of
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Lemma 2.6.6, we may assume thatX crosses Y strongly, and the proof of Lemma
2.6.8 shows that we can assume that L is a subgroup of H .

If L and L
0 are not commensurable subgroups of H , then some element of

L
0 is hyperbolic with respect to Y . This implies thatX 0 crosses Y strongly, thus

proving the lemma in this case.
Now suppose that L and L

0 are commensurable. Lemma 13.1 of [22] implies
that there are �nite index subgroupsH1 ofH and L1 of L such that L1 is normal
in H1 with in�nite cyclic quotient. We let � denote the Cayley graph of G with
respect to some �nite generating set, and consider the action of L1\H1 on the
graph L1\�. Let h be an element of H1 � L1. As L1\�Y is �nite, there is a
�nite connected subcomplex C of L1\� which contains L1\�Y . Thus for all but
�nitely many elements g of L1\H1, we have gC \C empty, so that g(L1\Y ) and
L1\Y are nested. AsX crosses Y strongly, the intersection Y \H1 is a nontrivial
L1–almost invariant subset of H1. As L1\H1 is in�nite cyclic, there is a power
h
m of h such that Y \ H1 ⇢ h

m(Y \ H1). Thus by replacing h by a suitable
power if needed, we can arrange that Y ⇢ hY . Also Y cannot be equivalent to
hY . For if this happens, then L1 has in�nite index in {g 2 H1 : gY is equivalent
to Y }, and we can apply Theorem 5.8 from [26] to the action of L1\H1 on L1\�.
The proof of this result implies that H1 must have �nite index in G, which is
impossible as X is a nontrivial almost invariant subset of G over H .

As h normalises L1, each translate hn
Y of Y is also L1–almost invariant. If

X
0 crosses Y or any translate h

n
Y , we will have proved the lemma. Thus we

can suppose that X 0 does not cross hn
Y , for any integer n. By replacing X 0 and

Y by their complements if needed, we can arrange that X 0  Y . (If we replace
Y by its complement, we simultaneously replace h by its inverse, in order to
preserve the inclusion Y ⇢ hY .) Now this implies that X 0  h

k
Y for all k � 0.

We claim that the inequality X
0  h

k
Y cannot hold for every integer k. To

see this pick a �nite generating set for G and let C denote the corresponding
Cayley graph for G. Now recall that given a pair of nontrivial almost invariant
subsets U andW of G, each over a �nitely generated subgroup of G, there is an
integer d such that if U  gW then U is contained in the d–neighbourhood of
gW , where distances are measured in C . As the intersection of all the h

k
Y is

empty, the inequalities X 0  h
k
Y , for every k, would imply that X 0 is empty,

which is a contradiction. This completes the proof of the claim. (Alternatively
the claim follows immediately using the fact, proved in [19], that X 0 and Y are
equivalent to almost invariant sets in very good position, which implies that the
partial orders on E induced by inclusion and by  are the same.) Thus there
must be a least integer k such that X 0 ⇥ h

k
Y . Now by replacing Y by h

k
Y if
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needed, we can suppose that k = 0. Thus we have X 0  Y and X
0 ⇥ h

�1
Y .

Recall thatL andL0 = H\H 0 are commensurable. This implies that h and its
powers do not lie in L

0. Let h+ denote {hk : k � 0}, let h� denote {hk : k  0},
and let h± denote h+ [ h�. As X and X

0 cross strongly, it follows that h± \X
0

and h±\X 0⇤ each contain points which are arbitrarily far from �X
0. In particular,

both sets are in�nite. The fact that X 0  Y ⇢ hY ⇢ h
2
Y ⇢ . . . implies that

h+ \X
0 is �nite, so that h� \X

0 must be in�nite.
As we are assuming that X 0 does not cross hn

Y , for any integer n, we know
that X 0 does not cross h

�1
Y . Also recall that X 0 ⇥ h

�1
Y , so that we must

have one of the inequalities X
0  h

�1
Y

⇤, h�1
Y

⇤  X
0 or h�1

Y  X
0. If

X
0  h

�1
Y

⇤, then X
0  h

�k
Y

⇤, for every k � 0, so that h� \ X
0 is �nite,

which is a contradiction. If h�1
Y

⇤  X
0, the inequality X

0  Y implies that
h
�1
Y

⇤  Y , which is impossible as h�1
Y ⇢ Y . Thus we must have h�1

Y  X
0.

As X 0  Y , we know Y
⇤  X

0⇤. Hence X
0 crosses the nontrivial L1–almost

invariant set Y 0 = Y
⇤ [ h

�1
Y , completing the proof of the lemma.

Remark 2.6.12. Example 2.13 of [24] shows that Lemmas 2.6.8 and 2.6.10 are not
valid ifX is not adapted to @G. In that example, G is the fundamental group of an
orientable Haken 3–manifold M constructed by gluing two Seifert �bre spaces M1

andM2 along a boundary torus T , so that the Seifert �brations do not match. Thus
the given decomposition of M is essentially its JSJ decomposition. Denote ⇡1(T )
by H , and let �0 denote the splitting of G over H determined by T . Note that �0 is
adapted to @G. Let X 0 denote a H–almost invariant subset of G associated to �0.

In this example, each Mi has at least one boundary component other than T ,
and so admits essential annuli disjoint from T . In particularM itself admits essen-
tial annuli, so that G does possess nontrivial almost invariant subsets over V PC1
subgroups. We described a splitting � of G over H which crosses �0, and is not
adapted to @G. Let X denote a H–almost invariant subset of G associated to this
splitting. Thus X crosses X 0. We also showed that X crosses annuli in M1 and in
M2. As annuli inM1 andM2 carry incommensurable subgroups ofG, Lemma 2.6.8
fails. It follows from results we proved in [24] that X 0 is 1–canonical, i.e. X 0 does
not cross any nontrivial almost invariant subset ofG over a V PC1 subgroup. Thus
Lemma 2.6.10 also fails.

Nowwe can start on the proof thatF andF 0 have the same algebraic regular
neighbourhoods. Wewant to show that the reduced algebraic regular neighbour-
hood �(F 0) of F 0 is isomorphic to the reduced algebraic regular neighbourhood
of F , which is �n,n+1(G). It seems natural to approach this by proving that each
element of F 0 is enclosed by some V0–vertex of �n,n+1, but this seems hard to do
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directly. Instead we will consider our construction of unreduced algebraic regu-
lar neighbourhoods from [22]. We will show that F and F 0 have the same unre-
duced algebraic regular neighbourhoods which will immediately imply that they
also have the same reduced algebraic regular neighbourhoods. Brie�y our con-
struction in [22] goes as follows. LetE denote aG–invariant family of nontrivial
almost invariant subsets ofG, and assume that the elements ofE are in good po-
sition. Thus we have a G–invariant partial order  on E, essentially given by
almost inclusion. A cross-connected component (CCC) of E is an equivalence
class of the equivalence relation generated by crossing. We let P denote the col-
lection of CCC’s of E. We showed that there is a natural idea of betweenness on
the elements of P which gives it a pretree structure. If this pretree is discrete,
we can construct a bipartite G–tree T with P as its V0–vertices, and the graph
of groups � = G\T is the unreduced algebraic regular neighbourhood of the
family E.

Remark 2.6.13. As G is �nitely generated, it may be that we could simplify this
approach using pretrees by one which uses cubings and very good position, as dis-
cussed in section 9 of [6], but we have not attempted to do this.

Let P (F) denote the collection of all CCC’s of elements of F , and let P (F 0)
denote the collection of all CCC’s of elements of F 0. Thus P (F) and P (F 0)
have natural pretree structures. As we know that F has an unreduced algebraic
regular neighbourhood, we know that P (F) is a discrete pretree. Recall that
Corollary 2.6.4 shows that F is contained in F 0. This inclusion yields a natu-
ral map ' : P (F) ! P (F 0), which is clearly G–equivariant. We will show
that ' is a G–equivariant bijection such that ' and '

�1 preserve the pretree
idea of betweenness. Thus ' induces a G–equivariant isomorphism of the pre-
trees. This implies that the pretree determined by F 0 is discrete, so that F 0 has
an unreduced algebraic regular neighbourhood in G which is isomorphic to the
unreduced algebraic regular neighbourhood of F . Thus the reduced algebraic
regular neighbourhood of F 0 in G is isomorphic to �n,n+1 as required.

Recall thatF 0�F consists of all those nontrivial almost invariant subsets ofG
which are over orientable V PC(n+1) subgroups and are adapted to @G, but are
not n–canonical. In particular every element of F 0 �F crosses some element of
F . It follows immediately that ' : P (F) ! P (F 0) is surjective. We will show in
the proof of Theorem 2.6.17 that it is injective. Note also that ' clearly preserves
betweenness in the sense that if three CCC’s A, B and C of P (F) satisfy ABC ,
i.e. B is between A and C , and if the image vertices A0, B0 and C

0 of P (F 0) are
distinct, then A

0
B

0
C

0. But it is not automatic that '�1 preserves betweenness,
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and this needs proof in the special case under consideration. We give here a
simple example which makes clear that this is a real and subtle problem.

Example 2.6.14. Let M denote the compact surface obtained from the 2–disc by
removing the interiors of two subdiscs. Thus G = ⇡1(M) is free of rank 2. Let �
and µ denote two simple essential arcs properly embedded in M and intersecting
transversely in a single point which cannot be removed by an isotopy of � and µ.
LetN(�) andN(�[µ) denote regular neighbourhoods of � and �[µ respectively,
and let �(�) and �(� [ µ) denote the bipartite graphs of groups decompositions of
G which are determined by the frontiers inM of N(�) and N(� [ µ) respectively.
Then �(�) and �(� [ µ) will be non-isomorphic graphs of groups. Now � and µ

determine almost invariant subsets X(�) and X(µ) of G obtained by lifting them
to arcs � and µ in the universal cover of M and choosing one side of the lift. We
can regard �(�) as the algebraic regular neighbourhood of X(�) and can regard
�(� [ µ) as the algebraic regular neighbourhood of the family {X(�), X(µ)}. As
� is a simple arc on M , the translates of � are disjoint, so that the family E(�) of
translates ofX(�) and its complement is nested. Thus each CCC ofE(�) consists of
a single translate ofX(�). If we letE(�, µ) denote the family of translates ofX(�)
andX(µ) and their complements, then each CCC of E(�, µ) will consist of a single
translate ofX(�) and a single translate ofX(µ). In each case, the stabiliser of each
CCC is trivial. Thus if P (�) and P (�, µ) denote the families of CCC’s of E(�) and
E(�, µ), the natural equivariant map' fromP (�) toP (�, µ) is a bijection. Further
it is clear that ' preserves betweenness. But this cannot be true for the inverse map
'
�1. For the fact that �(�) and �(�[µ) are not isomorphic implies that the pretree

structures on P (�) and P (�, µ) must be di�erent.

The following technical result is the key to handling this di�culty.

Lemma 2.6.15. Let (G, @G) be an orientable PD(n + 2) pair, let F and F 0 be
de�ned as above, and let ' : P (F) ! P (F 0) be the natural map. Let X be an
element of F 0 � F which crosses an almost invariant set Y over a V PCn group
K , and let B denote the CCC of P (F) which contains Y so that the CCC '(B) of
P (F 0) contains X and Y . Then

1. Y cannot be isolated in F .

2. If U and V belong to CCC’s A and C of P (F) such that A 6= B 6= C , and if
U  X  V , then there is an element Z of B such that U  Z  V .
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Remark 2.6.16. In the 3–manifold setting, so that n = 1, part 1) is easy to see.
For letM be a Haken manifold with incompressible boundary, and suppose that an
essential torus T inM crosses an essential annulusA. Then both must be homotopic
into a component W of JSJ(M) which is a Seifert �bre space which meets @M .
As such a componentW is �lled by essential annuli, either A crosses some essential
annulus or it is homotopic into a frontier component of W . The second case would
imply that A crosses no essential torus of M , which is a contradiction, so that A
must cross some essential annulus inM , as required.

Proof. As X lies in F 0, it is a nontrivial almost invariant subset of G which is
over an orientable V PC(n+ 1) group H and is adapted to @G.

1) If Y is isolated inF , then part 4) of Proposition 2.2.21 implies that Y is dual
to an annulus. Now part 1) of Lemma 2.6.6 implies that X crosses Y strongly.
Thus e(H,H \K) � 2, so thatH \K must be V PCn, and so of �nite index in
K . Now Lemma 13.1 of [22] shows that, by replacing H and K by subgroups of
�nite index, we can suppose thatK is a subgroup ofH and is normal inH with
in�nite cyclic quotient. Let h be an element of H � K . As K is normal in H ,
the translate hY of Y is alsoK–almost invariant. As Y is assumed to be isolated
in F , no translate h

n
Y of Y can cross Y . As in the proof of Lemma 2.6.10, by

replacing h by a suitable power if needed, we can suppose that Y ⇢ hY . Also
as in that proof, Y cannot be equivalent to hY . Now it follows that Y crosses
the nontrivialK–almost invariant set hY ⇤[h

�1
Y , so that Y cannot be isolated.

This contradiction completes the proof of part 1).
2) If X crosses Y weakly, part 2) of Lemma 2.6.6 shows that there is a K

0–
almost invariant set Y 0 such that K 0 is commensurable with K , and Y

0 is dual
to an annulus. It also shows that X crosses Y 0 strongly and hence that H com-
mensurises K 0. In particular K 0, and hence K , has large commensuriser. Now
Proposition 8.6 of [22] shows that all nontrivial almost invariant subsets of G
over subgroups commensurable with K belong to a single CCC apart from a �-
nite number which are isolated. (Note that this proposition as stated only applies
to the case when K is V PC1, but essentially the same proof works in general.
This is discussed in section 14 of [6].) AsX crosses Y and Y 0, part 1) tells us that
Y and Y 0 cannot be isolated, so it follows that Y and Y 0 belong to the same CCC
B.

It follows from the preceding paragraph that, by replacing Y by Y 0 if needed,
we can assume that Y is dual to an annulus, so that X crosses Y strongly.

As in part 1), we can further assume thatK is a subgroup ofH and is normal
inH with in�nite cyclic quotient. In particular, asH commensurisesK , it follows
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that H must preserve the CCC B, so that for every g 2 H , we have gY belongs
to B. As no element of the CCC A can cross any element of B, it follows that,
for every g 2 H , we have U  gY or U  gY

⇤. We will write U  gY
(⇤) to

indicate that one of these two inequalities holds. Similarly, for every g 2 H , we
have gY (⇤)  V . By replacing Y by its complement if needed, we can suppose
that U  Y .

Now we consider the action of K\H on K\�, and let h be an element of
H � K . As in the proof of Lemma 2.6.10, by replacing h by a suitable power,
we can suppose that Y ⇢ hY . Also as in that proof, Y cannot be equivalent to
h
n
Y , for any non-zero value of n. As U  Y , the inclusion Y ⇢ hY implies that

U  h
k
Y for all k � 0. As in the proof of Lemma 2.6.10, the inequality U  h

k
Y

cannot hold for every integer k, and by replacing Y by a suitable translate hk
Y

if needed, we can suppose that U  Y and U ⇥ h
�1
Y . Thus we must have

U  h
�1
Y

⇤ ⇢ h
�2
Y

⇤, and hence U  Y \h
�2
Y

⇤. LetR denote the intersection
Y \ h

�2
Y

⇤. As h�2
Y

⇤ isK–almost invariant, it follows that R is alsoK–almost
invariant. Now let Z denote the intersection R \ X . We claim that Z is a K–
almost invariant subset ofG. CertainlyKZ = Z as each ofR andX is invariant
under the left action ofK . The coboundary �Z of Z is the union of subsets of �R
and �X . As �R is K–�nite, it remains to show that �Z \ �X is K–�nite. Now
�X isH–�nite, and contains the union of the translates hn(�Z \ �X), for every
integer n. As the translates of R by powers of h2 are all disjoint, it follows that
the translates of �Z \ �X by powers of h2 are all disjoint. Now it follows that
�Z \ �X must be K–�nite, so that �Z itself is K–�nite as required. Recall that
we have the inequalitiesU  R andU  X , so that we also haveU  Z . Finally
we claim that as Z = Y \ h

�2
Y

⇤ \X , it crosses hZ = hY \ h
�1
Y

⇤ \X . This is
because none of the four corners of the pair (Z, hZ) is small, which follows from
the inclusionsU ⇢ Z\hZ , hU ⇢ Z

⇤\hZ , h�1
U ⇢ Z\hZ⇤ andX⇤ ⇢ Z

⇤\hZ⇤.
Thus Z is a nontrivial and non-isolated almost invariant subset ofG overK and
hence must belong to the CCC B. Now the inequalities U  Z  X  V

complete the proof of part 2) of the lemma.

Theorem 2.6.17. Let (G, @G) be an orientable PD(n+2) pair. Let F denote the
family of equivalence classes of all nontrivial almost invariant subsets of G which
are over V PCn subgroups and of equivalence classes of all n–canonical almost
invariant subsets of G which are over V PC(n + 1) subgroups. Thus the reduced
algebraic regular neighbourhood ofF exists and is �n,n+1. LetF 0 denote the family
of equivalence classes of all nontrivial almost invariant subsets ofG which are over
V PCn subgroups together with all nontrivial almost invariant subsets of G which
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are over V PC(n + 1) subgroups and are adapted to @G. Then F 0 has a reduced
algebraic regular neighbourhood in G, and this is naturally isomorphic to �n,n+1.

Proof. Recall our discussion immediately before Example 2.6.14. There is a natu-
ral G–equivariant surjection ' : P (F) ! P (F 0). We need to show that ' is an
injection and that P (F) and P (F 0) have the same pretree idea of betweenness.

Suppose that ' is not injective. Then there must be elements Y0 and Y1 of
F , belonging to distinct CCC’s v0 and v1 of P (F), and a sequenceX1, . . . , Xn of
elements of F 0 � F such that X1 crosses Y0, and Xn crosses Y1, and Xi crosses
both Xi�1 and Xi+1, for each i such that 2  i  n � 1. As Y0 2 F , and
X1 2 F 0 � F , Lemma 2.6.10 shows that Y0 cannot be dual to a torus. Similarly
Y1 cannot be dual to a torus. Thus Y0 and Y1 are over V PCn subgroups of G.

LetXi be almost invariant overHi, and Yj overKj , and note that each Hi is
orientable. We claim thatH1\K0 has �nite index inK0. IfX1 crosses Y0 strongly,
then e(H1, H1\K0) � 2. AsH1 is V PC(n+1), it follows thatH1\K0 must be
V PCn and so the claim follows in this case. If X1 crosses Y0 weakly, then part
2) of Lemma 2.6.6 tells us that there is a nontrivial almost invariant set Y 0 over
a groupK

0 commensurable withK0 such thatX1 crosses Y 0 strongly. As before
this implies that H1 \K

0 must be V PCn, so it follows that H1 \K0 must also
be V PCn, and the claim follows in this case also.

Now Lemma 13.1 of [22] implies that a subgroup of �nite index in H1 com-
mensurises H1 \ K0 and hence commensurises K0 itself, so that K0 has large
commensuriser in G. Proposition 8.6 of [22] shows that the collection of equiv-
alence classes of all nontrivial almost invariant subsets of G which are over a
subgroup commensurable with K0 form a single CCC apart from �nitely many
isolated elements. Part 1) of Lemma 2.6.15 shows that Y0 cannot be isolated.
Thus the CCC v0 of P (F)which contains Y0 contains all the nontrivial and non-
isolated almost invariant subsets of G which are over a subgroup commensu-
rable with K0. As X1 crosses an element of v0, and also crosses X2, Lemma
2.6.10 shows that X2 must cross some nontrivial almost invariant subset Y2 of
G which is over a subgroup commensurable with K0. Again part 1) of Lemma
2.6.15 shows that Y2 cannot be isolated. It follows that Y2 lies in the CCC v0.
Now, by induction, it follows that each Xi must cross some element of v0. Thus
Xn crosses an element Z0 of v0 and the element Y1 of v1. Lemma 2.6.8 shows that
Z0 and Y1 must have commensurable stabilisers, and Lemma 2.6.15 shows that
Y1 cannot be isolated. But this implies that Y1 also lies in the CCC v0, which con-
tradicts our assumption. This completes the proof that ' is injective and hence
is a bijection.
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Finally Lemma 2.6.15 shows that the betweenness relations on the two pre-
trees P (F 0) and P (F 0) are the same, which completes the proof of the theo-
rem.

2.7 Proof of the Main Theorem
In this section we use our work from previous sections to show how our main
result, Theorem 2.3.14, follows from Theorem 2.1.16. One of the things we need
to prove when (G, @G) is an orientable PD(n+2) pair is that all the edge split-
tings of �n,n+1(G) are dual to essential annuli and tori. If an edge of �n,n+1(G) is
incident to a V0–vertex v which is isolated or of V PCk–by–Fuchsian type, with
k equal to n� 1 or n, it is trivial that the edge group is V PCn or V PC(n+ 1).
But if v is of commensuriser type, then we do not even know that the edge group
is �nitely generated. However we will show in this section that when (G, @G)
is an orientable PD(n + 2) pair the edge groups of �n,n+1(G) are all V PCn or
V PC(n+ 1). Assuming this, the following result shows that the edge splittings
of �n,n+1(G) are all dual to essential annuli and tori.

Lemma 2.7.1. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC . Let Fn,n+1 denote the family of equivalence classes of all nontrivial almost
invariant subsets ofGwhich are over a V PCn subgroup, together with equivalence
classes of all n–canonical almost invariant subsets ofGwhich are over a V PC(n+
1) subgroup. Let �n,n+1 denote the reduced algebraic regular neighbourhood of
Fn,n+1 inG. (See Theorem 2.1.16.) Finally let e be an edge of �n,n+1 with associated
edge splitting �.

1. If G(e) is V PCn, then � is dual to an essential annulus in G.

2. If G(e) is V PC(n+ 1), then � is dual to an essential torus in G.

Proof. Let X denote the G(e)–almost invariant subset of G associated to the
edge splitting �. As � is an edge splitting of �n,n+1, it follows that X crosses no
element of Fn,n+1.

1) IfG(e) is V PCn, thenX is automatically an element ofFn,n+1, and hence
is an isolated element. Now part 5) of Proposition 2.2.21 implies that X is dual
to an essential annulus in G, as required.

2) IfG(e) is V PC(n+1), the fact thatX crosses no nontrivial almost invari-
ant subset of G over a V PCn subgroup implies that X is n–canonical and so
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is again an element of Fn,n+1. Now Corollary 2.6.4 and Remark 2.6.5 show that
X is adapted to @G and that G(e) is orientable, so that X is dual to an essential
torus in G, as required.

Recall that Theorem 2.1.16 states that each V0–vertex v of �n,n+1 satis�es one
of the following conditions:

1) v is isolated, and G(v) is V PC of length n or n+ 1.
2) v is of V PCk–by–Fuchsian type, where k equals n� 1 or n.
3) v is of commensuriser type, so thatG(v) is the full commensuriserCommG(H)

for some V PC subgroup H of length n or n+ 1, such that e(G,H) � 2.
We will consider cases 2) and 3) in the lemmas which follow. We start with

case 2), where v is of V PCk–by–Fuchsian type.

Lemma 2.7.2. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let �n,n+1 denote the reduced algebraic regular neighbourhood ofFn,n+1

in G. Let v be a V0–vertex of �n,n+1 which is of V PCk–by–Fuchsian type, where
k equals n� 1 or n.

1. If k = n, then v is of interior Seifert type (see De�nition 2.3.2).

2. If k = n� 1, then v is of I–bundle type (see De�nition 2.3.1).

Proof. 1) As v is of V PCn–by–Fuchsian type, the groups associated to the edges
of �n,n+1 incident to v are all V PC(n + 1). Now Lemma 2.7.1 implies that the
edge splittings ofG associated to these edges are dual to essential tori. It follows
that v is of interior Seifert type, as claimed.

2) In this caseG(v) is V PC(n�1)–by–Fuchsianwhere the Fuchsian quotient
group⇥ is not �nite nor two-ended, and there is exactly one edge of�n,n+1 which
is incident to v for each peripheral subgroupK of G(v) and this edge carriesK .
LetE(v) denote the collection of these edge groups. Note that each group inE(v)
is V PCn. Thus Lemma 2.7.1 implies that the edge splittings of G associated to
the edges of �n,n+1 which are incident to v are dual to essential annuli. Note also
that it is possible that the family E(v) is empty. In this case, �n,n+1 consists of a
single V0–vertex v, and G = G(v) is V PC(n� 1)–by–Fuchsian.

As in section 2.2, we choose an aspherical spaceM with fundamental group
G and with aspherical subspaces corresponding to @G whose union is denoted
@M . Recall that in order to prove that v is of I–bundle type, we need to show that
there are two distinct components ⌃ and T of @fM such that the induced action
ofG(v) on fM preserves the union of ⌃ and T , and for each peripheral subgroup
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K ofG(v), if eK denotes the edge of �which is incident to v and carriesK , then
the edge splitting associated to eK is given by the essential annulus K⌃,T .

Finding ⌃ and T

We claim that the pair (G(v), E(v)) isPD(n+1). LetL denote the V PC(n�
1) normal subgroup ofG(v)with Fuchsian quotient⇥. Let @⇥ denote the family
of subgroups of ⇥ which are the images of the groups in E(v), so that the pair
(⇥, @⇥) is a Fuchsian pair. If ⇥ is torsion free, then the pair (⇥, @⇥) is PD2. In
this case, asL is PD(n�1), Theorem 7.3 of [1] implies that the pair (G(v), E(v))
is PD(n + 1). In general ⇥ has a torsion free subgroup of �nite index, and the
pre-image inG(v) of this subgroup yields aPD(n+1) pair of �nite index inG(v).
As G(v) is torsion free, it follows that the pair (G(v), E(v)) itself is PD(n+ 1),
as claimed. Note that this pair need not be orientable.

Consider any orientation preserving non-peripheral element ↵ in ⇥ of in�-
nite order. As ⇥ is not �nite nor two-ended, there is another orientation pre-
serving non-peripheral element � in ⇥ of in�nite order such that ↵ and � have
non-zero geometric intersection number. Thus ↵ and � determine nontrivial al-
most invariant subsets of ⇥ such that each is over an in�nite cyclic subgroup,
each is adapted to @⇥, and they cross strongly. The pre-images in G(v) of these
subsets of⇥ are almost invariant subsets ofG(v) such that each is over a V PCn

subgroup, each is adapted to E(v), and they cross strongly. We denote these
V PCn subgroups of G(v) by C andD. Now Lemma 2.2.5 shows us that we can
extend these sets to almost invariant subsets P and Q of G over C and D re-
spectively such that P and Q are enclosed by v. As the almost invariant subsets
of G(v) cross strongly, P and Q must also cross strongly. Now Proposition 7.2
of [22] shows that C and D must each have two coends in G. Note that C \D

equals the V PC(n�1) normal subgroupL ofG(v). Nowwe consider the covers
ML, MC andMD of M with fundamental groups L, C and D respectively.

Case: C and D are orientable.

As G possesses a nontrivial C–almost invariant subset, Proposition 2.2.20
tells us that MC must have at least two boundary components which carry a
subgroup of C of �nite index. As C has two coends in G, part 3) of Proposition
2.2.21 shows that the number of such boundary components of MC and of each
�nite cover of MC is exactly 2. Hence each of these two boundary components
ofMC must carryC itself. We denote these two boundary components by @1MC

and @2MC . Note that it follows that C preserves precisely two boundary com-
ponents of the universal cover fM ofM , and that all other C–orbits of boundary
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components of fM are in�nite. Now as in section 2.2, there is an untwisted an-
nulus A and a map ✓ : (A, @A) ! (MC , @MC) which is an isomorphism on
fundamental groups and sends @1A into @1MC and @2A into @2MC . Similarly D

preserves precisely two boundary components of the universal cover fM of M ,
and all other D–orbits of boundary components of fM are in�nite. We denote
by @1MD and @2MD the images in MD of the two boundary components of fM
which are preserved by D. Also there is an untwisted annulus B and a map
� : (B, @B) ! (MD, @MD) which is an isomorphism on fundamental groups
and sends @1B into @1MD and @2B into @2MD.

Now we consider the pre-images of these annuli in the common coverML of
MC andMD. Above ✓ we have a map ✓L intoML of a two-ended cover AL of A,
and ✓L maps @AL into the two components of @ML which lie above @1MC and
@2MC . Similarly above � we have a map �L intoML of a two-ended cover BL of
B, and �L maps @BL into the two components of @ML which lie above @1MD

and @2MD. The fact that P crosses Q strongly implies that ✓L(@1AL)must cross
the image of �L strongly, in the natural sense that ✓L(@1AL) contains points
arbitrarily far from the image of �L and on each side. In particular ✓L(@1AL)
must meet the image of �L, and hence must meet �L(@1BL) or �L(@2BL). As the
same argument applies to ✓L(@2AL), it follows that the two components of @ML

which contain ✓L(@1AL) and ✓L(@2AL) are the same as the two components of
@ML which contain �L(@1BL) and �L(@2BL). HenceC andD preserve the same
two boundary components ⌃ and T of the universal cover fM ofM .

Case: one or both of C and D is not orientable.

We apply the above arguments to their orientable subgroups of index 2. We
will see that the action of the group generated by C and D on the boundary
components of fM has one orbit with the two elements ⌃ and T , and all other
orbits are in�nite.

Let⇥0 denote the subgroup of⇥ generated by all orientation preserving non-
peripheral elements, and letG(v)0 denote the pre-image of⇥0 inG(v). Thus⇥0

has index at most 2 in ⇥, so that G(v)0 has index at most 2 in G(v). Consider
the action of G(v)0 on the boundary components of fM . As any two orientation
preserving non-peripheral elements of ⇥ of in�nite order belong to a �nite se-
quence of such elements each crossing the next, and as such elements generate
⇥0, it follows that ⌃ and T form one or two orbits under the action of G(v)0
and that all other orbits are in�nite. It follows that the same statement holds for
the action of G(v) on the boundary components of fM . Thus ⌃ and T are the
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required components of @fM .
If the family E(v) of edge splittings associated to edges of �n,n+1 incident to

v is empty, we have shown that v is of I–bundle type. In this case, either @G
consists of two copies of G, or @G consists of a single group which has index 2
in G. It remains to deal with the case when E(v) is non-empty.

The edge splittings of v

LetK denote a peripheral subgroup ofG(v), let eK denote the edge of �n,n+1

which is incident to v and carriesK , and let ✓K : (AK , @AK) ! (M, @M) be an
essential annulus which is dual to the edge splitting associated to eK . We need to
show that the annulus ✓K equalsK⌃,T which was de�ned prior to Lemma 2.2.15.
In general there can be many distinct annuli all carrying the same group, so there
is something to be proved.

Let S denote the stabiliser of ⌃, so that S is one of the groups in @G. We
�rst consider the case when no element of G(v) interchanges ⌃ and T , so that
G(v) is contained in S. As v is a vertex of �n,n+1 with associated group G(v),
there is a natural induced decomposition of S as the fundamental group of a
graph of groups �(S), with a vertex V with associated group S \G(v) = G(v).
Further the stars of v in �n,n+1 and of V in �(S) are isomorphic, i.e. there is a
bijection between the edges of�n,n+1 incident to v and the edges of�(S) incident
to V , and corresponding edges have the same associated groups. Note that �(S)
is probably not minimal, and may well be in�nite. However, as S is �nitely
generated, there is a �nite minimal subgraph �µ(S) of �(S) which carries S.

Recall from the start of this proof that the pair (G(v), E(v)) is PD(n + 1).
In particular, as we are now assuming that E(v) is non-empty, G(v) itself is not
PD(n+ 1). Also each group in E(v) is V PCn. As S is PD(n+ 1), and G(v) is
not PD(n+1) nor V PCn, it follows that the minimal graph �µ(S)must contain
V , and at least one edge incident to V . As S is PD(n + 1), Theorem 8.1 of [1]
tells us that the pair (G(V ), Eµ(V )) is PD(n + 1), where Eµ(V ) denotes the
family of subgroups of G(V ) associated to edges of �µ(S) incident to V . As the
pair (G(v), E(v)) is PD(n+ 1), and G(V ) = G(v) and Eµ(V ) is a subfamily of
E(v), it follows that the families Eµ(V ) and E(v) must be equal. In particular
every edge of �(S) which is incident to V must also be an edge of �µ(S). Recall
that K is a group in E(v), that eK denotes the edge of �n,n+1 which is incident
to v and carries K , and that ✓K : (AK , @AK) ! (M, @M) denotes an essential
annuluswhich is dual to the edge splitting associated to eK . Let'K denote the lift
of ✓K into MG(v). As the edge of �(S) corresponding to eK is an edge of �µ(S),
it follows that the splitting of G overK associated to eK induces a splitting of S
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overK . This implies that 'K must have a boundary component on the image of
⌃ inMG(v). The same argument applied to the stabiliser of T shows that'K must
also have a boundary component on the image of T inMG(v). Hence the annulus
✓K must be K⌃,T , which completes the proof of the lemma, on the assumption
that no element of G(v) interchanges ⌃ and T .

If there are elements of G(v) which interchange ⌃ and T , we let S denote
the stabiliser of ⌃, and let G(v)0 denote S \ G(v). Note that in this case the
images of ⌃ and T in MG(v) are the same. Then we make essentially the same
argument as in the preceding paragraph. This time the vertex V of �(S) has
associated group G(v)0. Given the edge eK of the star of v in �n,n+1 which has
associated group K , the star of V in �(S) has either one corresponding edge
with associated groupK or it has two corresponding edges each with associated
group K0, where K0 = K \ G(v)0. As the pair (G(v), E(v)) is PD(n + 1),
it follows that the pair (G(V ), E(V )) is also PD(n + 1). Hence as above, the
minimal subgraph �µ(S) of �(S)which carries S must contain V and each edge
of �(S) which is incident to V . Thus, as before, the lift 'K of the annulus ✓K
into MG(v) must have all of its boundary on the image of ⌃. Note that there are
two cases here, depending on whether the annulus AK is twisted or untwisted.
In either case it follows that the annulus ✓K must beK⌃,T , which completes the
proof of the lemma.

Now we consider the case when v is a V0–vertex of �n,n+1 which is of com-
mensuriser type. This is the most di�cult case, and we will need most of our
previous work in this paper. Note that in Theorem 2.1.16, the vertex group
G(v) = CommG(H) need not even be �nitely generated. Before we start, here
is a preliminary result.

Lemma 2.7.3. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let �n,n+1 denote the reduced algebraic regular neighbourhood ofFn,n+1

inG. Let v be a V0–vertex of �n,n+1 of commensuriser type such thatG(v) is the full
commensuriser CommG(H) for some V PCn subgroupH ofG with e(G,H) � 2.

Then v encloses two almost invariant subsets X and X
0 of G, each over a sub-

group of H of �nite index, and each dual to an annulus, such thatX andX 0 cross.

Proof. As �n,n+1 is the reduced algebraic regular neighbourhood of Fn,n+1 in G,
any V0–vertex arises from a cross-connected component (CCC) of Fn,n+1. As v
is of commensuriser type, all the crossings in this CCC must be weak and all
the almost invariant sets in this CCC are over groups commensurable with H .
As in section 2.2, we consider an aspherical space M with fundamental group
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G and with aspherical subspaces corresponding to @G whose union is denoted
@M . As v is of commensuriser type, the number of coends ofH in G must be at
least 4. Now part 4) of Proposition 2.2.21 tells us H has a subgroup K of �nite
index such that @MK has 4 (or more) components each of which carriesK . Now
Lemma 2.2.22 shows that we can �nd almost invariant subsets X and X

0 of G,
each over K , and each dual to an annulus, such that X and X

0 cross. When
n = 1, Proposition 8.6 of [22] shows that X and X

0 must be enclosed by the
V0–vertex v of �n,n+1, and essentially the same argument applies for all values
of n.

Recall that we want to consider a V0–vertex v of �n,n+1 which is of commen-
suriser type, and that we do not even know that G(v) = CommG(H) is �nitely
generated. We �rst deal with two special cases when CommG(H) is certainly
�nitely generated.

Lemma 2.7.4. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let �n,n+1 denote the reduced algebraic regular neighbourhood ofFn,n+1

in G. Let v be a V0–vertex of �n,n+1 which is of commensuriser type, such that
G(v) is the full commensuriser CommG(H) for some V PCn subgroup H of G
with e(G,H) � 2.

If H has �nite index in G(v), then v is of solid torus type (see De�nition 2.3.8).

Proof. Let e1, . . . , em denote the edges of �n,n+1 which are incident to v, and
denote the associated subgroups ofG(v) byH1, . . . , Hm. The hypothesis implies
that G(v) = CommG(H) is itself V PCn. Hence each Hi is also V PC( n).
Now Lemma 2.2.10 implies that G cannot split over a V PC(< n) subgroup.
It follows that each Hi is V PCn, and now Lemma 2.7.1 tells us that the edge
splitting of G associated to ei is dual to an essential annulus Ai. It remains to
show that the boundaries of these annuli all carry the same subgroup of G(v).
We write @Hi for the group carried by the boundary of Ai. Note that as each
Hi is a V PCn subgroup of the V PCn group G(v), it must be of �nite index in
G(v). Thus each Hi is commensurable with H .

Lemma 2.7.3 shows that v encloses two almost invariant subsets X and X
0

of G, each over a subgroup of H of �nite index, and each dual to an annulus,
such that X and X

0 cross. By replacing H by a subgroup of �nite index, we
can assume thatX andX 0 are bothH–almost invariant. As discussed in section
2.2, the doubles of these annuli are tori T and T

0 in DG. These tori must cross
and are therefore enclosed by the same V0–vertex V of Tn+1(DG). Hence V

is not an isolated vertex, so that V must be of V PCn–by–Fuchsian type. We
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let L denote the V PCn normal subgroup of G(V ) with Fuchsian quotient. As
T and T

0 are non-peripheral tori enclosed by V , Lemma 2.5.13 shows that the
intersection group T \ T

0 must be commensurable with L. As T \ T
0 contains

the V PCn groupH , it follows thatH is commensurable with L, and hence that
each Hi is also commensurable with L. Let Ti denote the torus in DG obtained
by doubling the annulusAi. The tori Ti and T have the V PCn subgroupH \Hi

in common. As T is non-peripheral in V , Lemma 2.5.13 shows that Ti must also
be enclosed by V . Now Lemma 2.7.5 below shows that @Hi must equal L. As
this holds for all i, it shows that the groups @Hi are all equal, as required. This
completes the proof that v is of solid torus type.

Lemma 2.7.5. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and suppose that G has a splitting over a V PCn subgroup Hi which is
dual to an essential annulus Ai in (G, @G). Let @Hi denote the group carried by
the boundary of Ai, and let Ti denote the torus in DG obtained by doubling Ai.
Let V denote a vertex of Tn+1(DG) of V PCn–by–Fuchsian type, and let L denote
the normal V PCn subgroup of G(V ) with Fuchsian quotient. Suppose that Ti is
enclosed by V , and that Hi is commensurable with L. Then @Hi equals L.

Proof. Observe that @Hi is a normal subgroup of Ti with quotient Q isomorphic
to Z or to Z2 ⇤Z2, depending on whether the annulusAi is untwisted or twisted.
As @Hi is assumed to be commensurable with L, part 2) of Lemma 2.1.12 implies
that @Hi equals L \ Ti, so that @Hi must be contained in L.

As in section 2.2, it will again be convenient to consider an aspherical space
M with fundamental group G and with aspherical subspaces which correspond
to @G whose union is denoted by @M . Let ⌃ be a component of @M such that
one end of Ai is in ⌃. The splitting of G over Hi determined by Ai induces a
splitting of ⇡1(⌃) over @Hi. Thus part 3) of Corollary 2.2.8 shows that @Hi is a
maximal orientable V PCn subgroup of ⇡1(⌃). Now DG splits over ⇡1(⌃) and
this induces the splitting of Ti over @Hi. As @Hi equals L \ Ti, we can identify
the quotient Q = Ti/@Hi with a subgroup of the Fuchsian quotient group of
G(V ) by L. Now we consider the full pre-image Ti of Q in G(V ). Thus L is
normal in Ti with quotient Q. In particular Ti is a V PC(n + 1) subgroup of
G(V ) which contains Ti with �nite index. As the splitting of DG over ⇡1(⌃)
induces a splitting of Ti over @Hi, it follows that it induces a splitting of Ti over
some subgroup L0 of ⇡1(⌃)which contains @Hi with �nite index. Thus L and L0

must be commensurable. As Ti splits over L0, Lemma 2.1.10 shows that L0 must
be a normal V PCn subgroup of Ti with quotient which is isomorphic to Z or
Z2 ⇤ Z2. Now part 2) of Lemma 2.1.11 shows that L0 must equal L. In particular,
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it follows that @Hi ⇢ L ⇢ ⇡1(⌃). Recall from Lemma 2.3.3 that L must be
orientable. Now the maximality of @Hi among orientable V PCn subgroups of
⇡1(⌃) implies that @Hi must equal L, as required.

Next we consider a case where CommG(H) contains H with in�nite index,
but still must be �nitely generated.

Lemma 2.7.6. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let �n,n+1 denote the reduced algebraic regular neighbourhood ofFn,n+1

in G. Let v be a V0–vertex of �n,n+1 which is of commensuriser type, such that
G(v) is the full commensuriser CommG(H) for some V PCn subgroup H of G
with e(G,H) � 2.

If G(v) is V PC(n+ 1), then v is of torus type (see De�nition 2.3.12).

Proof. As G(v) is V PC(n+1), and G cannot split over a V PC(< n) subgroup,
it follows that the group associated to each edge of �n,n+1 which is incident to v
must be V PCn or V PC(n+1). Now Lemma 2.7.1 implies that the edge splittings
ofG associated to these edges are dual to essential annuli or tori. Let⌃(v) denote
the collection of all these splittings. Recall that De�nition 2.3.12 includes four
cases, but in each case, at most one of the splittings in ⌃(v) can be dual to an
essential torus.

We start by showing that this condition holds.

The splittings in ⌃(v)

Note that any splitting of G dual to an essential torus must be over a maxi-
mal orientable V PC(n + 1) subgroup of G, by part 3) of Corollary 2.2.8. Thus
if G(v) is orientable, any such edge splitting must be over G(v). If G(v) is non-
orientable, then any such edge splitting must be over G(v)0, the orientable sub-
group of G(v) of index 2. Let Tn,n+1 denote the universal covering G–tree of
�n,n+1, and let w denote a vertex of Tn,n+1 above v and with stabiliser G(v). If
G(v) is orientable, suppose that two of the splittings in ⌃(v) are dual to an es-
sential torus, and if G(v) is non-orientable, suppose that one of the splittings in
⌃(v) is dual to an essential torus. In either case, there are two distinct edges
of Tn,n+1 which are incident to w and have the same stabiliser, which is G(v)
or G(v)0. Let X and Y denote the almost invariant subsets of G associated to
these edges. As each is dual to the same essential torus in (G, @G) they must be
equivalent. Now Corollary 4.16 of [22] implies that w must have valence 2, and
hence is isolated. This implies that either v is isolated, or that v has valence 1
with edge group of index 2 in G(v). Either case contradicts our assumption that
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v is of commensuriser type. We conclude that if G(v) is orientable, then at most
one of the splittings in ⌃(v) can be dual to a torus, and ifG(v) is non-orientable,
then none of the splittings in ⌃(v) can be dual to a torus. Further if G(v) is
orientable and one of the splittings in ⌃(v) is dual to a torus, the minimality of
�n,n+1 shows that there must also be a splitting in ⌃(v) which is dual to an es-
sential annulus. Thus in all cases, ⌃(v)must contain at least one splitting which
is dual to an essential annulus.

Notation

Let e1, . . . , em denote all those edges of �n,n+1 which are incident to v and
have associated edge splitting dual to an essential annulus. Denote the associ-
ated V PCn subgroups of G(v) by H1, . . . , Hm. Let Ti denote the torus in DG

obtained by doubling the annulus Ai associated to the edge splitting of G over
Hi.

Lemma 2.7.3 implies that v encloses two almost invariant subsets X and X
0

of G, each dual to an annulus, such that X and X
0 cross. Further we can as-

sume that X and X
0 are both H–almost invariant. The doubles of these an-

nuli are tori in DG which must cross, and are therefore both enclosed by a
V0–vertex V of Tn+1(DG). Thus neither torus is peripheral in V , and V is of
V PCn–by–Fuchsian type. If we let L denote the V PCn normal subgroup of
G(V ) with Fuchsian quotient, then H is commensurable with L. Now Lemma
2.5.10 shows thatG(V ) = CommDG(L)which equalsCommDG(H). AsG(v) =
CommG(H), it follows that G(v) is a subgroup of G(V ).

Case 1: G(v) is orientable.

Thus G(v) is an essential torus in DG, and we let W denote the almost in-
variant subset of DG which is over G(v). As G(v) is a subgroup of G(V ), it
follows thatW is enclosed by V .

We will suppose thatW is not peripheral in V . We will not need to consider
here the case whenW is peripheral in V , although this can occur.

As Hi is a subgroup of G(v), the tori Ti and G(v) have the V PCn subgroup
Hi in common. Then Lemma 2.5.13 shows that the almost invariant subset ofDG

associated to the torus Ti must be enclosed by V , and thatHi is commensurable
with L. Now Lemma 2.7.5 shows that @Hi must equal L. As @Hi is a subgroup of
G(v)which in turn is a subgroup ofG(V ), and as L is normal inG(V ), it follows
that @Hi is a normal V PCn subgroup of G(v) with quotient isomorphic to Z or
to Z2 ⇤Z2, so that G(v) splits over @Hi. This proves part of cases 1), 2) and 3) of
the de�nition of torus type (De�nition 2.3.12).
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We next consider how the V PC(n+1) groupG(v) sits inG. There are three
subcases.

Case 1a): G(v) is conjugate to a subgroup of some group in @G.

Note that this implies that no edge of �n,n+1 incident to v has associated
splitting dual to an essential torus. As in section 2.2, it will again be convenient
to consider an aspherical spaceM with fundamental groupG andwith aspherical
subspaces which correspond to @G whose union is denoted by @M . Let ⌃ be a
component of @M such thatG(v) is a subgroup of ⇡1(⌃). As ⇡1(⌃)must contain
G(v) with �nite index, it is conjugate into some vertex group of �n,n+1. Thus
either ⇡1(⌃) equals G(v), or some edge incident to v has associated group equal
to G(v). As the second case is impossible, G(v) must equal ⇡1(⌃). Consider the
coverMH ofM with fundamental group equal toH . There will be a component
of @MH which covers⌃ and has fundamental groupH . As we already know that
MH admits essential annuli which carry H , it follows that there is an essential
annulus inM which carriesH and has one end on ⌃. Doubling such an annulus
yields a torus in DG which crosses the torus ⌃. It follows that the G(v)–almost
invariant subset W of DG associated to G(v) is not peripheral in the V0–vertex
V of Tn+1(DG) which enclosesW , so the argument in the preceding paragraph
applies and shows that each @Hi equals L. As above, it also follows that G(v)
splits over @Hi. Thus we have case 1) of De�nition 2.3.12.

Case 1b): G(v) is not conjugate to a subgroup of some group in @G.

In this case, there is a nontrivial G(v)–almost invariant subset of G which is
adapted to @G, and we denote this set by Y . The G(v)–almost invariant subset
W ofDG is enclosed byG, and Y is equal toW \G, and is adapted to @G. Now
Theorem 2.6.17 tells us that Y must be enclosed by some V0–vertex w of �n,n+1.
If w is not equal to v, then there must be an edge of �n,n+1 which is incident to
v, and carries G(v). Thus in any case, Y is enclosed by v. Now we have two
subcases depending on whether or not Y is peripheral in v.

If Y is not peripheral in v, then Y must cross some almost invariant subset Z
ofGwhich is over a subgroup commensurable withH and belongs to the CCC of
Fn,n+1 which gives rise to v. Lemma 2.6.6 shows that Y must cross some almost
invariant subset Z 0 of G also over a subgroup commensurable with H and dual
to an annulus in (G, @G). Now part 1) of Lemma 2.6.15 shows that Z 0 cannot
be isolated in Fn,n+1 and so must also belong to the CCC of Fn,n+1 which gives
rise to v. We conclude that Y crosses some annulus in (G, @G) enclosed by v.
It follows that W crosses the torus in DG which is the double of this annulus.
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As above this implies that W is not peripheral in V , and hence that each @Hi

equals L, and that G(v) splits over @Hi. As v is a V0–vertex of �n,n+1, and Y is
enclosed by v and is over G(v), it follows that Y crosses no torus in G so that Y
determines a splitting ofG overG(v). As Y is enclosed by v and is not peripheral
in v, this shows that we have case 3) of De�nition 2.3.12.

If Y is peripheral in v, we let e be the edge of �n,n+1 to which Y is associated.
We also letXi denote theHi–almost invariant subset ofG associated to the edge
ei. Now the de�nition of betweenness in our construction of an algebraic regular
neighbourhood in [22] implies that there is an elementZ of the CCCwhich gives
rise to v such that Z lies betweenXi and Y . More precisely, there is a nontrivial
almost invariant subset Z ofGwhich is over a subgroup commensurable withH
and which is enclosed by v such that Y (⇤)  Z  X

(⇤)
i

, where Y (⇤) denotes one
of Y or Y ⇤. As Hi stabilises both Xi and Y , it follows that Hi lies within some
bounded neighbourhood of �Z . In turn this implies that a subgroup of �nite
index in Hi must stabilise Z . Thus Hi and H must be commensurable. As H is
commensurable with L, it follows that Hi is commensurable with L, and now
Lemma 2.7.5 shows that @Hi must equal L. As above, it also follows that G(v)
splits over @Hi. Thus we have case 2) of De�nition 2.3.12.

This completes the proof that v is of torus type, in the case when G(v) is
orientable.

Case 2: G(v) is non-orientable.
Let W denote the almost invariant subset of DG which is over G(v)0. As

before W is enclosed by V . Recall that V is the V0–vertex of Tn+1(DG) with
G(V ) = CommDG(L) = CommDG(H), and that G(v) is a subgroup of G(V ).

If G(v)0 is conjugate to a subgroup of some group in @G, then the non-
orientable PD(n+1) groupG(v) is commensurable with that group in @G. Now
part 1) of Corollary 2.2.8 shows thatG itself must be a non-orientable PD(n+1)
group, and that G must contain G(v)0 with �nite index. In particular it would
imply that G is V PC(n+ 1), which is excluded in our hypotheses. Thus G(v)0
cannot be conjugate to a subgroup of any group in @G, so we let Y = W \ G,
a nontrivial G(v)0–almost invariant subset of G which is adapted to @G. As be-
fore Y must be enclosed by v. As we showed earlier that no edge incident to v

can have associated splitting dual to an essential torus, it follows that Y cannot
be peripheral in v. As in the case when G(v) is orientable, this implies that W
is not peripheral in V , and hence that each @Hi equals L, the V PCn normal
subgroup of G(V ) with Fuchsian quotient. Thus L is also a normal subgroup of
G(v), and the quotient G(v)/L is a V PC1 subgroup of the Fuchsian quotient



100 CHAPTER 2. CANONICAL DECOMPOSITIONS

G(V )/L. Hence G(v)/L is isomorphic to Z or to Z2 ⇤ Z2, so that G(v) splits
over L. ThusG(v) splits over @Hi, for each i, as required by part 4) of De�nition
2.3.12.

As v is a V0–vertex of �n,n+1, and Y is enclosed by v and is over a subgroup
of index 2 inG(v), it follows that Y determines a splitting � ofG overG(v)0. As
G(v) containsG(v)0 with �nite index, it must be conjugate into one of the vertex
groupsK of this splitting. Note that the splitting � is dual to an essential torus in
(G, @G). Thus, if @G is empty, Theorem 8.1 of [1] shows that the pair formed by
K and one or two copies of G(v)0 is PD(n+ 2), where there will be two copies
of G(v)0 if � is a HNN extension and only one copy otherwise. In general, as
discussed just before De�nition 2.5.1, the pair becomes PD(n + 2) when some
family of groups in @G is added to the copies ofG(v)0. AsK contains a conjugate
ofG(v), one of the copies ofG(v)0 in @K is not equal to its own commensuriser
in K . Thus Lemma 2.2.7 implies that K contains this copy of G(v)0 with index
2, so that K must be a conjugate of G(v), and @K consists only of G(v)0. In
particular it follows that � must be an amalgamated free product and not a HNN
extension.

As Y is enclosed by v, we can re�ne �n,n+1 by splitting at v to obtain a graph
of groups structure �0 of G such that the projection map �0 ! �n,n+1 sends an
edge e to v and otherwise induces a bijection of edges and vertices. The group
associated to e is equal to G(v)0, and the associated edge splitting is �. As G(v)
contains G(v)0 with �nite index, one vertex of e must carry G(v) and the other
must carry G(v)0. Let w denote the vertex of e with G(w) = G(v). Recall
from the preceding paragraph that � is an amalgamated free product and that
one vertex group of � is conjugate to G(v). It follows that the edge e of �0 is
separating, and that if we remove the interior of e from �0 then the component
of the resulting subgraph which containswmust carry the groupG(v). AsG(w)
equals G(v), the minimality of �n,n+1 implies that this subgraph must consist
solely of w, so that w has valence 1 in �0. This shows that we have case 4) of
De�nition 2.3.12, and so completes the proof that v is of torus type in all cases.

Now we consider the general situation of a V0–vertex v of �n,n+1 which is
of commensuriser type. Note that a priori, the group G(v) need not be �nitely
generated, but we show not only thatG(v) is �nitely generated, but also describe
its structure.

Lemma 2.7.7. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let �n,n+1 denote the reduced algebraic regular neighbourhood ofFn,n+1
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in G. Let v be a V0–vertex of �n,n+1 which is of commensuriser type, such that
G(v) is the full commensuriser CommG(H) for some V PCn subgroup H of G
with e(G,H) � 2.

IfH has in�nite index inG(v), andG(v) is not V PC(n+1), then v is of Seifert
type (see De�nition 2.3.6).

Proof. Lemma 2.7.3 implies that v must enclose two almost invariant subsets of
G, each dual to an annulus and crossing each other. Further we can assume
that each is over H . The doubles of these annuli are tori in DG which must
cross, and are therefore both enclosed by a V0–vertex V of Tn+1(DG). Thus
neither torus is peripheral in V , and V is of V PCn–by–Fuchsian type. If we
let L denote the V PCn normal subgroup of G(V ) with Fuchsian quotient �,
then H is commensurable with L. Now Lemma 2.5.10 tells us that G(V ) =
CommDG(L). It follows that G(V ) is also equal to CommDG(H), and so G(V )
contains CommG(H) = G(v). ThusG(v) is itself a V PCn–by–Fuchsian group,
where the normal V PCn subgroup H

0 is commensurable with H . (But note
that at this stage it is still possible that G(v) is not �nitely generated!) As we
are assuming H has large commensuriser, it follows that the Fuchsian quotient
group ⇥ = G(v)/H 0 must be in�nite. Further as G(v) is not V PC(n + 1), this
quotient cannot be two-ended. This implies that there are elements ↵ and � in⇥
of in�nite order such that ↵ and � have non-zero geometric intersection number.
The pre-images inG(v) of the in�nite cyclic subgroups of⇥ generated by ↵ and
� are V PC(n+ 1) subgroups A0 and B

0 of G(v). Note that A0 \B
0 = H

0.
If we regard ↵ and � as elements of �, the pre-images in G(V ) of the same

in�nite cyclic subgroups are V PC(n + 1) subgroups A and B of G(V ). By re-
placing ↵ and � by their squares if needed, we can ensure that they are orientable
elements of �, so that A and B will be orientable. As ↵ and � have non-zero ge-
ometric intersection number, it follows thatA andB are tori inDGwhich cross.
As A0 and B0 are subgroups of �nite index in A and B respectively, they also are
tori inDGwhich cross. AsA0 andB0 are subgroups ofG(v)which is a subgroup
of G, it follows that A0 and B

0 are tori in (G, @G) which are enclosed by v and
which cross.

Now we consider the torus decomposition Tn+1(G, @G). Each of A0 and B
0

must be enclosed by some V0–vertex of Tn+1(G, @G). As A0 and B
0 cross, they

must both be enclosed by a single V0–vertex u of Tn+1(G, @G), and neither is
peripheral in u. Thus u is not isolated, and so Theorem 2.4.4 shows that u must
be of Seifert type adapted to @G. Let L0 denote the normal subgroup of G(u)
with Fuchsian quotient. Recall that A0 and B

0 are tori in (G, @G) which cross
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and that A0 \ B
0 = H

0. Lemma 2.5.13 implies that H 0 is commensurable with
L
0. Now Lemma 2.5.10 implies that G(u) equals CommG(L0). It follows that

G(u) = CommG(L0) = CommG(H 0) = CommG(H) = G(v). Note that as
G(u) is �nitely generated, it follows thatG(v)must also be �nitely generated. As
each of H 0 and L

0 is a normal V PCn subgroup of G(v) with Fuchsian quotient,
Lemma 2.1.9 shows that H 0 and L

0 must be equal.
Now Theorem 2.6.17 shows that each essential torus in (G, @G) which is

enclosed by the vertex u of Tn+1(G, @G) is also enclosed by some V0–vertex v

of �n,n+1. As the tori which are enclosed by u and are not peripheral in u form
a single CCC, they must all be enclosed by v. It follows that the vertex u of
Tn+1(G, @G) is enclosed by the vertex v of �n,n+1. Thus there is a re�nement �0

of�n,n+1 and a vertex v0 of�0, such that the projectionmap p : �0 ! �n,n+1 sends
v
0 to v and is an isomorphism apart from the fact that certain edges incident to

v
0 are mapped to v. Further the vertex v0, like u, is of Seifert type adapted to @G,

and G(v0) = G(u) maps isomorphically to G(v). This last fact implies that if e
is an edge of �0 which is incident to v

0 and mapped to v, then the other vertex
w of e has associated group equal to G(e). As �0 is minimal there is at least
one other edge incident to w, and each such edge must carry a subgroup of the
V PC(n+1) groupG(w) = G(e). Thus each such edge carries a V PC( n+1)
subgroup of G. As usual, Lemma 2.7.1 tells us that the associated splitting of G
must be dual to an essential annulus or torus in (G, @G). If one of these other
edges incident to w has associated splitting dual to an essential torus, the edge
group must equal G(e), so that the vertex w of �0 has two incident edges with
associated splittings over the same essential torus. In this case, as in the proof of
Lemma 2.7.6, Corollary 4.16 of [22] implies that w must have valence 2, and we
modify �0 by collapsing the edge e. By repeating this process wewill arrange that
if e is an edge of �0 which is incident to v0 and mapped to v, with the other vertex
of e being w, then each edge ei, other than e, which is incident to w must carry
a V PCn subgroup Hi of G(w) = G(e), so that the associated edge splitting is
dual to an annulus Ai in (G, @G). As usual we write @Hi for the group carried
by @Ai. At this point we have proved that most of De�nition 2.3.6 holds. It
remains to show that @Hi equals L0, for each i, where L0 is the normal subgroup
of G(u) = G(v) with Fuchsian quotient.

The image of ei in �n,n+1 is an edge incident to v, so its associated edge
splitting is enclosed by v. The edge splitting ofG associated to the edge e of �0 is
dual to a torus T which is also enclosed by v. We claim that the torus T cannot be
peripheral in v. To see this we need to consider the universal covering G–trees
T

0 and Tn,n+1 of �0 and �n,n+1 respectively. Let V 0 be a vertex of T 0 above v
0
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with stabiliser equal to G(v0). Let E be an edge of T 0 above e which is incident
to V

0 and has stabiliser equal to G(e), let W denote the other vertex of E, and
let Ei denote an edge of T 0 above ei which is incident to W and has stabiliser
equal toHi. OrientE andEi towards V 0, and letZE andZi denote the associated
almost invariant subsets of G. The orientations imply that Z⇤

i
 Z

⇤
E
. If T were

peripheral in v, the fact that Zi is enclosed by v would imply that Z⇤
E
 Zi or

Z
⇤
E

 Z
⇤
i
. The �rst inequality would imply that Z⇤

i
 Zi, which is obviously

impossible. The second inequality would imply that Zi and ZE were equivalent.
This is impossible as their stabilisers are not commensurable, as Hi is V PCn

and G(e) is V PC(n + 1). This contradiction shows that the torus T cannot be
peripheral in v, as claimed.

Now let Ti denote the torus in DG obtained by doubling the annulus Ai

with fundamental group Hi. As T is not peripheral in v, it must cross some
almost invariant subset of G which is over a subgroup commensurable with H

and belongs to the CCC ofFn,n+1 which gives rise to v. As in the proof of Lemma
2.7.6, Lemmas 2.6.6 and 2.6.15 imply that T crosses some annulus enclosed by v,
and so crosses the torus obtained by doubling this annulus. Lemma 2.5.13 then
implies that T and this torus are enclosed by the vertex V of Tn+1(DG) and are
not peripheral in V . As Hi is contained in G(e), Lemma 2.5.13 now shows that
Ti is enclosed by V , and that Hi is commensurable with L. (Recall that L is the
V PCn normal subgroup of G(V ) with Fuchsian quotient �.) Lemma 2.7.5 then
shows that @Hi must equal L. In particular, G(e) contains L. AsG(e) is an edge
torus of the V0–vertex u of Tn+1(G, @G), it must contain L

0. As L and L
0 are

commensurable normal V PCn subgroups of G(e) each of which has quotient
isomorphic toZ or toZ2⇤Z2, Lemma 2.1.11 implies thatL0 equalsL. We conclude
that @Hi equals L0, for each i. We have now established all the requirements in
De�nition 2.3.6, so that v must be of Seifert type in �n,n+1, as required. This
completes the proof of Lemma 2.7.7.

We are �nally ready to prove our main result. For the convenience of the
reader we restate it.

Theorem3.4.1. (Main Result) Letn � 1, and let (G, @G) be an orientablePD(n+
2) pair such thatG is not V PC . LetFn,n+1 denote the family of equivalence classes
of all nontrivial almost invariant subsets of G which are over a V PCn subgroup,
together with the equivalence classes of all n–canonical almost invariant subsets of
G which are over a V PC(n + 1) subgroup. Finally let �n,n+1 denote the reduced
algebraic regular neighbourhood of Fn,n+1 in G, and let �c

n,n+1 denote the comple-
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tion of �n,n+1. Thus �n,n+1 and �c

n,n+1 are bipartite graphs of groups structures for
G, with vertices of V0–type and of V1–type.

Then �n,n+1 and �c

n,n+1 have the following properties:

1. Each V0–vertex v of �n,n+1 satis�es one of the following conditions:

(a) v is isolated, and G(v) is V PC of length n or n + 1, and the edge
splittings associated to the two edges incident to v are dual to essential
annuli or tori in G.

(b) v is of V PC(n � 1)–by–Fuchsian type, and is of I–bundle type. (See
De�nition 2.3.1.)

(c) v is of V PCn–by–Fuchsian type, and is of interior Seifert type. (See
De�nition 2.3.2.)

(d) v is of commensuriser type. Further v is of Seifert type (see De�nition
2.3.6), or of torus type (see De�nition 2.3.12) or of solid torus type (see
De�nition 2.3.8).

2. The V0–vertices of �c

n,n+1 obtained by the completion process are of special
Seifert type (see De�nition 2.3.10) or of special solid torus type (see De�nition
2.3.8).

3. Each edge splitting of �n,n+1 and of �c

n,n+1 is dual to an essential annulus or
torus in G.

4. Any nontrivial almost invariant subset of G over a V PC(n + 1) group and
adapted to @G is enclosed by some V0–vertex of �n,n+1, and also by some
V0–vertex of �c

n,n+1.

5. If H is a V PC(n + 1) subgroup of G which is not conjugate into @G, then
H is conjugate into a V0–vertex group of �c

n,n+1.

Remark 2.7.8. Part 3) follows immediately from parts 1) and 2), as the de�nitions
of the various types of V0–vertex in the statements of parts 1) and 2) all contain the
requirement that the edge splittings be dual to an essential annulus or torus.

Part 4) does not follow from the properties of an algebraic regular neighbourhood
as an almost invariant subset ofG over a V PC(n+1) group which is adapted to @G
need not be n–canonical, and so need not lie in the family Fn,n+1. Note that, from
[24], we know that there may be almost invariant subsets of G over V PC(n + 1)
subgroups which are not adapted to @G.
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Part 5) also does not follow from the properties of an algebraic regular neigh-
bourhood as a V PC(n+ 1) subgroup H of G may be non-orientable.

Proof. 1) Recall that Theorem 2.1.16 states that each V0–vertex v of �n,n+1 satis-
�es one of the following conditions:

a) v is isolated, and G(v) is V PC of length n or n+ 1.
b) v is of V PCk–by–Fuchsian type, where k equals n� 1 or n.
c) v is of commensuriser type, andG(v) is the full commensuriserCommG(H)

for some V PC subgroup H of length n or n+ 1, such that e(G,H) � 2.
We will consider each type of V0–vertex of �n,n+1 in turn.
a) Suppose that a V0–vertex v of �n,n+1 is isolated, andG(v) is V PC of length

n or n+1. Let e denote either of the two edges of �n,n+1 incident to v. ThenG(e)
equals G(v) and so is V PC of length n or n+ 1. Now Lemma 2.7.1 implies that
the edge splitting of G associated to e is dual to an essential annulus or torus. It
follows that we have case 1a) of Theorem 2.3.14.

b) Suppose that a V0–vertex v of�n,n+1 is of V PCk–by–Fuchsian type, where
k equals n � 1 or n. If k = n, part 1) of Lemma 2.7.2 shows that v is of interior
Seifert type, so that we have case 1c) of Theorem 2.3.14. If k = n � 1, part 2)
of Lemma 2.7.2 shows that v is of I–bundle type, so that we have case 1b) of
Theorem 2.3.14.

c) Suppose that v is a V0–vertex of �n,n+1 which is of commensuriser type,
and that G(v) is the full commensuriser CommG(H) for some V PC subgroup
H of length n or n+ 1, such that e(G,H) � 2.

IfH has length n+ 1, we recall from Theorem 2.1.16 and Remark 2.1.15 that
v encloses elements X and Y of Fn,n+1 which are over a subgroup H

0 of �nite
index inH , and which cross weakly. NowCorollary 2.6.4 and Remark 2.6.5 imply
that as X and Y are n–canonical, they must be adapted to @G, and H

0 must be
orientable. Thus X and Y are dual to essential tori in (G, @G). Now Lemma
2.2.5 tells us that there are H

0–almost invariant subsets X and Y of DG such
that X \G equals X and Y \G equals Y . As X and Y cross weakly, it follows
thatX and Y also cross weakly. But Proposition 7.4 of [22] implies that no almost
invariant subset ofDG can crossX weakly, asH 0 has only 2 coends inDG. This
contradiction shows that v cannot be of commensuriser type.

If H has length n, there are three cases depending on the index of H in
CommG(H). In all three cases, we have case 1d) of Theorem 2.3.14.

If this index is �nite, Lemma 2.7.4 shows that v is of solid torus type.
If this index is in�nite and CommG(H) is V PC(n+ 1), Lemma 2.7.6 shows

that v is of torus type.
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In the remaining case, Lemma 2.7.7 shows that v is of Seifert type.
We have now shown that each V0–vertex of the uncompleted graph of groups

�n,n+1 satis�es part 1) of the theorem.
2) A V0–vertex of �c

n,n+1 which is obtained by the completion process arises
from a V1–vertex w of �n,n+1. It su�ces to show that w is of special Seifert type
or of special solid torus type. Recall that either G(w) is V PC(n+ 1) and w has
a single incident edge e with G(e) of index 2 in G(w), or G(w) is V PCn and
w has a single incident edge e with G(e) of index 2 or 3 in G(w), or G(w) is
V PCn and w has three incident edges each carrying G(w). We consider each
case separately.

Case: G(w) is V PC(n+1), andw has a single incident edge ewithG(e)
of index 2 in G(w).

Lemma 2.7.1 shows that the edge splitting associated to e is dual to an essen-
tial torus. It follows that w is of special Seifert type.

In the remaining cases, each edge incident to w carries a V PCn group, so
that Lemma 2.7.1 shows that the associated edge splitting is dual to an essential
annulus.

Case: G(w) is V PCn, and w has a single incident edge e with G(e) of
index 2 or 3 in G(w).

Let H denote G(e), let A denote the annulus associated to e, and let @H
denote the subgroup ofH carried by @A. We claim thatA is untwisted. Assuming
this claim, it follows that @H equals H and so has index 2 or 3 in G(w), which
implies that w is of special solid torus type. It remains to prove the claim.

As usual we choose an aspherical space M with fundamental group G and
with aspherical subspaces corresponding to @G whose union is denoted @M .
Let MH denote the cover of M with fundamental group equal to H . If A is
twisted, then its lift into MH has boundary in a single component ⌃ of @MH

whose fundamental group must equal @H . First suppose that H is normal in
G(w), so that the quotient G(w)/H acts on MH . Thus @MH has two or three
distinct components whose fundamental group equals @H , and each of these
components contains the boundary of an essential twisted annulus. The double
cover M@H must have two boundary components above each such component
of @MH , each with fundamental group equal to @H , giving a total of four or six
such boundary components of M@H . Part 3) of Proposition 2.2.21 now shows
that H has at least 4 coends in G. This implies that �n,n+1 has a V0–vertex v of
commensuriser type with G(v) = CommG(H). But w is a V1–vertex of �n,n+1
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and G(w) commensurises H , so that G(w) ⇢ G(v). As w has a single incident
edge e andG(e) 6= G(w), this is impossible. This contradiction shows that ifH is
normal inG(w), then the annulusAmust be untwisted, as claimed. Now suppose
thatH is not normal in G(w), so thatH has index 3 in G(w). LetH1 denote the
intersection of the conjugates of H in G(w). Thus H1 is a normal subgroup of
G(w) of index some power of 3. If A1 denotes the cover of A with fundamental
groupH1, the fact that this cover has odd degree implies thatA1 is itself a twisted
annulus in M1. Now the preceding argument yields a contradiction, showing
that the annulus A must be untwisted as claimed. This completes the proof that
w must be of special solid torus type when G(w) is V PCn and w has a single
incident edge e with G(e) of index 2 or 3 in G(w).

Case: G(w) is V PCn, and w has three incident edges e1, e2 and e3, each
carrying G(w).

Let K denote G(w), and let Ai denote the annulus associated to the edge
ei. As in the preceding case, we claim that each Ai is untwisted. Assuming this
claim, it follows that the boundary of each Ai carriesK , which implies that w is
of special solid torus type. It remains to prove the claim.

As K is a torsion free V PCn group it is also PDn. Thus an annulus with
fundamental group K is untwisted if and only if K is orientable.

Now suppose that K is non-orientable, so that each Ai is twisted. As usual
we choose an aspherical spaceM with fundamental groupG and with aspherical
subspaces corresponding to @Gwhose union is denoted @M . LetMK denote the
cover of M with fundamental group equal to K , and let M0 denote the cover of
M with fundamental group equal to K0, the orientable subgroup of K of index
2. The lift of each annulus Ai into MK has boundary in a single component ⌃i

of @MK whose fundamental group must equal K0. As the Ai’s determine non-
conjugate splittings of G, the ⌃i’s must be distinct. As above, the double cover
M0 ofMK has two boundary components above each ⌃i each with fundamental
group equal to K0. It follows that K has at least 6 coends in G, which implies
that �n,n+1 has a V0–vertex v of commensuriser type withG(v) = CommG(K).
Further any almost invariant subset of G over a subgroup commensurable with
K must be enclosed by v. In particular, for each i, theK–almost invariant subset
ofG associated to ei is enclosed by v. This implies that there is a path �i in �n,n+1

with v at one end and with the edge ei at the other end, and each interior vertex
of �i is isolated. As �n,n+1 is reduced bipartite, each �i contains at most two
edges. As v is a V0–vertex and w is a V1–vertex, it follows that each �i consists
of the single edge ei. Thus each ei has v and w as its endpoints. Let �K denote
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the subgraph of �n,n+1 which consists of the union of the ei’s. As each ei and w

has associated group K , and G(v) commensurises K , it follows that the group
carried by �K also commensurises K . But as G(v) is the full commensuriser of
K , this is impossible. This contradiction shows that K must be orientable, so
that each Ai is untwisted, as claimed. This completes the proof that w must be
of special solid torus type when G(w) is V PCn and w has three incident edges
each carrying G(w), and so completes the proof of part 2) of the theorem.

3) This follows immediately from parts 1) and 2), as the de�nitions of the
various types of V0–vertex in the statements of parts 1) and 2) all contain the
requirement that the edge splittings be dual to an essential annulus or torus.

4) Consider a nontrivial almost invariant subset of G over a V PC(n + 1)
group and adapted to @G. We need to show that this set is enclosed by some V0–
vertex of �n,n+1, and by some V0–vertex of �c

n,n+1. By de�nition, any such set
lies in the familyF 0. Now Theorem 2.6.17 shows that �n,n+1 equals the algebraic
regular neighbourhood of the family F 0. Thus any element of F 0 is enclosed by
some V0–vertex of �n,n+1. The construction of the completion �c

n,n+1 of �n,n+1

shows that any element of F 0 is also enclosed by some V0–vertex of �c

n,n+1. This
completes the proof of part 4).

5) Let H be a V PC(n + 1) subgroup of G which is not conjugate into @G.
We need to show thatH is conjugate into a V0–vertex group of �c

n,n+1. First note
that as G is torsion free, so is H . Thus H must be PD(n+ 1).

Suppose that H is orientable. The hypothesis that H is not conjugate into
@G implies that H is an essential torus in (G, @G), so that there is a nontrivial
H–almost invariant subset X of G dual to H . Now Theorem 2.6.17 shows that
X is enclosed by a V0–vertex of �n,n+1, so that H is conjugate into a V0–vertex
group of �n,n+1, and hence is also conjugate into a V0–vertex group of �c

n,n+1 as
required.

Now we will suppose thatH is non-orientable and is not conjugate into any
V0–vertex group of �n,n+1. The proof of part 4) of Theorem 2.4.4 shows that the
commensuriser K of H in G is itself a non-orientable PD(n + 1) subgroup of
G. Let K0 denote the orientation subgroup of K . Then K0 is a maximal torus
subgroup of G, and the proof of part 4) of Theorem 2.4.4 shows that it is not
conjugate into @G. As in the preceding paragraph, it follows that there is a V0–
vertex v of �n,n+1, so that K0 is conjugate into G(v). Our assumption that H is
not conjugate into any V0–vertex group of �n,n+1 implies that the same is true
for K . As K contains K0 with �nite index, there is a vertex w of Tn+1(G, @G)
such that K is conjugate into G(w), and w must be a V1–vertex. Hence there is
an edge e of �n,n+1 which is incident to w such that G(e) contains a conjugate
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of K0. As all the edge groups of �n,n+1 are annulus or torus groups, the group
G(e) must equal this conjugate of K0. Let � denote the splitting of G over K0

determined by the edge e, so that � is dual to an essential torus in G, and let L
denote the vertex group of � which contains G(w). If @G is empty, Theorem 8.1
of [1] shows that the pair formed by L and one or two copies ofK0 is PD(n+2),
where there will be two copies ofK0 if � is a HNN extension and only one copy
otherwise. In general, as discussed just before De�nition 2.5.1, the pair becomes
PD(n+2)when some family of groups in @G is added to the copies ofK0. As L
contains a conjugate of K , one of the copies of K0 in @L is not equal to its own
commensuriser in L. Thus Lemma 2.2.7 implies that L contains this copy of K0

with index 2, and @L consists only ofK0. In particular it follows that �must be an
amalgamated free product and not a HNN extension. As L contains a conjugate
ofK , and bothK and L containK0 with index 2, it follows thatG(w) is equal to
L and must be a conjugate ofK . Hence the edge e of �n,n+1 is separating, and if
we remove the interior of e from �n,n+1, then the component �w of the resulting
subgraph which contains w must carry the group G(w). Now the minimality of
�n,n+1 implies that �w consists solely of w, so that w has valence 1 in �n,n+1.
It follows that w becomes a V0–vertex in the completion �c

n,n+1, so that K , and
hence H , is conjugate into a V0–vertex group of �c

n,n+1, as required.

We observe the following result which again shows the similarity between
the algebra in this paper and the topology of 3-manifolds.

Lemma 2.7.9. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC . Suppose thatX is a n–canonical almost invariant subset of G which is over
a V PC(n+1) groupH , and thatH intersects some group in @G in a V PCn group
L. Then X is isolated in Fn,n+1.

Remark 2.7.10. If n = 1 and M is an orientable Haken 3–manifold, the corre-
sponding result holds. ForX corresponds to an essential torus T inM which crosses
no essential annulus in M , such that ⇡1(T ) intersects the fundamental group of
some boundary component of M in an in�nite cyclic subgroup. This second condi-
tion implies that T must be homotopic into a componentW of T (M) which meets
@M , and the fact that T crosses no essential annulus inM now implies that T must
be homotopic into a torus component of the frontier of W in M . In particular, T
crosses no essential annulus or torus inM .

Proof. As usual, Lemma 13.1 of [22] tells us that H has a subgroup H
0 of �nite

index which normalises a subgroup L
0 of �nite index in L. Also as usual, we
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choose an aspherical space M with fundamental group G and with aspherical
subspaces corresponding to @G whose union is denoted @M . Let M 0 denote
the covering space of M with fundamental group L

0. The hypothesis that H
intersects some group in @G in the group L implies that there is a component of
@M

0 with fundamental group L
0. The action of H 0

/L
0 on M

0 yields an in�nite
family of distinct such boundary components. Now the proof of part 3) of Lemma
2.2.21 shows that e(G,L

0) is in�nite.

As H 0 normalises L0, it also follows that L0 has large commensuriser. Thus
there is aV0–vertex v of�n,n+1 of commensuriser type such thatG(v) = CommG(L0),
so that G(v)must containH

0. Also �n,n+1 has a V0–vertex w which enclosesX .

First we suppose that v and w are distinct. It follows that there is a path
joining v and w such that H 0 lies in the edge group of each edge on the path.
Let e be an edge on this path. Recall that all edge groups of �n,n+1 are V PCn

or V PC(n + 1). Thus G(e) must be V PC(n + 1) and must contain H
0 with

�nite index. Let Y denote the almost invariant subset of G associated to the
edge splitting of G given by e. Lemma 2.7.1 tells us that Y is adapted to @G.
Now Corollary 2.6.4 tells us that X is also adapted to @G. But a H

0–almost
invariant subset of G which is adapted to @G is unique up to equivalence and
complementation, so it follows that X must be equivalent to Y or Y ⇤. As Y is
isolated in Fn,n+1, it follows that X is also isolated in Fn,n+1.

Now suppose that v = w. Recall from Theorem 2.3.14 that any V0–vertex of
�n,n+1 of commensuriser type must be of Seifert type, of torus type, or of solid
torus type. The last case cannot occur here, as G(v) contains the V PC(n + 1)
group H

0. Thus v is of Seifert type, or of torus type. In the second case, G(v) is
V PC(n+1) and somust containH 0 with �nite index. Thus any almost invariant
set enclosed by v and corresponding to a torus must be equivalent toX or toX⇤.
Now the hypothesis that X crosses no essential annulus in M implies that X
crosses no element of the CCC of Fn,n+1 which gives rise to v. AsX is enclosed
by v, it must be associated to an edge splitting of �n,n+1 associated to an edge
incident to v, and so X must be isolated in Fn,n+1. Finally if v is of Seifert type,
we use the facts that v is of V PCn–by–Fuchsian type, and that tori enclosed by v
correspond to loops in the base orbifoldXv, and annuli enclosed by v correspond
to arcs inXv. Now a loop inXv which crosses no arc must be peripheral inXv. It
follows again thatX must be associated to an edge splitting of �n,n+1 associated
to an edge incident to v, and soX must be isolated inFn,n+1. This completes the
proof of the lemma.
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2.8 Comparing the decompositions of aPD(n+2)
pair and its double

In this section, we will apply Theorem 2.3.14 to understand the e�ect of doubling
on our decompositions �n,n+1(G) and �c

n,n+1(G) of a PD(n+ 2) pair (G, @G).
First we need to improve our description of these decompositions. The same

description su�ces for both decompositions, sowewill onlyworkwith�c

n,n+1(G).
In section 2.2, we used aspherical spaces to clarify the concept of an essential an-
nulus in a PD(n + 2) pair (G, @G). Now we need to greatly re�ne those ideas
in order to clarify "how vertices of �c

n,n+1(G) meet @G". Let @G = {S1, ..., Sm},
and recall that in section 2.2, we used a mapping cylinder construction to make
a K(G, 1) with K(Si, 1)’s as disjoint subspaces.

Given any groupG and a graph of groups decomposition�(G) ofG, there is a
general construction of an aspherical spaceX with ⇡1(X) = G whose structure
mimics the graph of groups �(G). This is called a graph of spaces. For each ver-
tex groupG(v) of�(G), we choose a corresponding aspherical spaceK(G(v), 1),
and for each edge group G(e) we choose a K(G(e), 1) and then take its prod-
uct with the unit interval I . We construct X from the disjoint union of all the
K(G(v), 1) andK(G(e), 1)⇥I by gluing each end of eachK(G(e), 1)⇥I to the
appropriate K(G(v), 1), by a map inducing the appropriate inclusion of funda-
mental groups. Thus there is a natural map fromX to �(G) de�ned by collapsing
eachK(G(v), 1) and eachK(G(e), 1) to a point. We will apply this construction
to the decomposition �c

n,n+1(G). Further, for each edge e of �c

n,n+1(G) whose
associated splitting is dual to an annulus ⇤ with fundamental group H , we will
choose ourK(G(e), 1) to be⇤, which is an I–bundle over aK(H, 1), as discussed
in section 2.2. Thus @⇤, the boundary of the annulus⇤, is the corresponding @I–
bundle over K(H, 1).

Next we will carry out a similar construction of an aspherical space Y which
represents @G. Each boundary component of each annulus associated to an edge
splitting of �c

n,n+1(G) induces a splitting of one of the Si’s. Thus each Si can be
decomposed as a graph of groups structure with edges corresponding to bound-
ary components of these annuli. For each Si, we make a corresponding graph of
spaces construction of a space Yi, with ⇡1(Yi) = Si. Further, if an edge e of this
graph of groups decomposition of Si has associated splitting over a boundary
component of the annulus ⇤, we will choose the corresponding K(G(e), 1) to
be homeomorphic to that component of @⇤. Let Y denote the disjoint union of
the Yi’s. Note that as Si is a PD(n+1) group and these splittings are over PDn
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groups, it follows from [1] that each vertex space of Y is naturally a PD(n+ 1)
pair.

Finally we combine the above constructions using a mapping cylinder con-
struction as follows. We take the disjoint union of the spaceX constructed above
from �c

n,n+1(G)with the product Y ⇥I , and glue Y ⇥{0} toX so that each edge
space glues by a homeomorphism to a boundary component of the appropriate
annulus ⇤, and each vertex space is glued to the appropriate vertex space of X .
Denote the resulting space by M , and denote Y ⇥ {1} by @M . We now have a
picture which mimics the topology of the JSJ decomposition of a 3–manifold,
as each edge splitting of �c

n,n+1(G) which is dual to an annulus ⇤ is represented
by an embedding of ⇤ in M with @⇤ embedded in @M . Note that M has a nat-
ural projection p to �c

n,n+1(G) obtained by collapsing the constituent edge and
vertex spaces to a point.

In order to complete the analogy with 3–manifold topology, we proceed as
follows. We subdivide �c

n,n+1(G) by adding a new vertex at the middle of each
edge e, and then for each vertex v of �c

n,n+1(G), we letMv denote the pre-image
under p of the star of v in this subdivision. Let @1Mv denote the intersection of
Mv with the pre-image under p of the new vertices, let @0Mv denote Mv \ @M ,
and let @Mv denote the union @0Mv [ @1Mv. Each component of @1Mv is an
annulus or torus in M . Each component of @0Mv is either a component of @M ,
or is naturally a PD(n + 1) pair with boundary equal to the boundary of some
annuli in M . Thus we have �nally assigned meaning to the "intersection with
@G of a vertex of �c

n,n+1(G)".
If v is a V0–vertex of �c

n,n+1(G) of interior Seifert type, of special Seifert type,
or is isolated with torus group, then @1Mv consists entirely of essential tori in
(G, @G), and @0Mv is empty. Thus the "intersection of v with @G" is empty.

If v is a V0–vertex of �c

n,n+1(G) of I–bundle type, then @1Mv consists entirely
of essential annuli in (G, @G), and @0Mv consists of one or two PD(n+1) pairs
the union of whose boundary components is equal to the boundary of the annuli
forming @1Mv. If @0Mv consists of two PD(n+ 1) pairs, each includes into Mv

by an isomorphism of fundamental groups, so that the I–bundle is trivial. Other-
wise, @0Mv consists of a single PD(n+1) pair such that the image of ⇡1(@0Mv)
in ⇡1(Mv) has index 2, so that the I–bundle is twisted. Thus the "intersection of
v with @G" is the @I–bundle associated to the I–bundle.

We note that if ⌃ is a torus in @G, then it must be conjugate into some vertex
group of �n,n+1(G) or of �c

n,n+1(G). Otherwise there is an essential annulus in
(G, @G)with a boundary component in⌃, but then the V0–vertex v of �c

n,n+1(G)
which encloses that annulus must be of commensuriser type so that G(v) con-
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tains ⌃.
Nowwe can describe exactlywhatwemean by doubling�n,n+1(G) or�c

n,n+1(G).
Again the same description su�ces for both. LetDM denote the space obtained
by doublingM along @M , so thatDM is aK(DG, 1). We denote the two copies
of M in DM by M and M , and let ⌧ denote the involution of DM which in-
terchanges M and M . We will describe a family of disjoint tori in DM which
determines the decomposition of DG which we want. The annuli and tori inM

which correspond to the edges of �c

n,n+1(G) determine tori in DM , as follows.
A torus T inM yields two tori T and ⌧T inDM , and an annulus ⇤ inM yields
a torus D⇤ = ⇤ [ ⌧⇤ in DM . In addition, for each torus ⌃ in @G which is
enclosed by a V1–vertex of �c

n,n+1(G), we add two parallel copies of the corre-
sponding component of @M , one copy inM and the other inM . Clearly the tori
in this family are all disjoint. Now this family of disjoint tori inDM determines
a graph of groups structure of DG, which we denote by D�c

n,n+1. Thus all the
edges of D�c

n,n+1 have associated splittings dual to tori in DG.
There is a natural map from DM to D�c

n,n+1, and it is easy to describe the
vertex spaces of DM . If ⌃ is a torus in @G which is conjugate into a V1–vertex
group of �c

n,n+1(G), the two parallel copies of ⌃ in DM together bound a copy
of ⌃ ⇥ I , which corresponds to an isolated vertex of D�c

n,n+1. We label such a
vertex as a V0–vertex ofD�c

n,n+1. The other vertex spaces ofDM arise from ver-
tex spaces ofM . IfMv is disjoint from @M , so that @0Mv is empty, there are two
corresponding vertex spacesMv and ⌧Mv ofDM each homeomorphic toMv. If
v is a V1–vertex of �c

n,n+1(G) such that @0Mv consists only of torus components
of @M , there are again two corresponding vertex spaces, each homeomorphic to
Mv. If v is a V1–vertex of �c

n,n+1(G) such that @0Mv is not empty and does not
consist only of torus components of @M , there is one corresponding vertex space
obtained by doubling Mv along the non-torus components of @0Mv. Finally, if
v is a V0–vertex of �c

n,n+1(G) such that @0Mv is non-empty, there is one corre-
sponding vertex space obtained by doubling Mv along @0Mv. We de�ne each of
the corresponding vertices of D�c

n,n+1 to be of type V0 or V1 so as to be of the
same type as v. With this labelling, D�c

n,n+1 is bipartite. Note that an isolated
vertex ofD�c

n,n+1 either arises from a torus in @G which is conjugate into a V1–
vertex group of �c

n,n+1(G), or it arises from an isolated annulus or torus vertex
of �c

n,n+1(G). As �c

n,n+1(G) is reduced, it follows that D�c

n,n+1 is also reduced.
Next we need to consider more detail about the structure of the V0–vertex

groups of�c

n,n+1(G). Recall that if v is a V0–vertex of�c

n,n+1(G) of interior Seifert
type, then v is of V PCn–by–Fuchsian type. Let L denote the V PCn normal
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subgroup of G(v). Then the quotient group G(v)/L is not virtually cyclic and
is the orbifold fundamental group of a compact 2–orbifold Xv. Further there is
exactly one edge of �c

n,n+1(G) which is incident to v for each peripheral sub-
group K of G(v), and this edge carries K . Thus there is a natural projection
of Mv to Xv, in which @Mv = @1Mv maps onto @Xv. This precisely mirrors
the picture in a 3–manifold of an interior Seifert �bre space component of the
characteristic submanifold. We will show that a similar picture occurs for any
V0–vertex v of �c

n,n+1(G) of commensuriser type, again mirroring the situation
for 3–manifolds. Thus, in all these cases, there is a compact 2–orbifold Xv and
a natural projection of Mv to Xv in which @Mv maps onto @Xv. Note that any
V0–vertex v of �c

n,n+1(G) of commensuriser type is of peripheral type, so that
@0Mv is non-empty, which introduces some new aspects to the discussion. Note
also that if v is of peripheral Seifert type, then G(v) is V PCn–by–Fuchsian and
so v has a natural base orbifoldXv, but even this is not clear if v is of torus type
or of solid torus type.

Consider a V0–vertex of �c

n,n+1(G) of commensuriser type. For a given such
vertex v, there is aV PCn subgroupL ofG(v) such that for each edge of�c

n,n+1(G)
which is incident to v and associated to a splitting over an annulus ⇤, the group
carried by each component of @⇤ is L. It follows that @0Mv consists of a disjoint
union of torus components of @M and of annuli whose boundary components
carry L. Thus each component of @Mv is either a torus component of @0Mv or
of @1Mv, or is a union of annuli in @0Mv and @1Mv.

Let T be a component of @Mv which is a union of annuli in @0Mv and @1Mv.
Either all the annuli in T are untwisted and glued in a circular pattern, or there
are precisely two twisted annuli in T separated by a chain of untwisted annuli.
Note that all these annuli carry subgroups of G, and so have torsion free V PCn

fundamental group. It follows that ⇡1(T ) is a torsion free V PC(n + 1) group
and so is PD(n+1). We claim that ⇡1(T ) is an orientable PD(n+1) group. By
our construction ofM , we know that T has a neighbourhood homeomorphic to
an I–bundle over T . Further this I–bundle must be trivial as T is a boundary
component ofMv. Now it follows that there is an excision isomorphism between
Hn+2(T ⇥ I, T ⇥ @I) and Hn+2(M, @M) ⇠= Z. As Hn+2(T ⇥ I) = 0, and
Hn+1(T ⇥ @I) ⇠= Hn+1(T ) � Hn+1(T ), it follows that Hn+1(T ) is non-zero,
which implies that ⇡1(T ) is an orientable PD(n+1) group, as required. We will
abuse terminology and say that T is a torus.

Note that an untwisted annulus has a natural projection to the unit interval
I , and a twisted annulus has a natural projection to the 1–orbifold Q which is
the quotient of I by a re�ection involution. Hence if the torus T is a union of
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untwisted annuli, it has a natural map to the circle S1 such that the restriction
to each annulus is projection to a unit interval. And if T contains two twisted
annuli, it has a natural map to the 1–orbifold C which is the quotient of S1

by a re�ection involution such that the restriction to each untwisted annulus
is projection to a unit interval, and the restriction to each twisted annulus is
projection to a copy of Q. Now recall that our aim is to show that if v is a V0–
vertex of �c

n,n+1(G) of commensuriser type, then there is a compact 2–orbifold
Xv and a natural projection of Mv to Xv in which @Mv maps onto @Xv. We
will show further that this projection can be chosen so that its restriction to
each annulus component of @0Mv and of @1Mv is the natural projection to a 1–
suborbifold of @Xv which is isomorphic to I or Q, as appropriate.⇡

We start by considering the case when v is a V0–vertex of �c

n,n+1(G) of torus
type, so that G(v) is V PC(n+ 1) and hence PD(n+ 1).

Lemma 2.8.1. Let v be a V0–vertex of �c

n,n+1(G) of torus type. Then the following
hold:

1. IfG(v) is an orientable PD(n+1) group, then @Mv consists of two tori such
that each includes intoMv inducing an isomorphism of fundamental groups.

2. If G(v) is a non-orientable PD(n+ 1) group, and if G(v)0 denote its orien-
tation subgroup, then @Mv consists of a single torus whose inclusion intoMv

induces an injection of fundamental groups with image G(v)0.

3. In either case, there is a compact 2–orbifold Xv such that G(v) is L–by–
⇡
orb

1 (Xv), and a natural map fromMv toXv such that @Mv maps onto @Xv .
Further, each annulus in @0Mv and @1Mv maps to a 1–suborbifold of @Xv

by the natural map. If the annulus is untwisted, its image in @Xv is isomor-
phic to the unit interval I , and if the annulus is twisted, its image in @Xv is
isomorphic to Q, the quotient of I by a re�ection involution.

Proof. 1) The above discussion shows that @Mv consists of tori. There is an ex-
cision isomorphism between Hn+2(Mv, @Mv) and Hn+2(M, @M) ⇠= Z, and the
fundamental class of @Mv maps to zero in Hn+1(Mv). Now consider the long
exact homology sequence of the pair (Mv, @Mv). As G(v) is V PC(n + 1) and
orientable, we know thatHn+2(Mv) = 0, andHn+1(Mv) ⇠= Z. AsHn+1(T ) ⇠= Z
for any torus T , it follows that @Mv consists of at most two tori.

In case 1) of De�nition 2.3.12, there is a torus⌃ in @0Mv whose inclusion into
Mv induces an isomorphism of fundamental groups.
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In case 2) of De�nition 2.3.12, there is a torus⌃ in @1Mv whose inclusion into
Mv induces an isomorphism of fundamental groups.

It follows that in either of these cases, @Mv consists of two tori and that the
inclusion into Mv of the second torus T induces an isomorphism Hn+1(T ) !
Hn+1(Mv). Thus themap from ⇡1(T ) to ⇡1(Mv) is onto. As ⇡1(T ) is V PC(n+1),
the kernel of this map must be �nite. Now the fact that ⇡1(T ) is torsion free
implies that this map is an isomorphism, as required.

In case 3) of De�nition 2.3.12, there is a torus contained in Mv whose fun-
damental group equals G(v). We could further re�ne our above construction
of (M, @M) to arrange thatMv contains such a torus ⌃. This must separateMv

into two pieces each with fundamental groupG(v). By considering each of these
pieces separately as in the preceding paragraph, we can again conclude that each
component of @Mv includes intoMv by an isomorphism of fundamental groups.

2) IfG(v) is a non-orientablePD(n+1) group, thenHn+1(Mv) = 0. Now the
long exact homology sequence of the pair (Mv, @Mv) shows that @Mv consists
of a single torus T . As T is orientable, the image of ⇡1(T ) in G(v) is contained
in G(v)0. Thus there is an index 2 subgroup G

0 of G whose intersection with
G(v) isG(v)0, and which is naturally a PD(n+2) pair (G0

, @G
0). LetM 0 denote

the corresponding model space for this pair, and apply part 1) of the lemma to
the appropriate vertex space of M 0. This will imply that the inclusion of T =
@Mv into Mv induces an injection of fundamental groups with image G(v)0, as
required.

3) IfG(v) is orientable and T denotes a torus in @Mv, then the pair (Mv, @Mv)
is homotopy equivalent to (T ⇥ I, T ⇥ @I). If T consists of a circular chain of
untwisted annuli, then the quotient ⇡1(T )/L is isomorphic to Z, and we take the
orbifoldXv to be the annulus. If T contains two twisted annuli, then the quotient
⇡1(T )/L is isomorphic to Z2 ⇤Z2, and we take the orbifoldXv to be the product
C ⇥ I , where C is the quotient of S1 by a re�ection involution.

If G(v) is non-orientable, then @Mv consists of a single torus T whose in-
clusion into Mv induces an injection of fundamental groups with image G(v)0.
If T consists of a circular chain of untwisted annuli, then the quotient ⇡1(T )/L
is isomorphic to Z, and we take the orbifold Xv to be the Moebius band. If T
contains two twisted annuli, then the quotient ⇡1(T )/L is isomorphic to Z2 ⇤Z2,
and we take the orbifold Xv to be "a twisted I–bundle" over C , which we de-
scribe as follows. Recall that the Moebius band is a twisted I–bundle over the
circle S1. Let � denote the re�ection involution of S1 with quotient C . Then �

extends to an involution � of this I–bundle over S1, and Xv is the quotient of
this action. Note that � preserves each �bre over the �xed points of �, and �xes
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one of these �bres pointwise, while re�ecting the other one. Thus the �xed set
of � consists of an interval, where the local picture of � is a re�ection, and of an
isolated point, where the local picture is of a rotation through ⇡. Thus Xv has
underlying surface a discD, the boundary ofD contains a single mirror interval
whose complement is thus a copy of C , andXv also has an order 2 cone point in
the interior of D.

Now we understand how "v meets @G" when v is of torus type, we can apply
this to the case where v is a V0–vertex of �c

n,n+1(G) of peripheral Seifert type to
obtain the following result.

Corollary 2.8.2. Let v be a V0–vertex of �c

n,n+1(G) of peripheral Seifert type, and
let Xv denote the base orbifold of v. Then there is a natural map from Mv to Xv

such that @Mv maps onto @Xv . Further, each annulus in @0Mv and @1Mv maps to
a 1–suborbifold of @Xv with non-empty boundary, by the natural map.

Proof. Recall from De�nition 2.3.6 that �c

n,n+1(G) can be re�ned by splitting at
v to a graph of groups structure �0 of G with a vertex v0 of �0 such that G(v0) =
G(v) and v0 is of Seifert type adapted to @G. The projection map �0 ! � sends v0
to v and is an isomorphism apart from the fact that certain edges incident to v0 are
collapsed to v. Further if e is an edge of �0 which is incident to v

0 and collapsed
to v, then the other vertex w of e is of torus type. AsG(e) is a torus, w is of torus
type 2) in De�nition 2.3.12. We can correspondingly re�neM to obtain the vertex
spaceMv0 . As v0 is of Seifert type adapted to @G, there is a natural projection of
Mv0 toXv0 with all the required properties. It also follows from Lemma 2.8.1 that
the base orbifold ofw is an annulus orC⇥I . In turn this implies thatXv andXv0

are isomorphic. Now it follows that there is a natural projection of Mv to Xv in
which @Mv maps onto @Xv, and each annulus component of @0Mv and of @1Mv

maps in the natural way to a 1–suborbifold of @Xv with non-empty boundary,
as required.

We have shown that for any V0–vertex v of�c

n,n+1(G) of commensuriser type,
but not of solid torus type, there is a base orbifold Xv such that @Xv is divided
into the image of @0Mv, which we denote by @0Xv, and the image of @1Mv, which
we denote by @1Xv. This precisely mirrors the picture in a 3–manifold of a pe-
ripheral Seifert type or torus type component of the characteristic submanifold.
Now we can continue our discussion of the doubleD�c

n,n+1. As discussed above,
this gives rise to a single vertex space DMv of DM obtained by doubling Mv

along @0Mv. It is clear that DMv has a natural map to the 2–orbifold DXv ob-
tained by doublingXv along @0Xv. It is easy to see that ⇡orb

1 (DXv) is not virtually
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cyclic, so the corresponding V0–vertex V of D�c

n,n+1 is of V PCn–by-Fuchsian
type.

If v is a V0–vertex of �c

n,n+1(G) of I–bundle type, it is of V PC(n � 1)–by–
Fuchsian type. Let K denote the V PC(n � 1) normal subgroup of G(v). As
before, we let Xv denote the compact 2–orbifold whose orbifold fundamental
group is G(v)/K , and whose boundary corresponds to the edges of �c

n,n+1(G)
which are incident to v. Thus doubling Mv along @0Mv yields a V0–vertex V of
D�c

n,n+1 of V PCn–by–Fuchsian type with the same base 2–orbifold Xv.
The case of V0–vertices of �c

n,n+1(G) of solid torus type seems to be di�erent,
and we will need a separate and more subtle argument. Let v be a V0–vertex of
�c

n,n+1(G) of solid torus type. ThusG(v) is V PCn and has a V PCn subgroup L
such that all the annuli in @0Mv and in @1Mv have boundary with fundamental
group L.

Lemma 2.8.3. Let v be a V0–vertex of �c

n,n+1(G) of solid torus type, and let L be
as above. Then there is a compact 2–orbifold Xv , equal to a cone or the quotient of
a cone by a re�ection, such that G(v) is L–by–⇡orb

1 (Xv), and a natural map from
Mv toXv such that @Mv maps onto @Xv . Further, each annulus in @0Mv and @1Mv

maps to a 1–suborbifold of @Xv with non-empty boundary, by the natural map.

Remark 2.8.4. The orbifold fundamental group ofXv must be �nite in this case, as
L has �nite index inG(v). Note also that the de�nition of solid torus type, De�nition
2.3.8, did not include the statement that L is normal inG(v). This seems to be quite
nontrivial.

Proof. As before there is an excision isomorphism betweenHn+2(Mv, @Mv) and
Hn+2(M, @M) ⇠= Z. As G(v) is V PCn, we know that Hn+1(Mv) is zero. Now
the long exact sequence of the pair (Mv, @Mv) shows that @Mv consists of a
single torus T . This torus is a union of annuli in @0Mv and @1Mv, and all these
annuli have boundary with fundamental group L. Thus L is a normal subgroup
of ⇡1(T ) with quotient Z or Z2 ⇤Z2. However the inclusion of T intoMv cannot
induce an injective map of fundamental groups, as G(v) is V PCn, but ⇡1(T ) is
V PC(n+1). In this case, we need a more complicated argument to �nd the base
orbifold for v.

Let MV denote the double of Mv along @0Mv. The double of each annulus
in @1Mv is a torus component of @MV . Recall that any torus in DG is enclosed
by some V0–vertex of �c

n+1(DG). As pairs of these tori in @MV are joined by an
annulus in @0Mv, it follows from the proof of Lemma 2.5.13 that all components
of @MV are enclosed by a single V0–vertex W of �c

n+1(DG). Now let A be an
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annulus in @0Mv. As A is an annulus with ends in W , which is a V0–vertex of
�c

n+1(DG), it follows that A cannot cross any component of @MW . Thus either
V itself is enclosed byW , or some component T of @MW is enclosed by V and is
not peripheral in V . Suppose there is such a component T of @MW . As T cannot
cross any annulus in @0Mv, it follows that T is enclosed by v or ⌧v, which is
impossible, as G(v) is V PCn. We conclude that V must be enclosed by W . If
W is isolated, it follows that V is also isolated and hence that v must be isolated,
contradicting the assumption that v is of solid torus type. If W is of special
Seifert type, it follows that V must be isolated or also of special Seifert type. We
have just shown that V cannot be isolated, so it must be of special Seifert type.
As v is of solid torus type, the only possibility is that it is of special solid torus
type, with a single incident edge carrying a subgroup of index 2 in G(v). In this
case, we can take Xv to be a cone with cone point labeled 2, and with @0Xv and
@1Xv each consisting of a single arc in @Xv. If W is V PCn–by–Fuchsian, it
follows that L is the normal V PCn subgroup of G(W ), and that G(V ) is the
pre-image in G(W ) of a suborbifold X of the base orbifold XW of W . Now
we can choose a projection map p : MV ! X , so that @MV maps to @X , and
each annulus in @1Mv, and its translate by ⌧ , projects in the natural way to a
1–orbifold contained in @X . The involution ⌧ of DM induces an involution of
G(V )which is the identity on L, and so induces a proper homotopy equivalence
of X of order 2. The Nielsen Realization Theorem [10] implies that there is an
involution ofX in the given homotopy class, which we again denote by ⌧ . Recall
that each component of @MV is the double of an annulus in @1Mv. It follows that
⌧ induces an involution on each component of @MV which interchanges the two
annuli. Hence the involution ⌧ on X acts by a re�ection on each component of
@X , and so �xes one or two points of each such component. We now need to
consider how p : MV ! X maps each annulus ⇤ of @0Mv into X . We already
know that each component of @⇤ is also a component of the boundary of an
annulus in @1Mv, and so is mapped to a point of @X �xed by ⌧ .

If ⇤ is untwisted, it follows that we can homotop p restricted to ⇤ to factor
through the natural projection of ⇤ to the unit interval. This yields a path � in
X joining two points of @X �xed by ⌧ . We now give X a hyperbolic metric
such that @X consists of geodesics and ⌧ is an isometry, and then homotop �

rel @� to the unique geodesic in its homotopy class. As ⌧⇤ = ⇤, it follows that
⌧� is homotopic rel @� to �. Now the uniqueness of hyperbolic geodesics in a
homotopy class implies that ⌧� = �. It follows that � is contained in the �xed
set of ⌧ , and that � must be a simple geodesic.

If ⇤ is twisted, then p maps @⇤ to a point a of @X �xed by ⌧ . As ⇡1(⇤)
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contains ⇡1(@⇤) = L with index 2, it follows that p⇤⇡1(⇤) is a subgroup of
⇡
orb

1 (X) of order 2. Such a subgroup of ⇡orb

1 (X) must be carried by a mirror m
of X or by a cone point w of X with even number attached. In the �rst case,
we can homotope the map from ⇤ to X to have image a path � joining a to m,
and then further homotop � to be the shortest geodesic in its homotopy class.
As ⌧ �xes ⇤, it follows that ⌧ must preserve m, and that ⌧� is homotopic to �

�xing a and keeping the other end of � inm. Now the uniqueness of hyperbolic
geodesics in a homotopy class implies that ⌧� = �. It follows that � is contained
in the �xed set of ⌧ , and that �must be a simple geodesic. In the second case, we
can homotope the map from ⇤ to X to have image a path � joining a to w, and
then further homotop � to be the shortest geodesic in its homotopy class. As ⌧
�xes ⇤, it follows that ⌧ must �x w, and that ⌧� is homotopic to � rel @�. Now
the uniqueness of hyperbolic geodesics in a homotopy class implies again that
⌧� = �, so that �must be contained in the �xed set of ⌧ , and �must be a simple
geodesic. In both cases, the image of � is a 1–suborbifold ofX , isomorphic toQ,
the quotient of the unit interval by a re�ection.

At this point, we have arranged that each annulus of @0Mv maps to a "simple
arc" inX which is contained in the �xed set of ⌧ , so that distinct such arcs cannot
cross. It is conceivable that two of these arcs coming from twisted annuli could
share an endpoint at a cone point of X , but that would imply the two twisted
annuli in question carried the same subgroup of DG, which is not possible. It
follows that the image of @Mv inX is a connected 1–orbifold C , without bound-
ary, embedded in X . Thus C is a circle or the quotient of a circle by re�ection.
The image of ⇡orb

1 (C) in ⇡
orb

1 (X) must be �nite, as it is contained in ⇡1(Mv)/L,
which is the image of ⇡1(Mv). It follows that C bounds a suborbifold Z of X
with �nite orbifold fundamental group, which can only be a cone or the quotient
of a cone by a re�ection. This is the required base orbifold Xv for v.

Now we come to an important result about the V1–vertices of D�c

n,n+1.

Lemma 2.8.5. Let (G, @G) be an orientable PD(n + 2) pair, such that G is not
V PC . Let V be a V1–vertex ofD�c

n,n+1, denoteG(V ) byK , and let @K denote the
family of subgroups of K associated to the edges of D�c

n,n+1 incident to V . Then
(K, @K) is an orientable atoroidal PD(n+ 2) pair.

Proof. The fact that (K, @K) is an orientable PD(n + 2) pair follows from [1].
Now suppose that T is a torus in (K, @K). We need to show that T is conjugate
into a group in @K . Recall from the above discussion ofDM andD�c

n,n+1, that V
must be obtained from a V1–vertex v of �c

n,n+1(G). If V is isolated, the required
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result is immediate. If V is equal to a V1–vertex v of �c

n,n+1(G), then T is a torus
in G. Now any torus in G is conjugate into a group in @G or is essential and so
enclosed by some V0–vertex of �c

n,n+1(G). In either case, it must be conjugate
into a group in @K . If V is obtained by doubling from some V1–vertex v of
�c

n,n+1(G), there are three possible cases up to conjugacy, that T is an essential
torus in G or G, that T is contained in a group in @G, or that T is decomposed
into essential annuli lying in (G, @G) or (G, @G) and enclosed by v or by ⌧v.
The �rst case is again not possible. In the second case, T would be peripheral
in V , as required. Now we consider the third case in which T is decomposed
into essential annuli lying in (G, @G) or (G, @G) and enclosed by v or by ⌧v.
We note that any essential annulus in (G, @G) is enclosed by some V0–vertex of
�c

n,n+1(G). Thus if an essential annulus in (G, @G) is enclosed by a V1–vertex v
of �c

n,n+1(G), it must be a cover of an annulus associated to an edge of �c

n,n+1(G)
incident to v. Thus the annuli into which T is decomposed are all covers of edge
annuli in v or ⌧v. If v is a non-isolated V1–vertex of �c

n,n+1(G), it is not possible
to have two distinct edge annuli whose boundaries carry the same group L. It
follows that T is a subgroup of the double of a single edge annulus of v, so that
T is a subgroup of an edge torus of V , as required.

Next we discuss more carefully the V0–vertices ofD�n,n+1. These are all ob-
tained from V0–vertices of �n,n+1(G) except for those isolated vertices obtained
from torus groups in @G enclosed by a V1–vertex of �n,n+1(G).

If V is obtained from a V0–vertex v of �n,n+1(G) of interior type, then V is
equal to v or ⌧v, so is isolated, of special Seifert type or of interior Seifert type.
In the last case, if L denotes the V PCn normal subgroup ofG(V )with Fuchsian
quotient, then L is contained inG orG, but is not contained in any group in @G.

If V is obtained from a V0–vertex v of �n,n+1(G) of peripheral type, thenMV

is the double of Mv along @0Mv. If v is isolated, then V is also isolated. If v is
of commensuriser type, there is a V PCn subgroup L of G such that G(v) =
CommG(L) and all edge annuli of v have boundary which carries L. Thus L is
contained inG and also contained in groups in @G. Further Lemma 2.8.1, Corol-
lary 2.8.2 and Lemma 2.8.3 together show that G(v) is L–by–⇡orb

1 (Xv), where
Xv is the base orbifold of v. HenceG(V ) is L–by–⇡orb

1 (DXv), whereDXv is the
double of Xv along @0Xv. In almost all cases ⇡orb

1 (DXv) is not virtually cyclic,
and V is of V PCn–by–Fuchsian type, where the normal V PCn subgroup is
again L. The only exception occurs when v is of special solid torus type, with a
single incident edge carrying a subgroup of G(v) of index 2. In this case, V is of
special Seifert type.
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Finally if V is obtained from a V0–vertex v of �n,n+1(G) of I–bundle type,
then V is of Seifert type, but this time the normal V PCn subgroup L ofG(V ) is
not conjugate into G or G.

Now we can state our doubling result which is precisely analogous to the
situation in 3–manifold theory.

Theorem 2.8.6. Let (G, @G) be an orientable PD(n + 2) pair, such that G is
not V PC . Then the double D�c

n,n+1 of �c

n,n+1(G) is equal to the decomposition
�c

n+1(DG) of DG.

Remark 2.8.7. The doubleD�n,n+1 of �n,n+1(G) need not be equal to the decom-
position �n+1(DG) of DG. For example, consider the case when G is the funda-
mental group of a 3–manifoldM , and �c

n,n+1(G) has a V0–vertex v of special solid
torus type, with three incident edges each carrying G(v). Thus the characteristic
submanifold of M has a component X which is a solid torus which meets @M in
three annuli all of degree 1 inX . DoublingM yields a componentDX of the char-
acteristic submanifold ofDM , which is the double ofX alongX \ @M . ThusDX

is the product of a pair of pants with the circle. Now X corresponds to a V1–vertex
of �n,n+1(G), but DX corresponds to a V0–vertex of �n+1(DG).

Proof. The outline of our proof is to show that each V0–vertex ofD�c

n,n+1 is en-
closed by someV0–vertex of�c

n+1(DG), and that eachV0–vertex of�c

n+1(DG)D�c

n,n+1

is enclosed by some V0–vertex ofD�c

n,n+1. Assuming these two facts, we can de-
duce the theorem as follows. Let V be a V0–vertex of D�c

n,n+1 enclosed by the
V0–vertex W of �c

n+1(DG). As W is enclosed by a V0–vertex V
0 of D�c

n,n+1, it
follows that V is enclosed by V

0. As D�c

n,n+1 is reduced, it follows that V = V
0,

and hence that G(V ) = G(W ). Let @G(V ) denote the family of subgroups of
G(V ) associated to the edges ofD�c

n,n+1 incident to V , and similarly forW . The
facts that V is enclosed by W , and G(V ) = G(W ) implies that the PD(n + 2)
pairs (G(V ), @G(V )) and (G(W ), @G(W )) are isomorphic. Similarly if W is a
V0–vertex of �c

n+1(DG) enclosed by a V0–vertex V ofD�c

n,n+1, it follows that the
PD(n+2) pairs (G(V ), @G(V )) and (G(W ), @G(W )) are isomorphic. Together
these facts imply that D�c

n,n+1 is equal to �c

n+1(DG), as required.
First we will show that each V0–vertex of D�c

n,n+1 is enclosed by some V0–
vertex of �c

n+1(DG).
Our discussion immediately before this theorem shows that if V is a V0–

vertex ofD�c

n,n+1, it is isolated, of special Seifert type, or of V PCn–by–Fuchsian
type. Now any torus in DG is enclosed by some V0–vertex of �c

n+1(DG), and
crossing tori must be enclosed by the same V0–vertex of �c

n+1(DG). Thus if V
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is not of special Seifert type, it follows that V is enclosed by some V0–vertex
of �c

n+1(DG). If V is of special Seifert type, we know that G(V ) is conjugate
into some V0–vertex group of �c

n+1(DG), so that again V is enclosed by some
V0–vertex of �c

n+1(DG). Thus each V0–vertex of D�c

n,n+1 is enclosed by some
V0–vertex of �c

n+1(DG), as required.
It remains to show that each V0–vertexW of �c

n+1(DG)D�c

n,n+1 is enclosed
by some V0–vertex of D�c

n,n+1.
If W is isolated, let T denote an edge torus of W . As T is an edge torus

of �c

n+1(DG), it crosses no torus in DG, and so is enclosed by some vertex of
D�c

n,n+1. Lemma 2.8.5 tells us that V1–vertices of D�c

n,n+1 are atoroidal, so it
follows that T , and hence W , is enclosed by some V0–vertex of D�c

n,n+1, as
required.

IfW is of special Seifert type, we let T denote the edge torus ofW . Again T

is enclosed by some V0–vertex V of D�c

n,n+1. As G(W ) contains T with index
2, it follows that W is enclosed by some vertex V

0 of D�c

n,n+1. If V 0 is a V1–
vertex, it follows that T is peripheral in both V and in V

0. Now Lemma 2.2.7
shows that V 0 must be of special Seifert type. As no V1–vertex of �c

n,n+1(G) can
be of special Seifert type, V 0 must be obtained by doubling from a V1–vertex
v of �c

n,n+1(G). This implies that v must be of special solid torus type. As no
V1–vertex of �c

n,n+1(G) can be of special solid torus type, it follows that V 0 is a
V0–vertex of D�c

n,n+1 which enclosesW , as required.
For the rest of this proof, we will assume that W is of V PCn–by–Fuchsian

type with normal V PCn subgroup L. Thus Lemma 2.5.10 tells us that G(W ) =
NDG(L).

Let T denote the universal coveringDG–tree of the graph of groups� deter-
mined by the doubling of G along @G. Thus � has two vertices with associated
groupsG andG, and has edges corresponding to the groups in @G. We consider
the actions of L and G(W ) = NDG(L) on T , and the various cases which arise.

Case 1: L �xes a vertex z of T .
By a conjugation and possibly interchanging G and G, we can assume that

G(z) = G. In particular, L ⇢ G. Let T 0 denote the subtree of T consisting of all
edges and vertices of T �xed by L. The action of NDG(L) on T must preserve
T

0.
Case 1a): T 0 = {z}.
Thus NDG(L) �xes z. This implies that NDG(L) ⇢ G. In particular, any

torus enclosed byW is also enclosed by the vertex U of�with associated group
G. As W is �lled by crossing tori, it follows that W itself is enclosed by U , and
hence that W is enclosed by some V0–vertex Z of �c

n,n+1(G). Let Z denote the
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corresponding V0–vertex of D�c

n,n+1, so that Z is either equal to Z or obtained
by doubling Z . In either case,W is enclosed by Z , as required.

Case 1b): z has valence 1 in T
0.

This implies that there are no essential annuli in (G, @G)which carry L, and
the same holds forG. Thus every vertex of T 0 has valence 1 in T

0, which implies
that T 0 is equal to a single edge e of T . As NDG(L) preserves T 0 and cannot
interchange the ends of e, we deduce that NDG(L) �xes e. Now the stabilizer
of e is a group K in @G and so is an orientable PD(n + 1) group, and NDG(L)
contains a torus subgroup⌃which is also PD(n+1). It follows that⌃ has �nite
index inK , so thatK is V PC(n+1), and hence also a torus. HenceW must be
isolated, contradicting our assumption.

Case 1c): z has valence 2 in T
0.

This implies that all vertices of T 0 have valence 2 in T
0, so that T 0 is a line. As

NDG(L) preserves this line, it follows that there is a map fromNDG(L) to Z or to
Z2⇤Z2 whose kernelK �xes every point of T 0. Note thatNDG(L)\G = NG(L).
In the �rst case,NG(L) equalsK , and in the second case,NG(L) containsK with
index 2. As L �xes only two edges of T incident to z, there is a unique essential
annulus in (G, @G) which carries L. It follows that there is a V0–vertex v of
�c

n,n+1(G), such that G(v) = NG(L), and that v is isolated or of special solid
torus type, with a single incident edge carrying a subgroup of index 2. Let V
denote the V0–vertex of D�c

n,n+1 obtained by doubling v. Then G(V ) contains
NG(L), and contains an element which acts on T

0 by a translation of length 2.
Hence G(V ) is equal to G(W ). In particular, W is enclosed by the V0–vertex V
of D�c

n,n+1, as required.
Case 1d): z has valence at least 3 in T

0.
As L �xes three distinct edges of T incident to z, it follows that there are

three distinct annuli in (G, @G) whose boundaries carry L. Hence there is a V0–
vertex v of �c

n,n+1(G) of special solid torus type or of commensuriser type, such
that G(v) = CommG(L) = NG(L) = NDG(L) \ G. Hence for each edge e of
T

0 incident to v, with stabilizer S, we have NDG(L) \ S = G(v) \ S. Let V
denote the double of v, so that G(V ) ⇢ NDG(L) = G(W ). The quotient of T 0

by G(V ) has two vertices, so the same holds for the quotient of T 0 by G(W ). As
both groups act on T

0 with the same edge and vertex stabilizers, it follows that
G(V ) = G(W ). In particular, W is enclosed by the V0–vertex V of D�c

n,n+1, as
required.

Case 2: L �xes no vertex of T .
In this case, there is a unique minimal L–subtree ⇤ of T . As L is V PC ,
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Lemma 2.1.10 tells us that ⇤ is a line. The uniqueness of ⇤ implies that NDG(L)
preserves⇤. As in Case 1c), there is a map fromNDG(L) to Z or to Z2⇤Z2 whose
kernelK �xes every point of⇤. AndNDG(L)\G is either equal toK or contains
K with index 2. As G(W ) = NDG(L), we know that any torus ⌃ enclosed by
W must intersect L in a subgroup of �nite index in L. Hence the V PC(n + 1)
group ⌃ acts on ⇤, and ⌃ \K is a V PCn subgroup of ⌃ which �xes the vertex
z and preserves the two edges of ⇤ incident to z. This determines an essential
annulus in (G, @G)which carries ⌃\K . Every torus enclosed byW determines
an essential annulus in (G, @G) preserving the same two edges of⇤ incident to z.
As W is not isolated or of special Seifert type, there are in�nitely many distinct
such annuli, so that NDG(L) \G = G(v), for some V0–vertex v of �c

n,n+1(G) of
I–bundle type. Let V be obtained by doubling v. AsG(V ) containsNDG(L)\G

and acts on ⇤ by a translation of length 2, it follows that G(V ) = G(W ). In
particular,W is enclosed by the V0–vertex V of D�c

n,n+1, as required.

The machinery which we have just developed can be used to give simple
proofs of some other results. For example, we have the following result.

Theorem 2.8.8. Let (G, @G) be an orientable PD(n + 2) pair, such that G is
not V PC . Let F denote the family of all essential annuli in (G, @G), and let Fn

denote the family of equivalence classes of all nontrivial almost invariant subsets
of G which are over a V PCn subgroup. Then �(F : G), the algebraic regular
neighbourhood of F in G, is equal to �n(G), the algebraic regular neighbourhood
of Fn in G.

Proof. An essential annulus A in (G, @G) is enclosed by some V0–vertex v of
�n(G). The discussion in this section shows that if v is of I–bundle type, then
A determines a loop in the base orbifold of v, and if v is of commensuriser type,
then A determines an arc in the base orbifold of v. Further this yields a bijection
between equivalence classes of annuli in (G, @G) and loops and arcs in base
orbifolds of V0–vertices of�n(G). As any compact 2–orbifold is �lled by essential
(possibly singular) loops, and is also �lled by essential (possibly singular) arcs, it
follows that �(F : G) is equal to �n(G), as required.

2.9 Concluding remarks and problems
In this section, we brie�y discuss some problems which arise from our work in
this paper.
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In the previous section, we showed, in Theorem 2.8.6, that if (G, @G) is an
orientable PD(n+2) pair, such that G is not V PC , then the doubleD�c

n,n+1 of
�c

n,n+1(G) is equal to the decomposition �c

n+1(DG) of DG. This precisely mir-
rors the situation in 3–manifold theory. But in that theory, one can deduce the JSJ
decomposition theorem for 3–manifolds with boundary from the corresponding
result for closed manifolds by "undoubling". This is a great simpli�cation of the
direct proofs. Our �rst problem is to decide whether an analogous argument is
possible in the setting of PD(n+ 2) pairs.

Problem 2.9.1. Can the main result of this paper, Theorem 2.3.14, be deduced from
the properties of the decomposition �c

n+1(DG) ofDG, by some "undoubling" argu-
ment?

Our main result in this paper, Theorem 2.3.14, shows that the situation for
PD(n + 2) pairs is very similar to that for 3–manifolds with boundary. Now
in 3–manifold theory, the characteristic submanifold of a Haken 3–manifold has
the enclosing property for Seifert pairs. Thus it is reasonable to ask the following.

Problem 2.9.2. Do our results in this paper imply a result forPD3 pairs analogous
to the enclosing property for Seifert pairs in 3–manifolds.

This is Conjecture 10.4 of Wall’s survey article [34]. However we are unable
to answer this question. Even a precise formulation of the statement requires
a theory of Poincaré duality triads, and/or of Poincaré duality pairs with com-
pressible boundary, neither of which has been developed so far.

Since one of the main results in the JSJ theory of 3–manifolds is Johannson’s
Deformation Theorem [8], it is natural to ask the following.

Problem 2.9.3. Is there a result for Poincaré duality pairs which is analogous to
Johannson’s Deformation Theorem?

Some of our discussion and de�nitions have been rather topological in or-
der to suit the setting of group pairs and duality. A more algebraic description
of the decomposition �c

n,n+1(G) should involve Poincaré duality triads rather
than pairs, since a vertex group of �c

n,n+1(G) has two distinct important types
of subgroups, namely the edge groups and the intersection groups with @G. We
feel that a reformulation in these terms and a strengthening of the statements
would be necessary in order to formulate the analogue of Johannson’s Deforma-
tion Theorem. In [33], Wall studied the notion of triads of Poincaré complexes.
It is natural to ask whether our algebraic decompositions can be realised using
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�nite aspherical Poincaré complexes. Suppose that G is the fundamental group
of such a complex X of dimension n + 2 and that G splits over a V PCn group
H . A basic question is whether X splits over a subcomplex Y with ⇡1(Y ) = H .
One expects to have to change the complex X to achieve this, so it seems better
to ask whether there is a �nite complexX 0 of the same simple homotopy type as
X , such that X 0 splits over a suitable subcomplex Y . This involves the study of
some obstruction groups most studied byWaldhausen [32]. For a general torsion
free V PCn group H , these obstruction groups are not well understood, so the
problem seems di�cult. But if we assume that H is torsion free and polycyclic,
then Waldhausen’s work shows that the obstruction groups are zero, so that we
can �nd such a complex X

0 as desired. However, even if we try to restrict our
attention to almost invariant subsets ofG over torsion free polycyclic subgroups,
it seems possible that the edge groups of the decompositions we obtain may be
V PC . If the edge groups are polycyclic, as happens in the 3–dimensional case,
then the analogue of Johannson’s Deformation Theorem can be formulated. We
expect this analogue to be correct for 3–dimensional Poincaré duality pairs, and
�nite aspherical Poincaré 3–complexes. In general it may be true only when the
peripheral groups are polycyclic.
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Chapter 3

Comparing decompositions of
Poincaré duality pairs

Lawrence Reeves, G. Peter Scott and Gadde A. Swarup

Abstract. Analogues of JSJ decompositions were developed for Poincaré duality
pairs in [19]. These decompositions depend only on the group. Our focus will
be on describing the edge splittings of these decompositions more precisely. We
use our results to compare these decompositions with two other closely related
decompositions.

3.1 Introduction
In this paper, we consider algebraic analogues of previous work in the topology
of 3–manifolds related to the JSJ decomposition introduced by Jaco and Shalen
[8] and Johannson [9]. In [8] and [9], the authors considered a compact ori-
entable Haken 3–manifold M with incompressible boundary, and constructed
the characteristic submanifold V (M) as a maximal Seifert pair embedded inM .
The frontier of V (M) is a family of disjoint essential annuli and tori inM , which
decompose M into pieces either in V (M) or its complement. In [12], [13], [14],
[16] and [20], the emphasis turned to annuli and tori rather than Seifert pairs.
In [12], the authors gave a new approach to constructing this decomposition of
M in which embedded essential annuli and tori were the main subject of inter-
est. They de�ned an embedded essential annulus or torus in M to be canonical
if it can be isotoped to be disjoint from any other embedded essential annulus
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or torus in M . This led to a �ner decomposition of M , which they called the
Waldhausen decomposition (W-decomposition), from which the JSJ decompo-
sition can be obtained in a natural way. In [16], the interest was in possibly
singular essential annuli and tori in M . The authors de�ned an embedded es-
sential annulus or torus in M to be topologically canonical if it has intersection
number zero with any (possibly singular) essential annulus or torus in (M, @M).
Most canonical annuli and tori in a 3–manifold are also topologically canonical,
and the exceptions can be precisely described. The existence of these excep-
tions explains why the W-decomposition of M is in general �ner than the JSJ
decomposition. In [16], the authors also de�ned an algebraic analogue in which
a splitting of ⇡1(M) given by an essential embedded annulus or torus inM is al-
gebraically canonical if it has intersection number zero with any almost invariant
subset of ⇡1(M)which is over Z or Z⇥Z. (See [15] for a discussion of the idea of
intersection numbers of almost invariant sets.) They showed that topologically
canonical splittings are not quite the same as algebraically canonical ones, and
gave some examples to demonstrate this. If M has empty boundary, there is no
di�erence.

In [20], (which is a revised version of [19]), an analogue of the JSJ decompo-
sition of 3–manifolds was developed for orientable PD(n+2) pairs, with n � 1.
The decomposition for a PD(n + 2) pair (G, @G) is simply the decomposition
�n,n+1(G) of [17], which is de�ned for many almost �nitely presented groups
G. (If @G is empty, so that G is a PD(n + 2) group, then �n,n+1(G) is equal
to the decomposition �n+1(G).) See [18] for corrections to [17]. Thus this de-
composition depends only on the group G and not on @G. In the case when @G

is empty, Kropholler [10] had earlier obtained this decomposition. In [17], the
decomposition �n,n+1(G) was constructed as the regular neighbourhood of the
family consisting of all almost invariant (a.i.) subsets ofG over V PCn subgroups
together with all a.i. subsets ofG over V PC(n+1) subgroups which do not cross
any a.i. subset of G over a V PCn subgroup. (A group is V PCn if it is virtually
polycyclic of Hirsch length n.) This regular neighbourhood is reduced, meaning
that two adjacent vertices cannot both be isolated, except when the graph is a
loop with just these two vertices. (A vertex w of aG–tree T is called isolated if it
has valence 2, and these two edges have the same stabilizer as w. The image of
w in G\T is also called isolated.) In general, the edge groups of �n,n+1 may not
even be �nitely generated, but it is shown in [20] that, in the case of PD(n+ 2)
pairs, the edge groups are all either V PCn or V PC(n+ 1).

It was shown in [20] that if G is the fundamental group of a compact ori-
entable Haken 3–manifold M with incompressible boundary, then �1,2(G) dif-
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fers from the JSJ decomposition of M only in some small Seifert pieces which
have no crossing annuli or tori. One can easily move from �1,2(G) to its com-
pletion �c

1,2(G), and this completion corresponds to the JSJ decomposition of
M . The di�erence between �1,2(G) and its completion �c

1,2(G) is related to
special properties of small Seifert �bre spaces. If the boundary of M is empty,
then similar comments apply to �2(G) and its completion �c

2(G). In the gen-
eral case of a PD(n+2) pair (G, @G)we denote the completion of �n,n+1(G) by
�c

n,n+1(G) or just�c

n,n+1 when the groupG is clear from the context. The comple-
tion �c

n,n+1(G) is essentially obtained from �n,n+1(G) by re-labelling some V1–
vertices as V0–vertices and then adding isolated V1–vertices as needed to keep
the graph bipartite. In particular, the edge splittings of �n,n+1 are the same as
the edge splittings of �c

n,n+1. Again the completed decomposition depends only
on the group G and not on @G.

Our focus in this paper will be on the edge splittings of these decompositions
of a group G. This is closely related to the approach in [16] in the case of 3–
manifolds. Our main result, Theorem 3.4.1, is similar to that in [16] but is in the
setting of the decomposition �n,n+1(G) of a PD(n+2) pair (G, @G). Our result
is more detailed than that in [16], and gives a precise description of the special
cases which arise. These results are new even in the setting of 3–manifolds, and
they yield a substantial re�nement of the results in [16].

There are other natural approaches to�nding JSJ decompositions of aPD(n+
2) pair (G, @G). The analogue of [12] would be to consider a maximal family of
splittings ofG by annuli and tori which cross no other such splitting. (In this pa-
per, we use the word "cross" to mean "has non-zero intersection number with".)
Another approach would be simply to consider the regular neighbourhood of the
family of all almost invariant subsets ofGwhich are over V PCn or V PC(n+1)
subgroups. For general groups, neither of these decompositions need exist. How-
ever, in this paper, we use the results of [20] and of Theorem 3.4.1 to show that
both decompositions exist in the setting of Poincaré duality pairs, and we com-
pare these three di�erent decompositions. The di�erences between them leads
to a detailed study of various small 2–dimensional orbifolds and �brations over
them by V PCn groups. We think that this clari�es how these various natu-
ral decomposition come about. We also discuss the special case of PD3 pairs
where the descriptions are somewhat simpler. This seems to make an analogue
of Johannson’s Deformation Theorem possible for PD3 pairs, and also seems
relevant to some questions raised by Wall in sections 6 and 10 of [23].

In section 3.2, we describe the notions of annuli, tori, and their associated
almost invariant sets as in [20]. Wewill also recall some constructions and results
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from [20] which we will use. In section 3.3, we describe examples generalizing
those given in [16]. We also completely characterize all such examples. In section
3.4, we prove our main result, Theorem 3.4.1. In section 3.5, we compare three
di�erent versions of JSJ decompositions of PD–pairs. In section 3.6, we discuss
how our results become substantially simpler when applied to the case of PD3
pairs, and we compare our results with those in [12]. In section 3.7, we discuss
some related questions.

We will also use earlier de�nitions and results from [1], [2], [3] and [10].
There are two survey articles from around 2000, [4] and [23], which contain a
number of problems related to PD groups and pairs.

3.2 Preliminaries
Wewill consider orientablePD(n+2) pairs (G, @G) and �rst describe, following
[20], annuli and tori in (G, @G) and their associated almost invariant sets.

Let H be a V PC(n + 1) subgroup of G. Note that as G is a PD group, it
is torsion free. Hence H is also torsion free, and so is a PD(n + 1) group. The
double DG of G is an orientable PD(n + 2) group, and so the pair (DG,H)
has two ends if H is orientable, and only one end otherwise. In the �rst case,
DG contains two complementary nontrivial H–almost invariant subsets X and
X

⇤, and any nontrivialH–almost invariant subset ofDG is equivalent to one of
these. Let Y denote the intersection X \ G. Thus Y and its complement Y ⇤ in
G are H–almost invariant subsets of G. Further they are nontrivial unless H is
peripheral in (G, @G), i.e. H is conjugate into a group in @G. We say that Y is
dual to H . IfH is an orientable V PC(n+ 1) subgroup of G, we call it a torus in
G. Note that the H–almost invariant set Y dual to H is automatically adapted
to @G. Conversely, suppose that H is a V PC(n + 1) subgroup of G, and Y is
a nontrivial H–almost invariant subset of G which is adapted to @G. Then Y

extends to a nontrivialH–almost invariant subset ofDG. It follows thatH must
be orientable and hence a torus in G.

The case of annuli requires more work. An annulus in a PD(n + 2) pair
is a certain type of orientable PD(n + 1) pair. We need to consider two types
of annulus. One type is ⇤H = (H, {H,H}), where H is an orientable PDn

group which is also V PCn. We call this an untwisted annulus. The other type is
⇤H = (H,H0), whereH is a non-orientablePDn groupwhich is V PCn, andH0

is the orientation subgroup ofH . We call this a twisted annulus. Corresponding
to these, we have K(⇡, 1) spaces which we denote by (A, @A). Similarly, we
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denote theK(⇡, 1) pair corresponding to (G, @G) by (M, @M). Note that when
n = 1, the only PD1 group is Z, and this is orientable. Thus twisted annuli do
not appear in the theory of 3–manifolds. For simplicity, we assume that G is
�nitely presented so that we can identify certain cohomology groups of G with
the cohomology groups with compact supports of various covers of M . In the
general case, whenG is almost �nitely presented, we have to take the appropriate
‘�nitely supported’ cohomology groups of covers ofM .

An annulus in (G, @G) is an injective homomorphism of group pairs ⇥ :
⇤H ! (G, @G). This means that ⇥ maps H to G and also maps each group in
@⇤H to a conjugate of some group in @G. Such ⇥ induces a continuous map
✓ : (A, @A) ! (M, @M). Note that in the untwisted case, such a map ✓ is
determined up to homotopy by choosing a copy ofH in two conjugates of groups
in @G, such that the two copies ofH are conjugate inG. And in the twisted case,
✓ is determined up to homotopy by choosing a copy ofH inG and a conjugate of
some group in @G such that the intersection of H with this conjugate contains
H0. Thus an annulus can be thought of purely algebraically. We call the annulus
‘essential’ if ✓ cannot be homotoped relative to @A into @M . It is clear that
the essentiality of an annulus is also a purely algebraic property. An untwisted
annulus is essential if and only if the images of the two boundary groups are not
conjugate in a group in @G. And a twisted annulus is essential if and only if H0

lies in a boundary group K in @G, and H \K = H0.
We next show how to associate an almost invariant set to an essential annu-

lus. Consider the lift ✓H : (A, @A) ! (MH , @MH) to the cover MH of M with
fundamental group H . Let S be the component of @MH containing ✓H(@0A),
where @0A is one speci�ed component of @A in the untwisted case and is @A in
the twisted case.

In the untwisted case, since ✓H(A) cannot be homotoped rel @A into @M ,
the other component @1A must be mapped by ✓H into some other component T
of @MH . Thus both S and T have fundamental groups isomorphic to H and the
images of the fundamental cycle of H generate Hn(S) and Hn(T ), both with Z
and Z2 coe�cients. Let [A] denote the fundamental cycle of A in Hn+1(A, @A).
Then in the boundary map

Hn+1(MH , @MH) ! Hn(@MH) ' Hn(S)�Hn(T )� · · ·

we see that the projection of the image of [A] to each of the �rst two direct
summands of Hn(@MH) is a generator.

In the twisted case, ⇡1(S) must be isomorphic to H0 since ✓ cannot be ho-
motoped into @M relative to @A. Thus the projection of the image of [A] to the
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summandHn(S) is a generator. So, withZ orZ2 coe�cients, we have (✓H)⇤([A])
is non-zero inHn+1(MH , @MH). Also the image with Z2–coe�cients is the spe-
cialisation of the image with Z–coe�cients. Denote these images by ↵ and ↵̄,
and denote the duals of these images in H

1
c
(MH ;Z) and H

1
c
(MH ;Z2) by � and

�̄. Again �̄ is the specialisation of �.
Next, we want to relate �̄ to the ends of the pair (G,H). We have that H is

of in�nite index in G, so that H0
f
(MH ;Z2) = 0 (�nite cohomology is used as in

section 7.4 of [3]). Thus H1
f
(MH ;Z2) �ts into the exact sequence:

0 ! Z2 ! H
0
e
(MH ;Z2) ! H

1
f
(MH ;Z2)

r! H
1(MH ;Z2).

Here H
0
e
is the 0–the cohomology of the space of ends and the last map is the

restriction map from �nite cohomology to ordinary cohomology. Group theoret-
ically, the above sequence identi�es with the following. Let P [H\G] denote the
power set of right cosetsHg ofH inG, and letE[H\G] denoteP [H\G]/Z2[H\G].
The above sequence can be identi�ed with

0 ! Z2 ! H
0(G;E[H\G])

�! H
1(G;Z2[H\G])

r! H
1(H;Z2).

Thus �̄ gives an element of H1(G;Z2[H\G]) which we continue to denote by
�̄. In order to show that this element gives a nontrivial almost invariant set, we
need to know that it is non-zero in H

1(G;Z2[H\G]), and is in the kernel of r̄.
We already know that �̄ is non-zero since we started with an essential annulus.
Thus it remains to show that r̄(�̄) = 0. Consider the following diagram:

H
1(G;Z[H\G])

r! H
1(H;Z)

# ⇢ # ⇢

H
1(G;Z2[H\G])

r! H
1(H;Z2)

In Theorem 2 of [21], Swarup showed that r is the zero map. Since �̄ = ⇢(�)
it follows that r̄(�̄) = 0, although in general r̄ is not the zero map. Thus we
see that �̄ = �(e) for some element e of H0(G;E[H\G]). Since the kernel of �
is just Z2, the element e de�nes a nontrivial H–almost invariant subset Y of G
up to equivalence and complementation. This completes our association of an
almost invariant set Y with an essential annulus ✓. We say that Y is dual to ✓.
It turns out that given a nontrivial almost invariant subsetX of G which is over
a V PCn group H , there is a subgroup H

0 of �nite index in H such that X is a
�nite sum of almost invariant sets over H 0 each dual to an annulus.
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For future reference, we give some more terminology. As usual (G, @G) is an
orientable PD(n+2) pair. If the almost invariant subset ofG dual to an essential
annulus or torus is associated to a splitting �, we will say that � is dual to the
same essential annulus or torus. If � is a graph of groups structure for G, nd v

is a vertex of �, then an essential annulus or torus in (G, @G) is enclosed by v

if the dual almost invariant subset of G is enclosed by v. Finally if ✓ and � are
each an essential annulus or torus in (G, @G), we will say that ✓ and � cross if
the dual almost invariant subsets of G cross.

In [17], the authors considered an almost �nitely presented group G and an
integer n such thatG has no nontrivial almost invariant subsets over V PCk sub-
groups for k < n. Then it was shown that the family Fn,n+1 of all equivalence
classes of almost invariant subsets of G over V PCn groups, and all n-canonical
almost invariant subsets over V PC(n+1) groups has an algebraic regular neigh-
bourhood, denoted �n,n+1(G). In this setting a H–almost invariant subset of G
is n–canonical if it does not cross any almost invariant subset over a V PCn sub-
group. If (G, @G) is a PD(n + 2) pair, it was shown by Kropholler and Roller
(Lemma 4.3 of [10]) thatG has no nontrivial almost invariant subsets over V PCk

subgroups for k < n, so that the decomposition �n,n+1(G) exists. In [20], the au-
thors showed that almost invariant subsets of G over V PC(n + 1) subgroups
which do not cross any almost invariant subset over a V PCn subgroup are au-
tomatically adapted to @G. Further, if we enlarge the family Fn,n+1 to include all
almost invariant sets over V PC(n+1) subgroups which are adapted to @G, the
new family Gn,n+1 has the same regular neighbourhood �n,n+1(G).

IfM is a compact orientable Haken 3–manifold with incompressible (i.e. ⇡1–
injective) boundary, the characteristic submanifold V (M) of M is a compact
submanifold whose frontier consists of incompressible annuli and tori inM . This
decomposition ofM into pieces is called the JSJ decomposition. The components
of V (M) are Seifert �bre spaces or I–bundles. Cutting M along the frontier
of V (M) yields a graph of groups structure �(M) for G = ⇡1(M) whose edge
groups are isomorphic toZ or toZ⇥Z. This graph is bipartite as each component
of the frontier of V (M) lies in the boundary of a component of V (M) and a
component of the complement. In [20], the authors showed that if (G, @G) is a
PD(n + 2) pair, then �n,n+1(G) has many properties in common with �(M),
with V0–vertices of �n,n+1(G) corresponding to the components of V (M). For
the complete details the reader is referred to [20], but we will need to recall some
of the de�nitions for use in this paper.

In [20], an important part is played by groupswhich areV PCn–by–Fuchsian.
Such a group has a V PCn normal subgroup whose quotient is the orbifold fun-
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damental group of a compact 2–orbifold. Further the quotient is assumed not
to be virtually cyclic. A V0–vertex v of �n,n+1 such that G(v) is V PCn–by–
Fuchsian corresponds to a componentW of V (M) which is a Seifert �bre space.
Topologically there are di�erent cases depending on howW meets @M , and ex-
tra conditions are imposed on the edges of �n,n+1(G) which are incident to v

to re�ect this. This is what is meant by saying that v is of Seifert type. If v is
a V0–vertex of �n,n+1 such that G(v) is V PCn–by–⇡orb

1 (X), where X is a 2–
orbifold with virtually cyclic fundamental group, we say that v is of solid torus
type if ⇡orb

1 (X) is �nite, and of torus type otherwise. The terminology re�ects the
type of the corresponding components of V (M). Again conditions need to be
imposed on the edges of �n,n+1(G) which are incident to v.

There are some other important special cases. In [20], the authors de�ned
a V1–vertex of �n,n+1(G) to be of special Seifert type if it has only one incident
edge e which is dual to an essential torus, and G(e) is of index 2 in G(v). Also
a V1–vertex of �n,n+1(G) is of special solid torus type, if v is of solid torus type
and does not enclose any crossing annuli. In Lemma 8.5 of [20], the authors
gave a complete list of possible such vertices. The authors also considered the
completion �c

n,n+1 of �n,n+1. This is obtained from �n,n+1 by re-labelling as V0–
vertices those V1–vertices of special Seifert type or of special solid torus type,
then adding isolated V1–vertices to keep the graph bipartite. If the result is not
reduced, we reduce it by collapsing edges.

Now the main theorem of [20] can be stated.

Theorem 3.2.1 (Theorem 3.14 of [20]). Let (G, @G) be an orientable PD(n+ 2)
pair such that G is not V PC . Let Fn,n+1 denote the family of equivalence classes
of all nontrivial almost invariant subsets of G which are over a V PCn subgroup,
together with the equivalence classes of all n–canonical almost invariant subsets of
G which are over a V PC(n + 1) subgroup. Finally let �n,n+1 denote the reduced
algebraic regular neighbourhood of Fn,n+1 in G, and let �c

n,n+1 denote the comple-
tion of �n,n+1. Thus �n,n+1 and �c

n,n+1 are bipartite graphs of groups structures for
G, with vertices of V0–type and of V1–type.

Then �n,n+1 and �c

n,n+1 have the following properties:

1. Each V0–vertex v of �n,n+1 satis�es one of the following conditions:

(a) v is isolated, and G(v) is V PC of length n or n + 1, and the edge
splittings associated to the two edges incident to v are dual to essential
annuli or tori in G.
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(b) v is of V PC(n� 1)–by–Fuchsian type, and is of I–bundle type.

(c) v is of V PCn–by–Fuchsian type, and is of interior Seifert type.

(d) v is of commensuriser type. Further v is of Seifert type, or of torus type,
or of solid torus type.

2. The V0–vertices of �c

n,n+1 obtained by the completion process are of special
Seifert type or of special solid torus type.

3. Each edge splitting of �n,n+1 and of �c

n,n+1 is dual to an essential annulus or
torus in G.

4. Any nontrivial almost invariant subset of G over a V PC(n + 1) group and
adapted to @G is enclosed by some V0–vertex of �n,n+1, and also by some
V0–vertex of �c

n,n+1.

5. If H is a V PC(n + 1) subgroup of G which is not conjugate into @G, then
H is conjugate into a V0–vertex group of �c

n,n+1.

Remark 3.2.2. Recall that a vertex w of a G–tree T is called isolated if it has
valence 2, and these two edges have the same stabilizer as w. The image of w in
G\T is also called isolated.

Notice that any vertex v of �n,n+1 or �c

n,n+1 has two types of "boundary"
subgroups. The �rst type comes from the edge groups of the decomposition and
the family of all these subgroups will be denoted by @1v. The second type comes
from the decomposition of @G by edges of the decompositions and this family
will be denoted by @0v. The�rst type gives usPD(n+1) pairs in (G, @G), namely
annuli or tori, and the second type gives us PD(n+1) pairs which are contained
in @G. In the three-dimensional topological case, @0v and @1v correspond to
surfaces which can be amalgamated to yield the boundary of the 3–manifold
M(v) which corresponds to v. But this boundary may be compressible, and so
need not yield a PD3–pair. In the general case we get a triple (G(v); @0v, @1v)
which corresponds to a Poincaré triad ([22]) but this theory in the case of groups
has not been worked out.

We should also discuss the reason for excluding V PC groups from consid-
eration in Theorem 3.2.1. For simplicity we will consider the case when @G is
empty, so that G is a PD(n+ 2) group. Thus Fn,n+1 consists of the equivalence
classes of all almost invariant subsets of G which are over a V PC(n + 1) sub-
group, so that �n,n+1(G) = �n+1(G). As G is V PC and PD(n + 2), it must be
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V PC(n + 2). As @G is empty, cases 1b) and 1d) of Theorem 3.2.1 cannot arise.
Also as G is V PC , the condition of being of V PCn–by–Fuchsian type in case
1c) can never occur. It should be replaced by the condition of being V PCn–by–
V PC2, to have a statement with some chance of holding. By the de�nition of
V PC , any V PC(n + 2) group G contains some V PC(n + 1) subgroup, and
hence must contain a torus T . If G admits a second torus T 0 which crosses T ,
then �n+1(G) consists of a single V0–vertex. But this vertex need not satisfy the
modi�ed condition 1c) in the statement of Theorem 3.2.1. For example, in sec-
tion 7 of [7], the author gives two examples of torsion free V PC4 groups which
are orientable PD4 groups, and do not contain any normal V PC2 subgroup.
As these examples are �nite extensions of Z4, they contain many subgroups iso-
morphic toZ3, and hence many tori, so that �3(G) consists of a single V0–vertex,
which cannot satisfy condition 1a) or the modi�ed condition 1c) in the statement
of Theorem 3.2.1. Note that torsion free V PC3 groups which are orientablePD3
groups, do satisfy the modi�ed version of Theorem 3.2.1. For any such group is
the fundamental group of a closed orientable 3–manifoldM which admits a geo-
metric structure modeled onE3,Nil or Solv. In the �rst two cases,M is a Seifert
�bre space, and �2(G) consists of a single V0–vertex of V PC1–by–V PC2 type.
In the third case, either �2(G) consists of a single isolated V0–vertex and a single
isolated V1–vertex joined by two edges, so that �2(G) is a loop, or �2(G) consists
of a single isolated V0–vertex, joined to two V1–vertices of special Seifert type.

We recall De�nition 5.1 and Proposition 5.3 from [20].

De�nition 3.2.3. An orientable PD(n + 2) pair (G, @G) is atoroidal if any ori-
entable V PC(n+ 1) subgroup of G is conjugate into one of the groups in @G.

Proposition 3.2.4. Let (G, @G) be an orientable atoroidal PD(n+2) pair, where
n � 1. Let A and B be V PC(n + 1) groups in @G, possibly A = B. Let S and
T be V PCn subgroups of A and B respectively, and let g be an element of G such
that gSg�1 = T . Then one of the following holds:

1. A and B are the same element of @G, and g 2 A.

2. A and B are distinct elements of @G, are the only groups in @G, and A =
G = B. Thus (G, @G) is the trivial pair (G, {G,G}).

3. A andB are the same element of @G. FurtherA is the only group in @G, and
has index 2 in G.
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In [20], the above proposition was applied to the V1–vertices of the torus
decomposition of a PD(n + 2) pair (G, @G). More precisely, let V be a V1–
vertex of the torus decomposition Tn+1(G, @G), and letK denote the associated
group G(V ). Let @1K denote the family of subgroups of K associated to the
edges of Tn+1(G, @G) incident to V , let @0K denote the family of subgroups of
K which lie in @G, and let @K denote the union @1K[@0K of these two families.
Then (K, @K) is an orientable atoroidal PD(n + 2) pair. Each group in @1K is
V PC(n+1), so the above proposition can be applied to any annulus in (K, @K)
with ends in @1K .

We now generalize this idea to apply to V1–vertices of �c

n,n+1(G).

Proposition 3.2.5. Let (G, @G) be an orientable PD(n + 2) pair, where n � 1.
Let K be the group associated to a V1–vertex V of �c

n,n+1(G), and let @1K denote
the family of subgroups of K associated to the edges of �n,n+1(G) incident to V .
Let A and B be groups in @1K , possibly A = B. Let S and T be V PCn subgroups
of A and B respectively, and let g be an element of K such that gSg�1 = T . Then
one of the following holds:

1. A and B are the same element of @1K , and g 2 A.

2. A and B are distinct elements of @1K , are the only groups in @1K , and A =
K = B. Thus V is an isolated V1–vertex V of �c

n,n+1(G).

Remark 3.2.6. This result fails if we consider the uncompleted decomposition�n,n+1(G).
For example, if V is a V1–vertex of �n,n+1(G) of special Seifert type, or of solid torus
type such that V has valence 1, and the edge group has index 2 or 3 in G(V ), then
V does not satisfy either of the conclusions 1)-2).

Proof. Let @0K denote the family of subgroups ofK coming from the decompo-
sition of @G induced by the edge splittings of �c

n,n+1(G). For later use, we note
that any essential annulus in (G, @G) is enclosed by a V0–vertex of �c

n,n+1(G).
Thus if an essential annulus ⇤ in (G, @G) is enclosed by the V1–vertex V with
associated groupK , it cannot be essential inK . This is because there is an edge
e of �c

n,n+1(G) incident to V such that the associated edge splitting is dual to an
annulus ⇤0 covered by ⇤. Note that the group associated to e lies in @1K .

Now let @K denote the union of the two families @0K and @1K . (Recall that
groups in @1K are PD(n+1) pairs in (G, @G), and groups in @0K are PD(n+1)
pairs which are contained in @G.) The pair (K, @K) is again atoroidal, in the
sense that any orientable V PC(n + 1) subgroup of K is conjugate into one of
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the groups in @K , but (K, @K) need not be a PD–pair. This is because the
groups in @0K and @1K need not be PD–groups. Now we let DK denote the
double of K along the family ⌃ of groups in @0K which are not tori, and let
@DK denote the family consisting of the induced double of @1K together with
the double of the family of torus groups in @0K . Note that as @1K consists of
essential annuli and tori in (G, @G), each group in the induced double of @1K is
V PC(n + 1). For the double of an essential annulus, this is proved in section
2 of [20]. Lemma 8.7 of [20] tells us that (DK, @DK) is an orientable atoroidal
PD(n+ 2) pair.

Nowwe proceed as follows. The groupA in @1K yields the groupA0 in @DK ,
where A

0 equals A if A is a torus, and equals the double DA of A if A is an
annulus. Similarly the groupB in @1K yields the groupB0 in @DK . The V PCn

subgroups S and T of A and B are subgroups of A0 and B0 respectively, and the
element g ofK such that gSg�1 = T lies inDK . Nowwe apply Proposition 3.2.4,
to obtain one of the three cases listed there. Case 1) of Proposition 3.2.4 implies
that case 1) of Proposition 3.2.5 holds, and case 2) of Proposition 3.2.4 implies
that case 2) of Proposition 3.2.5 holds. Finally case 3) of Proposition 3.2.4 implies
that either V is of special Seifert type or of special solid torus type. Neither case
can occur as such vertices cannot be V1–vertices of �c

n,n+1(G). This completes
the proof of Proposition 3.2.5.

3.3 Examples of almost invariant sets
The discussion in [20] was mostly about almost invariant sets which are adapted
to the boundary. However, in [16], Scott gave examples of almost invariant sets
over orientable V PC2 subgroups of a PD3 pair which are not adapted to the
boundary. This gave rise to the concept of special canonical torus which was
used to show that the JSJ-decomposition of orientable 3–manifolds is algebraic,
meaning that it depends only on the fundamental group of the manifold, not the
boundary. As discussed earlier, wewill say that an embedded essential annulus or
torus in a 3–manifoldM with incompressible boundary is topologically canonical
if it has intersection number zero with any (possibly singular) essential annulus
or torus in (M, @M). We will say that a splitting of ⇡1(M) given by an essential
annulus or torus is algebraically canonical if it has intersection number zero with
any almost invariant subset of ⇡1(M) which is over Z or Z ⇥ Z. See [15] for a
discussion of the idea of intersection numbers. Now we recall Scott’s example.
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Example 3.3.1 (Scott’s example). This is Example 2.13 of [16]. Let F be an ori-
entable surface with at least two boundary components and let C denote one of the
boundary components. Thus ⇡1(F ) is free, and ⇡1(C) is a free factor of ⇡1(F ). If
the rank of ⇡1(F ) is at least 3, then it is easy to see that there is a nontrivial splitting
of ⇡1(F ) as an amalgamated free product over ⇡1(C). Similar considerations apply
to express ⇡1(F ) as an HNN extension if it has rank 2.

We now take two copies F1, F2 of F and consider the two 3–manifolds Mi =
Fi ⇥ S

1, each with a boundary component Ti corresponding to Ci ⇥ S
1. Form a

3–manifoldM by gluing theMi’s along Ti so that the �brations do not match. The
resulting torus T is a topologically canonical torus in the JSJ splitting ofM . If each
⇡1(Fi) has rank at least 3, we have ⇡1(Mi) = Ai ⇤

Hi

Bi, i = 1, 2, whereHi = ⇡1(Ti).

If G denotes ⇡1(M), and H denotes the subgroup H1 = H2, and A = A1 ⇤
H

A2,
B = B1 ⇤

H

B2, we have a splitting G = A ⇤
H

B of G that crosses the splitting
associated to T . Thus although T is topologically canonical, it is not algebraically
canonical. Notice that embedded essential annuli in M1 and M2, disjoint from T ,
yield splittings ofG over the �bres ofM1 andM2, so thatG also has splittings over
incommensurable cyclic subgroups of H .

We construct some more examples. ConsiderMi = Ti ⇥ I [Ni, where Ni is
an orientable 3–manifold attached to Ti ⇥ {1} along at least two disjoint annuli
in @Ni. Now form M by identifying the Mi’s along Ti ⇥ {0}, and let T denote
the torus T1⇥ {0} = T2⇥ {0}. Assume that the annuli in T1⇥ {1} and T2⇥ {1}
used to constructM1 andM2 carry incommensurable subgroups of ⇡1(T ) = H .
Thus G = ⇡1(M) splits over incommensurable cyclic subgroups of H . Again, T
is a topologically canonical torus in the JSJ decomposition of M . Now we form
H–almost invariant subsets of G = ⇡1(M) as follows. Consider the cover MH

of M with ⇡1(MH) = H , so that each Ti ⇥ I lifts to MH , and the pre-image fNi

of each Ni is disconnected. Let Ci, i = 1, 2, be one of the annuli in this lift of
Ti⇥{1} used to constructMi, and letN 0

i
be the component offNi attached to Ci.

For i = 1, 2, let Xi be the set of vertices of MH in Ti ⇥ [0, 1] together with the
vertices in N

0
i
. This gives us two sets X1, X2 on di�erent sides of T . To X1 we

add the vertices in fN2 �N
0
2 and to X2 we add the vertices in fN1 �N

0
1 to obtain

two H–almost invariant sets Y1, Y2. Clearly Y2 = Y
⇤
1 and crosses the almost

invariant set X determined by T , namely X consists of all vertices of MH on
one side of T .

We can mix the above two examples to get one manifold of each type on each
side of T . These types fall under the heading of V0–vertices of commensuriser
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type of Theorem 3.2.1. The �rst examples are special cases of the so called periph-
eral Seifert type in [20], that is, those Seifert type pieces in the decompositions
�n,n+1 and �c

n,n+1 of a PD(n+ 2) pair (G, @G) which "intersect the boundary".
The second are called toral type 2), in which one component of @(T ⇥ I) is an
edge of the decomposition and the other boundary component intersects @G in
a number of parallel annuli. Note that in [20], the de�nition of Seifert type re-
quires the base orbifold to have fundamental group which is not virtually cyclic.
The terminology torus type is used if this base group is virtually cyclic. These
examples suggest the following de�nition.

De�nition 3.3.2. Let (G, @G) be an orientable PD(n + 2) pair, such that G is
not V PC . A splitting of G over a V PC(n + 1) subgroup H is called a special
canonical torus if it has intersection number zero with any essential annulus in
(G, @G), and G splits over incommensurable V PCn subgroups of H .

Remark 3.3.3. In Proposition 3.3.5, we will prove that a special canonical torus in
G is an edge splitting of �n,n+1(G) or �c

n,n+1(G), so that this concept depends only
on G, and not on @G. Recall that the edge splittings of �n,n+1(G) are the same as
those of �c

n,n+1(G). As these edge splittings are each dual to an essential annulus or
torus in (G, @G), it follows that a special canonical torus inG is dual to an essential
torus in (G, @G), which partly justi�es the terminology. Note that if @G is empty,
so thatG is a PD(n+2) group, thenG cannot split over a V PCn subgroup. Thus
special canonical tori do not exist in this case.

Essentially the same de�nition was used in [16]. However, the above exam-
ples are not the only possibilities. Again letM1 denote the 3–manifold F1 ⇥ S

1,
where F1 is an orientable surface with at least two boundary components. Also
let M2 denote the orientable 3–manifold which is a twisted I–bundle over the
Klein bottle. Form a 3–manifoldM by gluing the boundary torus T ofM2 to one
of the boundary tori of M1. In this case there are two distinct Seifert �brations
onM2, re�ecting the fact that the Klein bottle itself has two distinct Seifert �bra-
tions. But so long as the gluing is chosen not to match the �bration of M1 with
either �bration of M2, the torus T will again be a topologically canonical torus
in the JSJ splitting of M . It will also not be algebraically canonical but will be a
special canonical torus. The easiest way to see these facts is to note that M is
double covered by the union of two copies of M1, glued along a boundary torus
so that their �brations do not match. ThusM is double covered by one of Scott’s
examples.

Next we need the following technical result.
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Lemma 3.3.4. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , let J and J 0 be V PC(n+1) subgroups ofG, and let f and f 0 be edges of the
universal coveringG–tree T of �c

n,n+1(G), with stabilizers J and J 0 respectively. If
J and J 0 are commensurable, then J = J

0 and one of the following cases holds:

1. f = f
0.

2. f \ f
0 is an isolated vertex.

3. f \ f
0 is a V0–vertex w of valence 2 whose stabiliser contains an element

interchanging f and f 0, and so contains J with index 2.

4. There are consecutive adjacent edges f, b, b0, f 0 of T such that b \ f and b0 \
f
0 are isolated V1–vertices, and b \ b

0 is a V0–vertex w of valence 2 whose
stabiliser contains an element interchanging b and b0, and so contains J with
index 2.

Proof. As above, we will start with aK(⇡, 1) pair (M, @M) and a decomposition
of (M, @M) mimicking the decomposition �c

n,n+1. If f = f
0, we have case 1) of

the lemma, so for the rest of the proof we will assume that f 6= f
0.

The edges f and f 0 determine splittings of G over J and J 0, so that these are
tori in (G, @G). LetL denote the intersection J\J 0, so thatL is also V PC(n+1),
and let ⌃ denote a torus with fundamental group L. Consider the PD(n + 2)
pair (K, @K) obtained by cutting (G, @G) along these two splittings, and let
(N, @N) be obtained from M in the corresponding way. (It is possible that f
and f

0 yield a single splitting.) The path in T between f and f
0 determines (up

to homotopy) a map F : (⌃ ⇥ I,⌃ ⇥ @I) ! (N, @N). We let N0 denote the
component of N which contains the image of F , and consider the induced map
(⌃⇥ I,⌃⇥ @I) ! (N0, @N0) which we continue to denote by F . The degree of
F on each component of ⌃⇥ @I is non-zero, and if F (⌃⇥ @I) is contained in a
single component of @N0, these degrees add. Thus the degree of F is non-zero.
It follows that (N0, @N0) has a �nite cover to which F lifts by a map which is an
isomorphism of fundamental groups. In particular, it follows that the boundary
of this cover consists of two tori with fundamental groups equal to L. Hence
either @N0 consists of two tori with the same fundamental group as N0, or @N0

consists of a single torus with fundamental group J , and J has index 2 in K =
⇡1(N0). In either case, it follows that J = J

0. In the �rst case, the path � joining
f and f

0 in T has stabilizer J , and each vertex on that path must be isolated. As
�c

n,n+1(G) is reduced, we must have case 2) of the lemma. In the second case, the
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stabilizer of � contains J with index 2, and contains a re�ection. Thus there is
a vertex w of � of valence 2 whose stabiliser contains an element interchanging
the two incident edges, and so contains J with index 2. Further, as �c

n,n+1(G) is
reduced, either w equals f \ f

0 or there are consecutive adjacent edges f, b, b0, f 0

of T such that b\ f and b0\ f
0 are isolated vertices, and w equals b\ b

0. In either
case, this implies that the image of w in �c

n,n+1(G) is of special Seifert type, and
so is a V0–vertex. Thus we must have cases 3) or 4) of the lemma.

Now we can give an alternative description of special canonical tori in terms
of �c

n,n+1(G).

Proposition 3.3.5. For an orientable PD(n+ 2) pair (G, @G) such that G is not
V PC , a splitting ↵ of G over a V PC(n + 1) subgroup H is a special canonical
torus if and only if the following conditions hold:

1. ↵ is an edge splitting of �c

n,n+1(G).

2. The V1–vertex w of ↵ is isolated.

3. Each of the V0–vertices adjacent to w is of peripheral Seifert type, of toral
type 2), or of special Seifert type.

4. At most one V0–vertex can be of special Seifert type.

5. If the two edges incident tow form a loop, there is only one adjacent V0–vertex.
In this case, that vertex must be of peripheral Seifert type.

(The concepts of peripheral Seifert type, and toral type 2) are discussed immedi-
ately preceding De�nition 3.3.2, and“special Seifert type" was de�ned before Theo-
rem 3.2.1. The reader is referred to [20] for full details.)

Proof. First suppose that ↵ is a splitting of G over a V PC(n + 1) subgroup H

which satis�es conditions 1)-5) of the Proposition. As ↵ is an edge splitting of
�c

n,n+1(G), it has intersection number zerowith any essential annulus in (G, @G).
It remains to show that G splits over incommensurable V PCn subgroups of H .
By condition 2), the V1–vertex w of ↵ is isolated. Suppose there is no V0–vertex
adjacent tow of special Seifert type. Then each of the adjacent V0–vertices meets
@G in annuli (and/or tori in the case of peripheral Seifert type) and choosing an
essential embedded annulus in the V0–vertex and with boundary in @G deter-
mines a splitting ofG over the V PCn subgroup ofH carried by the �bres. These
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subgroups of H must be incommensurable, as otherwise there would be an an-
nulus in (G, @G) which crosses ↵, contradicting the fact that any edge splitting
of �c

n,n+1 crosses no annulus in (G, @G). Thus ↵ is a special canonical torus in
this case. Next suppose there is a V0–vertex adjacent to w of special Seifert type.
Denote its associated group by H , and recall that H is a subgroup of index 2 in
H . As before, choosing an essential embedded annulus in the other V0–vertex
with boundary in @G determines a splitting ofG over the V PCn subgroup L of
H carried by the �bres. Now let g denote an element of H �H . We also have a
splitting of G over Lg . As g normalises H , this is also a subgroup of H . Finally
L and L

g must be incommensurable subgroups of H , for otherwise there would
be an annulus in (G, @G) which crosses ↵, contradicting the fact that ↵ is an
edge splitting of �c

n,n+1. Thus again ↵ is a special canonical torus.
Now suppose that ↵ is a special canonical torus. By Lemma 6.2 of [20], the

fact that ↵ has intersection number zero with any essential annulus in (G, @G)
implies that ↵ is adapted to @G. Thus the splitting ↵ is dual to a torus in (G, @G),
and so must be enclosed by some V0–vertex of �c

n,n+1(G). As G splits over a
V PCn subgroup L ⇢ H , the pair (G, @G) admits an essential annulus with
group L, and any such annulus must be enclosed by a V0–vertex v of �c

n,n+1(G),
of commensuriser type, so that G(v) contains H . Thus ↵ is enclosed by v. As ↵
has intersection number zero with any essential annulus in (G, @G), it follows
that ↵ must be the splitting of G associated to an edge of �c

n,n+1(G) incident to
v. This proves that ↵ satis�es condition 1) of the proposition. Further v must be
of peripheral Seifert type or of toral type 2). Now we use the hypothesis that G
splits over two incommensurable V PCn subgroups L and L

0 of H . So the pair
(G, @G) admits an essential annulus with group L

0, which is enclosed by a V0–
vertex v0 of �n,n+1(G) which also has an incident edge with splitting ↵. Further
v
0 must be of peripheral Seifert type or of toral type 2).
If v and v

0 are distinct, the incident edges with splitting ↵ must also be dis-
tinct. As neither of v and v

0 is isolated or of special Seifert type, Lemma 3.3.4
implies that v and v0 must be separated by an isolated V1–vertex, so that ↵ satis-
�es conditions 2)-5) of the Proposition, as required.

If v and v
0 coincide, there must be g 2 G such that L0 = L

g . There are now
two cases, depending on whether or not there are two distinct edges incident to
v with associated splitting ↵. Again we will apply Lemma 3.3.4 and use the fact
that v is not isolated nor of special Seifert type. If there are two distinct such
edges, Lemma 3.3.4 implies that they meet in an isolated V1–vertex. In addition,
v cannot be of torus type 2), as such a V0–vertex can have at most one incident
edge dual to a torus. It follows that ↵ satis�es conditions 2)-5) of the Proposition.
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If there is only one such edge, Lemma 3.3.4 implies that there is a V0–vertex v00 of
special Seifert type which is adjacent to v and separated from v by an isolated V1–
vertex w. Again this implies that ↵ satis�es conditions 2)-5) of the Proposition,
as required.

We can now apply Proposition 3.3.5 to obtain the following result.

Proposition 3.3.6. Let (G, @G) be an orientable PD(n + 2) pair such that G is
not V PC . Let ↵ be a special canonical torus in (G, @G) with group H . Then ↵

crosses some almost invariant subset of G over a subgroup of �nite index in H .

Proof. From the de�nition of a special canonical torus, G splits over incommen-
surable subgroups L and L

0 of H . Let X be the H–almost invariant subset of G
determined (up to equivalence and complementation) by ↵. We will apply Con-
ditions 1)-5) of Proposition 3.3.5. Thus ↵ is an edge splitting of �c

n,n+1(G), and
the V1–vertex w of ↵ is isolated.

If there are two distinct V0–vertices v and v0 adjacent to w, neither of special
Seifert type, we can assume that the splitting of G over L is enclosed by v, and
that the splitting ofG overL0 is enclosed by v0. Thus there is an edge of�c

n,n+1(G)
incident to v with associated splitting dual to an annulus with groupL, and there
is an edge of �c

n,n+1(G) incident to v0 with associated splitting dual to an annulus
with group L

0. Let Y denote the L–almost invariant subset of G determined by
the edge splitting of G over L, and let Y 0 denote the L0–almost invariant subset
of G determined by the edge splitting of G over L0. By replacing each of X , Y
and Y

0 by its complement if needed, we can arrange that Y ⇢ X and Y
0 ⇢ X

⇤.
ThenH(Y [Y

0) is aH–almost invariant subset ofG. This subset crossesX , and
hence crosses↵, unless we are in one of the exceptional cases whereHY = X , or
HY

0 = X
⇤. Now for any h 2 H , the set hY is equal to or disjoint from Y . Thus

if P is a proper subgroup of �nite index in H which contains L, then PY and
X �PY are bothH–in�nite. Similarly if P 0 is a proper subgroup of �nite index
in H which contains L0, then P

0
Y

0 and X
⇤ � P

0
Y

0 are both H–in�nite. Thus, if
Q denotes P \ P

0, then Q has �nite index in H , and Q(Y [ Y
0) is a Q–almost

invariant subset of G, which crosses X , and hence crosses ↵, as required.
If there are two distinct V0–vertices z and z

0 adjacent to w, and if z0 is of
special Seifert type, there is a homomorphism G(z0) ! Z2, with kernel H . This
extends to a homomorphismG ! Z2, which is trivial on all vertex groups other
than G(z0). Let K denote the kernel of this homomorphism, so that K is of
index 2 in G. This naturally has the structure of a PD(n + 2) pair, and there
is a natural map �c

n,n+1(K) ! �c

n,n+1(G). The pre-image of z0 is an isolated
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V1–vertex of �c

n,n+1(K). The adjacent V0–vertices consist of two copies of z.
Hence the preceding paragraph yields a subgroup Q of �nite index in H , and a
Q–almost invariant subset of K which crosses ↵. It follows that there is also a
Q–almost invariant subset of G which crosses ↵, as required.

If the two edges incident to w form a loop, so there is only one adjacent V0–
vertex z, Condition 5) tells us that z must be of peripheral Seifert type. This
loop determines a natural map fromG to Z, which is trivial on all vertex groups,
and hence determines a natural map from G to Z2, which is trivial on all vertex
groups. The kernel is a subgroup K of G of index 2 which is still naturally a
PD(n+2) pair, and again there is an edge splitting overH of �c

n,n+1(K) whose
V1–vertex is isolated. The adjacent V0–vertices now consist of two copies of z.
As before, this yields a subgroupQ of �nite index inH , and aQ–almost invariant
subset of G which crosses ↵, as required.

We note that in Example 3.3.1, the special canonical torus with group H

crosses a splitting over the same group H . Thus it seems reasonable to ask the
following.

Problem 3.3.7. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC . Let ↵ be a special canonical torus in (G, @G) with groupH . When is it true
that ↵ crosses a splitting of G over H?

Proposition 3.3.6 does nothing to answer this question. But the argument
does show that in most cases, a special canonical torus with groupH crosses an
almost invariant set over the same groupH . For the special case in the argument
when HY = X can only occur if v is of torus type 2) and also has only one
incident edge with associated splitting dual to an annulus. A similar statement
for v0 holds if HY

0 = X
⇤. We believe that the above problem has a positive

answer except possibly in these exceptional cases. In the exceptional cases, it
seems possible that a special canonical torus with group H may not cross any
H–almost invariant subset of G.

Here is a construction which shows that in many cases, a special canonical
torus ↵ in (G, @G) with group H crosses a splitting of G over H . Suppose that
there are two distinct V0–vertices v and v

0 adjacent to w, and that each of v and
v
0 has at least two incident edges in addition to the edge joining it to w. Let e be

an edge of �c

n,n+1(G) incident to v with associated splitting dual to an annulus
with group L, and let e0 be an edge of �c

n,n+1(G) incident to v
0 with associated

splitting dual to an annulus with group L0. Now construct a new graph of groups
structure forG by sliding the end of e at v along the two edges joining v to v0, and
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also sliding the end of e0 at v0 along the two edges joining v0 to v. Let � denote the
splitting ofG determined by each of the two edges joining v and v0 to w. Clearly
� is a splitting of G over H , and by considering the universal covering G–trees
of �c

n,n+1(G) and of the new graph of groups, it is easy to see that it must cross
↵.

3.4 Proof of the main result
In this section, we prove the main theorem below and then a result about en-
closings of all almost invariant sets over V PC(n + 1) groups. First we need to
introduce yet another version of the term "canonical", which generalizes the term
"algebraically canonical" discussed in the introduction. Let En,n+1(G) denote the
collection of all a.i. subsets of G which are over a V PCn or V PC(n + 1) sub-
group. We will say that an element of En,n+1 is canonical if it has intersection
number zero with every element of En,n+1.

Theorem 3.4.1 (Main result). Let (G, @G) be an orientable PD(n+2) pair such
that G is not V PC . The edge splittings of �n,n+1(G) and of �c

n,n+1(G) are either
canonical or are special canonical tori.

Remark 3.4.2. Proposition 3.3.6 shows that these two conditions are mutually ex-
clusive. Note that if @G is empty, the decomposition�n+1(G) is an algebraic regular
neighbourhood of all almost invariant subsets ofG over a V PC(n+1) subgroup, so
that all the edge splittings of �n+1(G) and of �c

n+1(G) are canonical, by de�nition.

We start by setting up some notation. The main step of the start of the argu-
ment is discussed in Section 6 of [20] in a di�erent context. There the authors
used it to show that n–canonical almost invariant sets over V PC(n+1) groups
are automatically adapted to the boundary. Here we use it di�erently.

Let (G, @G) be an orientable PD(n+ 2) pair, and let T denote the universal
covering G–tree of the graph of groups �c

n,n+1(G). Let (M, @M) be a K(⇡, 1)
pair with a decomposition mimicking the decomposition �c

n,n+1. This induces
a decomposition of the universal cover (fM, @fM) of (M, @M), and we have an
equivariant map fM ! T preserving the decompositions. If v is a vertex of�c

n,n+1

or of T , the corresponding subspaces ofM or of fM will be denoted byMv or fMv

respectively, and similarly for edges.
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Lemma 3.4.3. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let e be an edge of T such that the associated splitting ofG is not canon-
ical. Then there is an almost invariant setX over a V PC(n+1) subgroupH ofG
which is not adapted to @G and crosses e.

Proof. Recall that �c

n,n+1(G) is the completion of the reduced algebraic regular
neighbourhood �n,n+1(G) of Fn,n+1 in G, where Fn,n+1 denotes the family of
equivalence classes of all nontrivial almost invariant subsets ofGwhich are over
a V PCn subgroup, together with the equivalence classes of all n–canonical al-
most invariant subsets ofGwhich are over a V PC(n+1) subgroup. In [20], the
authors showed that n–canonical almost invariant subsets ofG over V PC(n+1)
subgroups are automatically adapted to @G. Further, if we enlarge the family
Fn,n+1 to include all almost invariant sets over V PC(n + 1) subgroups which
are adapted to @G, the new family Gn,n+1 has the same regular neighbourhood
�n,n+1(G). In particular, no set in Gn,n+1 can cross any edge of �c

n,n+1(G). Thus
our assumption on e implies that there must be an almost invariant set X over
a V PC(n + 1) subgroup H of G which is not adapted to @G and crosses e, as
required.

Lemma 3.4.4. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let X be an almost invariant set over a V PC(n+ 1) subgroup H of G
which is not adapted to @G. Then the following statements hold:

1. There is a group S with a conjugate in @G such that L = H \ S is V PCn,
and X \ S and X⇤ \ S are both H–in�nite.

2. There is a V0–vertex v of T of commensuriser type which encloses all L–
almost invariant subsets ofG. Further, fMv \@fM is non-empty, v is of Seifert
type or of torus type, and G(v) = CommG(L) = NG(L) contains H .

Proof. 1) SinceX is not adapted to @G, there is a group S in @G, and g 2 G such
that X \ gS and X

⇤ \ gS are both H–in�nite. By replacing S by a conjugate if
needed, we can arrange that X \ S and X

⇤ \ S are both H–in�nite. Consider
the component ⌃ of @fM with stabilizer S, and identify X and X

⇤ with subsets
of the 0–skeleton fM0 of fM . We have that the intersections ofX andX⇤ with the
0–skeleton⌃0 of⌃ areH–in�nite. Hence they are L–in�nite, where L = H\S.
Thus e(S, L) � 2. As S is PD(n+1) andH is V PC , it follows that L is V PCn.

2) By replacing H by a subgroup of �nite index if necessary, we can assume
that L is normal in H with L\H in�nite cyclic. Let PL : fM ! ML, and PH :
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fM ! MH denote the covering projections, and let⌃L and⌃H denote the images
of ⌃ in @ML and @MH respectively. As L\H acts on ML, there are in�nitely
many translates of ⌃L each with fundamental group L, and thus in�nitely many
essential annuli in ML. In [20], it was shown that, if the number of essential
annuli in ML is at least 4, there is a V0–vertex v of T of commensuriser type
which encloses all L–almost invariant subsets of G. Hence the stabilizer, G(v),
of v containsH , and fMv intersects @fM . It is possible that fMv \ @fM contains ⌃.
This happens if S is V PC(n+ 1). In any case, v is a V0–vertex with H ⇢ G(v),
and fMv\@fM is non-empty, and L stabilizes fMv\@fM . Thus v is either of Seifert
type or of toral type (see De�nition 3.12 of [20]). If v is of Seifert type, Lemma
5.10 of [20] tells us that G(v) = CommG(L) = NG(L). If v is of toral type, we
use the fact thatG(v) is V PC(n+1) and splits over L. Now Lemma 1.10 of [20]
implies that L is normal in G(v) with quotient Z or Z2 ⇤ Z2. It follows that in
this case also G(v) = CommG(L) = NG(L).

Note that if X crosses an edge e of T , Lemma 3.4.4 does not tell us that e is
incident to the vertex v of T obtained in part 2) of the above lemma. However
the next lemma assures us that X must cross some edge incident to v.

Lemma 3.4.5. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , let T denote the universal coveringG–tree of the graph of groups �c

n,n+1(G),
and let e be an edge of T . Let X be an almost invariant set over a V PC(n + 1)
subgroup H of G which is not adapted to @G and crosses e.

Using the notation of Lemma 3.4.4, if f is the �rst edge on the path in T from v

to e, then G(f) is V PC(n + 1), so the associated splitting of G is dual to a torus,
and X crosses this torus.

Remark 3.4.6. If v is of torus type, the fact that an edge incident to v determines
a splitting of G dual to a torus means that v is of torus type 2).

Proof. Let Z and Z
⇤ denote the almost invariant sets associated to e chosen so

that Z contains G(v), and let Y and Y
⇤ denote the almost invariant sets associ-

ated to f chosen so that Y ⇢ Z and Y
⇤ � Z

⇤. As X crosses Z , we know that
X \ Z

⇤ and X
⇤ \ Z

⇤ are both H-in�nite. As Y ⇤ � Z
⇤, it follows that X \ Y

⇤

and X
⇤ \ Y

⇤ are also both H-in�nite.
Now suppose that G(f) is V PCn. As v is of Seifert type or of toral type, the

edge group G(f) must be commensurable with L. Thus �Y is L–�nite. As H ⇢
G(v), and �X is H–�nite, it follows that �X lies in a bounded neighbourhood
of fMv. As G(f) is commensurable with L, this implies that �X \ Y

⇤ is L–�nite.
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As �Y is also L–�nite, it follows that X \ Y
⇤ and X

⇤ \ Y
⇤ each have L–�nite

coboundary. For �(X \ Y
⇤) = (X \ �Y

⇤) [ (�X \ Y
⇤). We conclude that each

ofX \Y
⇤ andX⇤\Y

⇤ is a nontrivial L–almost invariant subset ofG contained
in Y

⇤. In particular, they cannot be enclosed by v, which is a contradiction.
This contradiction shows thatG(f)must be V PC(n+1), so that the associated
splitting of G is dual to a torus, as required. It remains to show that X crosses
this torus.

As G(f) determines a torus, it follows that the component ⌃ of @fM with
stabilizer S cannot meet this torus, and so must lie on the same side of fMf as
does fMv. In particular, S ⇢ Y . As X \ S and X

⇤ \ S are both H–in�nite, it
follows that X \ Y and X

⇤ \ Y are both H–in�nite. Hence all four corners of
the pair (X, Y ) are H–in�nite, so that X crosses Y , as required.

Next we will show that H and G(f) must be commensurable subgroups of
G.

We split G along the torus G(f) to obtain a new PD(n + 2) pair (G0
, @G

0)
(by Theorem 8.1 of [1]) with (G0

, @G
0) containing G(w), where v and w are the

vertices of f . Correspondingly, M is split along Mf to obtain a new space N

containing Mw. Thus, fM is split along fMf and its translates to obtain a new
space eN containing fMw. In particular, the boundary of eN consists of boundary
components of fM together with translates of fMf .

Lemma 3.4.7. Using the notation of Lemma 3.4.5, suppose that H and G(f) are
not commensurable, and let L0 denote H \ G(f). Then L

0 is V PCn and contains
L with �nite index, and there is an essential annulus in N , carrying L0, which lifts
to an annulus A in PL0(Ñ) from PL0(fMf ) to a component of PL0(@Ñ).

Proof. Note that part 2) of Lemma 3.4.4 tells us that G(v) = CommG(L) =
NG(L) containsH . As v is of Seifert type or of torus type, andG(f) is a boundary
torus ofG(v), it follows thatG(f) also contains L. In particular, the intersection
H \ G(f) contains L. As H and G(f) are not commensurable, it follows that
H \G(f) = L

0 is V PCn and contains L with �nite index.
As in the proof of Lemma 3.4.5, we consider the intersections X \ Y

⇤ and
X

⇤ \ Y
⇤. Both sets are invariant under H \ G(f) = L

0. Again we know that
�X \ Y

⇤ must be L–�nite. Suppose that X \ �Y is L–�nite. Then X \ Y
⇤ has

L–�nite coboundary and soX \Y
⇤ is a nontrivial L–almost invariant set which

is not enclosed by v, which is again a contradiction. Thus X \ �Y must be L–
in�nite, and similarlyX⇤\ �Y must be L–in�nite. Note that the intersections of
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X \ Y
⇤ and X

⇤ \ Y
⇤ with the 0–skeleton of eN have coboundaries (in eN ) equal

to �X \ Y
⇤ and �X

⇤ \ Y
⇤ respectively, each of which is L–�nite. As X \ Y

⇤

and X
⇤ \ Y

⇤ contain X \ �Y
⇤ and X

⇤ \ �Y
⇤ respectively which are both L

0–
in�nite, it follows that each determines a nontrivial L0–almost invariant subset
ofG0. Hence there are essential annuli inN , carrying L0, one of which lifts to an
annulusA in PL0(Ñ) from PL0(fMf ) to a component of PL0(@Ñ), as required.

Lemma 3.4.8. Using the notation of Lemma 3.4.5, the subgroups H and G(f) of
G are commensurable.

Proof. Suppose thatH andG(f) are not commensurable, and let L0 = H\G(f).
By Lemma 3.4.7, there is an essential annulus A in PL0(Ñ) from PL0(fMf ) to a
component ⌃L0 of PL0(@Ñ).

As A is essential, PL0(fMf ) and ⌃L0 must be distinct components of PL0(@ eN).
Recall that eN contains fMw, where w is the V1-vertex of the edge f . It follows
that A has a sub-annulus A0 which lies in PL0(fMw), and joins distinct boundary
components. Thus the vertex w has an incident edge g, distinct from f , such
thatG(g) contains L0. AsG(g) is an edge group of �c

n,n+1(G), it must be V PCn

or V PC(n + 1). In either case, we apply Proposition 3.2.5. Note that T is the
universal covering G–tree of the graph of groups �c

n,n+1(G), not of �n,n+1(G),
so this proposition is applicable. As f and g are distinct, case 1) of the conclusion
is not possible. It follows that w is an isolated vertex of �c

n,n+1(G). In particular,
G(g) = G(f) is V PC(n + 1). Let v0 denote the V0-vertex at the other end of
the edge g. The part A1 of A in Mv0 is an essential annulus carrying L

0 in the
pair (G(v0), @G(v0)). We need to recall from Theorem 3.2.1 the possible types of
V0–vertex of �c

n,n+1(G).
If v0 is isolated, this would contradict the fact that �c

n,n+1(G) is reduced.
If v0 is of V PC(n�1)–by–Fuchsian type, and is of I–bundle type, then each

edge splitting for edges incident to v
0 would be dual to an annulus. As the edge

splitting dual to g is a torus, this case cannot occur.
If v0 is of V PCn–by–Fuchsian type, and is of interior Seifert type, then the

essential annulus A1 in (G(v0), @G(v0)) projects to an annulus in the base 2–
orbifold. As v0 is of V PCn–by–Fuchsian type, the fundamental group of this
base orbifold is not virtually cyclic. It follows that it does not admit an essential
annulus. We conclude that this projected annulus is inessential, which implies
that L0 is commensurable with the V PCn �bre group of G(v0). But this means
thatG(v0) commensurises L0, and hence commensurises L, which is again a con-
tradiction as G(v) = CommG(L).
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Finally, if v0 is of commensuriser type, the existence of the essential annulus
A1 in (G(v0), @G(v0)) implies thatG(v0) commensurises L0, and hence commen-
surises L, which is again a contradiction as G(v) = CommG(L).

We have shown that all cases lead to a contradiction so thatH andG(f)must
be commensurable, as required.

Combining the preceding lemmas and Remark 3.4.6, we have proved the fol-
lowing.

Lemma 3.4.9. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , let T denote the universal coveringG–tree of the graph of groups �c

n,n+1(G),
and let e be an edge of T such that the associated splitting of G is not canonical.
Then the following statements hold:

1. There is an almost invariant set X over a V PC(n + 1) subgroup H of G
which is not adapted to @G and crosses e.

2. There is a group S with a conjugate in @G such that L = H \ S is V PCn,
and X \ S and X⇤ \ S are both H–in�nite.

3. There is a V0–vertex v of T of commensuriser type which encloses all L–
almost invariant subsets ofG. Further, fMv \@fM is non-empty, v is of Seifert
type or of toral type 2), and G(v) = CommG(L) = NG(L) contains H .

4. If f is the �rst edge on the path from v to e, then G(f) is V PC(n + 1) and
commensurable with H , and X crosses the torus splitting given by f .

Now we can complete the proof of Theorem 3.4.1, that the edge splittings of
�n,n+1(G) and of �c

n,n+1(G) are either canonical or are special canonical tori.

Proof. Let e be an edge of T such that the associated splitting of G is not canon-
ical, and apply Lemma 3.4.9. Let Y and Y

⇤ denote the almost invariant sets as-
sociated to f , chosen so that G(v) ⇢ Y .

AsH and G(f) are commensurable, andX crosses Y , the intersectionsX \
Y

⇤ andX⇤\Y
⇤ are nontrivial almost invariant sets over the V PC(n+1) group

H
0 = H \G(f).
As H 0 is a torus in (G, @G), up to equivalence, we have only two H 0–almost

invariant sets which are adapted to @G, namely Y and Y ⇤. Thus neither ofX\Y ⇤

andX⇤ \ Y
⇤ is adapted to @G. Let Z denoteX \ Y

⇤. Then Lemma 3.4.4 tells us
that there is a group S

0 in @G such that Z \S
0 and Z⇤ \S

0 are bothH
0–in�nite,
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and H
0 \ S

0 is a V PCn group K . Further there is a V0–vertex v
0 of T , which

encloses allK–almost invariant subsets ofG so thatG(v0) containsH 0, and fMv0

intersects @fM .
If Z crosses some edge e

0 of T , Lemma 3.4.5 tells us that if f 0 is the �rst
edge on the path from v

0 to e
0, then G(f 0) is V PC(n + 1) and commensurable

with H
0, and Z crosses the torus splitting given by f

0. In particular, f and f
0

have commensurable stabilizers. Thus we can apply Lemma 3.3.4 to deduce that
G(f) = G(f 0). Cases 1) or 3) of that lemma would imply that v = v

0, so that Z is
enclosed by v. But this is impossible as Z ⇢ Y

⇤, and G(v) ⇢ Y . Thus we must
have cases 2) or 4) of Lemma 3.3.4. Further, as v and v

0 are not isolated, in case
2), f \ f

0 must be a V1–vertex.
If Z crosses no edge of T , then Z is enclosed by some V0–vertex v

0, which
again cannot be v. ThusH 0 is a subgroup ofG(v) and ofG(v0), and hence of the
edge f

0 incident to v
0 and on the path in T from v to v

0. Again we must have
cases 2) or 4) of Lemma 3.3.4, and in case 2), f \ f

0 must be a V1–vertex.
Now Proposition 3.3.5 implies that in all cases, the splitting determined by

f is a special canonical torus, and so is the splitting determined by f
0 (and the

splittings determined by b and b
0 in case 4) of Lemma 3.3.4).

Finally, we will show that the original edge e that was crossed by X must
equal one of f or f 0 (or b or b0 in case 4) of Lemma 3.3.4). In all cases, it follows
that the splitting determined by e is a special canonical torus.

Recall that Z = X \ Y
⇤, and that Z \ S

0 and Z
⇤ \ S

0 are both H
0–in�nite.

We claim thatX \ S
0 andX⇤ \ S

0 are also bothH
0–in�nite. AsX \ S

0 contains
Z \ S

0, the �rst part of the claim is clear. As G(f) determines a torus, it follows
that the component of @fM with stabilizer S 0 cannot meet this torus, and so must
lie on the same side of fMf as does fMv0 . In particular, S 0 ⇢ Y

⇤, so that Y \ S
0 is

H
0–�nite. Now Z

⇤ = X
⇤[(X\Y ), so it follows thatX⇤\S

0 is alsoH 0–in�nite,
completing the proof of the claim.

Next we show that f is the only edge incident to v which is crossed by X .
For suppose that X crosses an edge f

00 incident to v. Lemma 3.4.9 shows that
G(f 00) is V PC(n+ 1) and commensurable with H . Now we apply Lemma 3.3.4
to the pair (f, f 00). Thus G(f) = G(f 00), and we must have case 1), 2), 3) or 4) of
that lemma. As f and f

00 have the same V0–vertex which is not isolated nor of
special Seifert type, this is impossible unless f = f

00.
Next suppose that X crosses some edge e00 of T . Note that X is H 0–almost

invariant, that K = H
0 \ S

0 is V PCn, and X \ S and X
⇤ \ S are both H

0–
in�nite. Further v0 is a V0–vertex of T of commensuriser type which encloses all
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K–almost invariant subsets of G. Now we apply Lemma 3.4.5 with v
0 and e

00 in
place of v and e. This shows that if f 00 is the �rst edge on the path from v

0 to
e
00, then G(f 00) is V PC(n + 1) and commensurable with H

0, and X crosses the
torus splitting given by f

00. Now we can argue as in the preceding paragraph to
show that f 0 is the only edge incident to v

0 which is crossed by X .
As X crosses the edge e, we conclude that f is the �rst edge of the path

joining v to e, and that f 0 is the �rst edge of the path joining v
0 to e. It follows

that e must lie between v and v0, so that the edge e of T must be equal to f or f 0

(or b or b0), as required. It follows that each edge splitting of �c

n,n+1(G) is either
canonical or is a special canonical torus, thus completing the proof of Theorem
3.4.1.

The following result is an easy consequence of the above arguments. Recall
that a H–almost invariant subset X of a group G is enclosed by a vertex v of a
G–tree T , if for every edge e incident to v, we have either X  Ze or X⇤  Ze,
where Ze and Z⇤

e
are the almost invariant subsets of G associated to e chosen so

that v lies in Ze. There is a natural extension of this idea as follows. If T 0 is a
subtree of T , we will say that X is enclosed by T

0, if for every edge e incident
to T

0, but not contained in T
0, we have either X  Ze or X⇤  Ze, where Ze

and Z⇤
e
are the almost invariant subsets of G associated to e chosen so that T 0 is

contained in Ze.

Proposition 3.4.10. Let (G, @G) be an orientable PD(n+ 2) pair such that G is
not V PC . Then any almost invariant subset ofG over a V PC(n+1) subgroupH
is either enclosed by a V0–vertex of T , or is enclosed by an interval whose endpoints
are the V0–vertices on opposite sides of a special canonical torus edge. FurtherH is
commensurable with that splitting torus group.

Proof. LetX be an almost invariant set over a V PC(n+1) subgroupH of G. If
X is adapted to @G, then X is enclosed by some V0–vertex. If X is not adapted
to @G, there are two cases depending on whether or not it crosses some edge of
T . If it crosses no edge of T , then X is enclosed by some vertex, and hence by
a V0–vertex. If X crosses some edge of T , we apply all the results above. This
yields two V0–vertices v and v

0 on opposite sides of a special canonical torus
edge, and X crosses no edges of T apart from the edges f and f

0 ( and b and
b
0 in case 4) of Lemma 3.3.4) between v and v

0. Further H is commensurable
withG(f). ThusX is enclosed by the interval whose endpoints are v and v0, the
edges of this interval all have associated the same special canonical torus, andH
is commensurable with that splitting torus group, as required.
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3.5 Comparisons
As promised in the introduction, we can now give the comparisons of the JSJ
decomposition of a PD(n + 2) pair (G, @G) with two other naturally de�ned
decompositions. The easiest to handle is the algebraic regular neighbourhood of
the set En,n+1(G) (the collection of all a.i. subsets of G which are over a V PCn

or V PC(n + 1) subgroup). Note that it is not at all obvious that this family
of almost invariant subsets of G has a regular neighbourhood. Such a regular
neighbourhood does not exist for general groups, as discussed in [17]. However
Proposition 3.4.10 implies that the decomposition ofG obtained by collapsing to
a point each interval whose endpoints are the V0–vertices on opposite sides of a
special canonical torus edge is the regular neighbourhood of En,n+1(G). We have
shown the following result.

Theorem 3.5.1. Let (G, @G) be an orientable PD(n+ 2) pair such that G is not
V PC , and let En,n+1(G) denote the collection of all a.i. subsets ofG which are over
a V PCn or V PC(n+1) subgroup. Then the regular neighbourhood of En,n+1(G)
in G exists and is obtained from �n,n+1(G) by collapsing to a point each interval
whose endpoints are the V0–vertices on opposite sides of a special canonical torus
edge.

Remark 3.5.2. If @G is empty, the decomposition �n+1(G) is equal to the regular
neighbourhood of En,n+1(G) in G, as En,n+1(G) is equal to the collection of all a.i.
subsets of G which are over a V PC(n+ 1) subgroup.

Nextwe turn to the analogue of the topological decomposition of 3–manifolds
obtained in [12]. One considers the family Sn,n+1(G), which consists of all a.i.
subsets of G which are dual to splittings of G over annuli or tori in (G, @G). We
claim that this family also has a regular neighbourhood, and that the edge split-
tings are those in Sn,n+1(G)which cross no element of Sn,n+1(G). As in [12], we
call this the Waldhausen decomposition or W–decomposition. Again it is not at
all obvious that this family of almost invariant subsets of G has a regular neigh-
bourhood. Such a regular neighbourhood does not exist for general groups, as
discussed in [17].

We will say that an element of the family Sn,n+1(G) which crosses no ele-
ment of Sn,n+1(G) is isolated in Sn,n+1(G). We start by describing the isolated
elements of Sn,n+1(G), and showing that there are only �nitely many such ele-
ments. Trivially, the edge splittings of �n,n+1(G), minus special canonical tori,
are all isolated elements of Sn,n+1(G). We have the following result.
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Lemma 3.5.3. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let ↵ be an isolated element of Sn,n+1(G), which is not an edge splitting
of �n,n+1(G). Then ↵ is enclosed by a V0–vertex of �n,n+1(G) of commensuriser
type.

Proof. As ↵ is a splitting of G dual to an annulus or torus, it must be enclosed
by some V0–vertex v of �n,n+1(G). Theorem 3.2.1 tells us that a V0–vertex of
�n,n+1(G)must be isolated, of I–bundle type, of interior Seifert type, or of com-
mensuriser type. Thus it su�ces to show that the �rst three cases cannot occur.

If v is isolated, any splitting enclosed by v is equal to an edge splitting of
�n,n+1(G). Hence this case cannot occur.

If v is of I–bundle type, and so of V PC(n � 1)–by–Fuchsian type, then ↵

must be a splitting dual to an annulus. Let K denote the V PCn group carried
by the splitting annulus, and let Xv denote the base 2–orbifold of v. Then the
image ofK in the fundamental group of Xv is V PC(� 1). As a Fuchsian group
cannot have a V PC2 subgroup, it follows that the image of K must be V PC1.
As ↵ is not an edge splitting of �n,n+1(G), and crosses no such splitting, it de-
termines a splitting of G(v) which is adapted to @1v. This then yields a splitting
over a V PC1 subgroup of the fundamental group ofXv, which is adapted to the
boundary @Xv. As discussed in section 5.1.2 of [6], this splitting is dual to a "sim-
ple closed curve" � in Xv, meaning that � is a connected, closed 1–dimensional
suborbifold ofXv. Thus either � is a circle or it is the quotient of a circle by a re-
�ection involution. The assumption that ↵ is not an edge splitting of �n,n+1(G),
means that � cannot be homotopic to a boundary curve of Xv. Hence there is
another "simple closed curve" � inXv whose intersection number with � is non-
zero (Corollary 5.10 of [6]). This determines a splitting of G dual to an annulus
whose intersection number with ↵ is non-zero, contradicting our assumption
that ↵ crosses no element of Sn,n+1(G). We conclude that this case cannot occur.

If v is of interior Seifert type, and so of V PCn–by–Fuchsian type, then ↵

must be a splitting dual to a torus. As in the preceding paragraph, this torus
yields an essential "simple closed curve" in the base 2–orbifold of v. As in that
paragraph, this implies that there is a splitting of G dual to a torus whose inter-
section number with ↵ is non-zero, contradicting our assumption that ↵ crosses
no element of Sn,n+1(G). We conclude that this case also cannot occur, which
completes the proof of the lemma.

Theorem 3.2.1 tells us that if v is a V0–vertex of �n,n+1(G) of commensu-
riser type, then v is of peripheral Seifert type, or of torus type, or of solid torus
type. In the penultimate section of [20], the authors discussed the structure of
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such vertices in great detail. They showed that in each of these cases, G(v) is
V PCn–by–�, where � is the fundamental group of a compact 2–dimensional
orbifold Xv. The group � is �nite if v is of solid torus type, is virtually in�nite
cyclic if v is of torus type, and is not virtually cyclic if v is of Seifert type. Re-
call that any vertex v of �n,n+1 has two types of "boundary" subgroups. The �rst
type comes from the edge groups of the decomposition and the family of all these
subgroups will be denoted by @1v. The second type comes from the decompo-
sition of @G by edges of the decompositions and this family will be denoted by
@0v. The �rst type gives us PD(n + 1) pairs in (G, @G), namely annuli or tori,
and the second type gives us PD(n + 1) pairs which are contained in @G. If
v is of commensuriser type, these families of subgroups determine a division of
the boundary @Xv of Xv into suborbifolds @0Xv and @1Xv, where @0Xv equals
the closure of @Xv � @1Xv. Note that @0Xv must be non-empty. It is possible
that @1Xv may be empty, but this happens if and only if �n,n+1(G) consists of
the single vertex v, so that G = G(v). Next the authors of [20] show that one
can double G(v) along @0v which is "the intersection of G(v) with @G". The
new object DG(v) is the fundamental group of a V0–vertex of �n+1(DG). It is
V PCn–by–D�, where D� is the fundamental group of DXv, the double of Xv

along @0Xv. As we are assuming that G is not V PC , it follows that DG is also
not V PC , so that ⇡orb

1 (DXv) cannot contain a V PC2 subgroup.
In the proof of Lemma 3.5.3, we used the close connection between splittings

of G over annuli or tori enclosed by a V0–vertex v and "simple closed curves"
in the base 2–orbifold Xv. Now we will extend these ideas. We will need the
idea of a "simple arc" � in the pair (Xv, @0Xv). This means that � is a connected
1–dimensional suborbifold of Xv with non-empty boundary, so that either � is
an interval or it is the quotient of an interval by a re�ection involution. Further
� has boundary contained in @0Xv.

We will say that a "simple closed curve" � in the 2–orbifold Xv is essential
in (Xv, @0Xv) if ⇡orb

1 (�) injects into ⇡
orb

1 (Xv) and � is not homotopic into @0Xv

or into @1Xv. Also we will say that a "simple arc" � in (Xv, @0Xv) is essential in
(Xv, @0Xv) if � cannot be homotoped into @0Xv nor into @1Xv while keeping @�
in @0Xv.

Lemma 3.5.4. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC , and let ↵ be an isolated element of Sn,n+1(G), which is not an edge splitting
of �n,n+1(G), and is enclosed by a V0–vertex v of �n,n+1(G) of commensuriser type,
and with base 2–orbifold Xv . Then the following hold:

1. If ↵ is a splitting of G dual to a torus, it determines a "simple closed curve"
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C inXv which is essential in (Xv, @0Xv), and this yields a bijection between
splittings of G dual to a torus which are enclosed by v and not an edge torus
of v, and "simple closed curves" in Xv which are essential in (Xv, @0Xv).

2. If ↵ is a splitting of G dual to an annulus, it determines a "simple arc" �
in (Xv, @0Xv) which is essential in (Xv, @0Xv), and this yields a bijection
between splittings of G dual to an annulus which are enclosed by v and not
an edge annulus of v, and "simple arcs" in (Xv, @0Xv) which are essential in
(Xv, @0Xv).

Proof. 1) Note that although ↵ is not an edge splitting of �n,n+1(G), it need not
be the case that it determines a splitting ofG(v). This is clear if v is of torus type,
but the same di�culty can arise if v is of Seifert type. We resolve this problem by
working with the doubleDG(v) which is the fundamental group of a V0–vertex
V of �n+1(DG). Now ↵ gives a splitting ofDG dual to a torus which is enclosed
by V , and is not an edge splitting of �n+1(DG). As in the proof of Lemma 3.5.3,
this splitting is dual to a "simple closed curve" � in DXv which cannot be ho-
motopic to a boundary curve of DXv. As ↵ is enclosed by v, it follows that �
can be chosen to lie inXv. Further � must be essential in (Xv, @0Xv), asDXv is
the double of Xv along @0Xv. Now reversing the arguments yields the required
bijection.

2) LetA denote the annulus in (G, @G)which induces the splitting ↵ ofG, let
DA denote the torus inDG obtained by doublingA along @A, and letD↵ denote
the splitting of DG induced by DA. As ↵ is not an edge splitting of �n,n+1(G),
it follows that D↵ is not an edge splitting of �n+1(DG). Now as in part 1),
Da determines a splitting ofDG(v) dual to the torusDAwhich yields a "simple
closed curve" � inDXv which cannot be homotopic to a boundary curve ofDXv.
This splitting of DG(v) is invariant under the involution interchanging the two
copies ofG(v), so the curve � can be chosen to be invariant under the involution
ofDXv interchanging the two copies ofXv. Thus � is the double of a "simple arc"
� in the base orbifold Xv. Further � has boundary contained in @0Xv, re�ecting
the fact that the boundary of the annulus lies in @G. As � is not homotopic to
a boundary curve of DXv, it follows that � is essential in (Xv, @0Xv). One can
easily reverse this argument to obtain the required bijection.

In the preceding lemma, as ↵ crosses no element of Sn,n+1(G), it follows that
� and � cross no simple closed curve inXv which is essential in (Xv, @0Xv), and
cross no essential simple arc in (Xv, @0Xv). We will say that such � and � are
isolated.
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Note that in the above discussions, any compact 2–orbifold with non-empty
boundary can occur as Xv, which is not the case in the setting of 3–manifolds.
See Lemma 3.6.1 and the discussion at the end of section 3.6. Note also that
in general it is possible that an arc or closed curve in Xv can be essential in
(Xv, @0Xv), but inessential in (Xv, @Xv), meaning that it can be homotoped into
@Xv while keeping @� in @Xv.

Lemma 3.5.5. LetX be a compact 2–orbifold, and let @1X denote a possibly empty
compact suborbifold of @X . Let @0X denote the closure of @X � @1X .

1. If the Euler characteristic �(X)  0, and � is an isolated essential "simple
arc" in (X, @0X), then � is essential in (X, @X).

2. If�(X)  0, andC is an isolated "simple closed curve" inX which is essential
in (X, @0X), then C is essential in (X, @X).

3. If�(X) > 0, there cannot be any "simple closed curve" inX which is essential
in (X, @0X). Also there cannot be any isolated "simple arc" in X which is
essential in (X, @0X).

Remark 3.5.6. Recall that here a "simple closed curve" is either a circle or the
orbifold quotient of the circle by a re�ection, and a similar comment applies to the
phrase "simple arc". In each case, the quotient by a re�ection is a non-orientable
1–orbifold

Proof. 1) Suppose that � is orientable, so that @� consists of two points, and is not
essential in (X, @X). Thus � is parallel to an arc µ contained in some component
C of @X . Of course, the ends of µ lie in @0X . As � is essential in (X, @0X), the
arc µ cannot be contained in @0X . There must be at least two components of
@1X in the interior of µ, so there must be at least one component D of @0X in
the interior of µ. There can be no mirrors in X , as otherwise we could join D

to a mirror to obtain an essential "simple arc" in (X, @0X) which crosses �. As
X has no mirrors, it follows that C is a circle. But now there is an arc �0 with
both ends in D which is parallel to an arc µ0 in C , such that µ [ µ

0 = C , and �
0

is also essential in (X, @0X) and crosses �. This contradicts the hypothesis that
� is isolated, which proves the required result in the case when � is orientable.

Next suppose that � is not orientable, so that @� consists of one point, and
is not essential in (X, @X). Thus � is homotopic to an isomorphic 1–orbifold µ

contained in some component C of @X . Note that the re�ector point of µ must
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be a re�ector point of C , which must be an intersection point of C with a mirror
componentm ofX . Of course, @µ lies in @0X . As � is essential in (X, @0X), the
orbifold µ cannot be contained in @0X , nor in @1X . It follows that there must
be a component D of @0X in µ other than the component which contains @µ.
Note thatDmay contain the re�ector point of µ. IfX has a mirror other thanm,
we could joinD to such a mirror to obtain an essential "simple arc" in (X, @0X)
which crosses �. It follows that m is the only mirror in X . In particular, C and
m must together form a boundary component of the surface underlying X . But
now there is an arc �0 with both ends inD which is parallel to an arc µ0 ofC[m,
such that µ[µ

0 = C[m, and �0 is also essential in (X, @0X) and crosses �. This
again contradicts the hypothesis that � is isolated, which proves the required
result in the case when � is not orientable.

2) Suppose that C is not essential in (X, @X), so that C is homotopic to a
boundary component S of X . As C is essential in (X, @0X), it follows that S is
not contained in @0X or in @1X . If X has negative Euler characteristic, there is
a simple arc µ in X with both ends in S which is essential in (X, @X), and so
crosses C . By choosing the ends of µ to lie in @0X , we obtain a contradiction.
If X has zero Euler characteristic, and is orientable, it must be an annulus or
D

2(2, 2), the 2–disk with two interior cone points each labeled 2, asX has non-
empty boundary. Note that D2(2, 2) is double covered by the annulus. Thus
in general, if X has zero Euler characteristic, it is covered by the annulus. In
particular @X has 1 or 2 components. In the �rst case, there is again an essential
simple arc � in (X, @X) with boundary in @0X which must cross C . See Figures
3.1e), f), h), i) and j). In the second case, the two boundary components are
homotopic, so that C is homotopic to each. Thus neither is contained in @0X or
in @1X , and there is a simple arc in X with ends in @0X which joins these two
boundary components, and so must be essential and cross C . See Figures 3.1a),
b), c), d) and g). These contradictions complete the proof thatC must be essential
in (X, @X), as required.

3) As �(X) > 0, the orbifold fundamental group of X must be �nite, so that
X cannot contain any "simple closed curve" which is essential in (X, @0X).

If �(X) > 0, and @X is non-empty, the universal orbifold cover of X must
be the 2–disc, so thatX is either a cone or the quotient of a cone by a re�ection.
Let D2(p) denote the 2–orbifold with underlying surface the 2–disk and with a
single interior cone point of order p � 1, and let Yp denote the quotient ofD2(p)
by a re�ection. Note that D2(1) is simply the 2–disk. The underlying surface
of Yp is a disk D, and the boundary @Yp consists of a single interval in @D with
re�ector ends. If p = 1, the rest of @D is a single mirror, and if p � 2, the rest of
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@D is divided into twomirrors separated by a boundary cone point, labeled p. Let
|@0X| denote the number of components of @0X . In all cases, there is a number
k depending on X such that if |@0X| < k, then there are no essential "simple
arcs" in (X, @0X), and if |@0X| � k, then X contains such simple arcs, but no
such arc can be isolated. IfX is the diskD2(1), then k = 4. IfX is a coneD2(p),
p � 2, then k = 3. IfX is Y1, then k = 3, and ifX is Yp, p � 2, then k = 2. Note
that ifX isD2(p), the existence of such k is clear. For if ⇢ denotes an orientation
preserving homeomorphism of (X, @0X) which sends each component of @0X
and @1X to the next such component, and if there is an essential simple arc � in
(X, @0X), then ⇢(�) must cross �.

Now we can prove the following result.

Lemma 3.5.7. Let (G, @G) be an orientable PD(n + 2) pair such that G is not
V PC . A splitting of G dual to an annulus or torus of (G, @G) which is isolated in
Sn,n+1(G) is either an edge splitting of �n,n+1(G) or is dual to an annulus enclosed
by a V0–vertex of commensuriser type, which is not of solid torus type. Further
the family of all splittings of G dual to an annulus or torus which are isolated in
Sn,n+1(G) is �nite.

Proof. If ↵ is a splitting dual to an annulus or torus and is not an edge split-
ting of �n,n+1(G), Lemma 3.5.3 tells us that ↵ is enclosed by a V0–vertex v of
commensuriser type.

If ↵ is a splitting dual to a torus, it determines an isolated simple closed curve
C in the base orbifold Xv of v, and C is essential in (Xv, @0Xv). Thus part 2)
of Lemma 3.5.5 implies that C is essential in (Xv, @Xv). Now Corollary 5.10 of
[6] implies there is some simple closed curve in X which crosses C , which is a
contradiction. It follows that a splitting of G dual to a torus of (G, @G) which
crosses no element of Sn,n+1(G) must be an edge splitting of �n,n+1(G).

If ↵ is a splitting dual to an annulus, it determines an isolated essential simple
arc in (Xv, @0Xv), which must be essential in (Xv, @Xv) by part 1) of Lemma
3.5.5. As the number of disjoint non-parallel such arcs in Xv is �nite, and as
�n,n+1(G) has only �nitely many vertices, the result follows. Finally part 3) of
Lemma 3.5.5 implies that v cannot be of solid torus type.

Now we can proceed to give a complete description of the exceptional split-
tings of G. These are splittings of G dual to an annulus of (G, @G) which are
isolated in Sn,n+1(G) and are not edge splittings of �n,n+1(G). Thus each excep-
tional splitting is enclosed by some V0–vertex v of commensuriser type, which
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is not of solid torus type. Let Xv be the base orbifold of v. Then our annulus
determines an isolated essential simple arc � in (Xv, @0Xv), and so � is essential
in (Xv, @Xv), by Lemma 3.5.5.

In order to give a complete list of cases, the following lemma will be very
useful.

Lemma 3.5.8. LetX be a compact 2–orbifold, with Euler characteristic �(X)  0,
and let @1X denote a possibly empty compact suborbifold of @X . Let @0X denote
the closure of @X � @1X . Let � be an isolated essential simple arc in (X, @0X),
such that a point of @� lies in a component C of @X . Then the following hold:

1. If �(X) < 0, then C ⇢ @0X .

2. If �(X) = 0, and @X is connected, then C ⇢ @0X .

Remark 3.5.9. It follows that in all cases, ifX admits such an arc �, and if @X is
connected, then @1X must be empty. If �(X) < 0, the same conclusion holds if @X
has two components which are joined by �.

There are two orbifolds where the hypotheses of the lemma hold and �(X) = 0,
and @X is not connected. In each of these cases, C need not be contained in @0X .
See Figures 3.1a), 3.1b) and 3.1c).

Proof. By Lemma 3.5.5, � is essential in (X, @X).
1) As �(X) < 0, it is not possible to have two component of @X which

are homotopic. Thus if C is not contained in @0X , a push o� C
0 is essential in

(X, @0X) and crosses �. This contradiction shows that C must be contained in
@0X , as required.

2) As @X is connected, we can use the same argument as in part 1) to show
that C must be contained in @0X , as required.

Now we will proceed to list all cases of (X, @0X, @1X), whereX is a compact
2–orbifold with �(X)  0 and non-empty boundary, @1X is a possibly empty
compact suborbifold of @X , and @0X is the closure of @X�@1X , and there is an
isolated essential simple arc � in (X, @0X). In all cases, when such an arc exists,
it is unique up to isotopy. As � has at least one boundary point, which must lie
in @0X , it follows that @0X is non-empty. To �nd an isolated essential simple arc
� we have to �nd all essential simple arcs and omit those that cross others. In
what follows we have not shown all these arcs, only the isolated ones. (We show
some examples with all possible arcs in Figure 3.5.)
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Recall from Lemma 3.5.4 that any isolated essential arc in the base orbifoldXv

of a V0–vertex v of �n,n+1(G) of commensuriser type gives rise to an exceptional
annulus in Sn,n+1(G), under the assumption that G is not V PC . In particular,
this excludes the situation where ⇡

orb

1 (Xv) is V PC1 and @1Xv is empty. Thus
in Figure 3.1, the isolated arcs shown in 3.1a), 3.1b) and 3.1c) are the only cases
which are relevant to �nding exceptional annuli.

However if G is V PC(n + 1) and is V PCn–by–⇡orb

1 (X) where X is a 2–
orbifold such that ⇡orb

1 (X) is V PC1 and @1X is empty, then an isolated arc in
Xv still determines an essential annulus in (G, @G), but that annulus need not be
isolated. For example, consider the isolated arcs shown in Figures 3.1e) and 3.1f).
The orientable 3–dimensional Seifert �bre spaces over the orbifolds in these two
�gures are each homeomorphic to the twisted I–bundle over the Klein bottle
with orientable total space, and the annuli determined by the isolated arcs cross
each other. For a discussion of this example, see page 15 in [17]. Higher dimen-
sional examples can be obtained from this example by taking the product with
circles.

In drawing the orbifold X , the pictured boundary consists of the orbifold
boundary @X and mirrors. The mirrors are drawn in thick lines and @X in thin
lines. We then proceed to the division of @X into @0X and @1X . In the following
pictures @0X is still drawn in thin lines, @1X in dashed lines, and the isolated
arc � in dotted lines. Figure 3.1 shows all examples with �(X) = 0. Each of the
orbifolds in Figure 3.1 is covered by the annulus, and so has orbifold fundamental
group which is V PC1.

We next consider the cases with �(X) < 0. Recall that � is a "simple arc" in
(X, @0X) which is essential in (X, @X) and crosses no essential “simple closed
curve" in X . Corollary 5.10 of [6] tells us that X admits no essential "simple
closed curves" at all. ThusX lies on the list of ten orbifolds given in Proposition
5.12 of [6]. However, two of these ten have no boundary. In Figure 3.2, we show
the remaining eight orbifolds. For each of these eight orbifolds, we use Lemmas
3.5.5 and 3.5.8 to determine the possible decompositions of @X into @0X and @1X
which admit an isolated essential arc, and we show all these cases in Figures 3.3
and 3.4. Figure 3.3 shows the cases where @1X is empty, and Figure 3.4 shows
the other cases.

Here is a verbal description of the eight orbifolds in Figure 3.2, and of the
possible isolated essential simple arcs.

1. X = D
2(p, q), the 2–disc with two interior cone points of orders p, q � 2

with at least one strictly larger than 2. There is an isolated essential simple
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Figure 3.1: The case in which �(X) = 0
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arc in (X, @0X) i� @1X is empty.

2. X = S
1 ⇥ I(p), p � 2, the annulus with one interior cone point. There

is an isolated essential simple arc in (X, @0X) i� @1X is empty or is a
component of @X .

3. X is a pair of pants, with no singular points. There is an isolated essential
simple arc in (X, @0X) i� @1X is a component of @X , or is the union of
two components of @X .

4. The underlying surface ofX is a discD. The boundary ofD contains one
mirror interval, so that @X is the closure of the complement of this mirror
interval in @D, and X has one interior cone point labeled p. There is an
isolated essential arc in (X, @0X) i� @1X is empty.

5. The underlying surface ofX is an annulus A. The boundary of A contains
one mirror interval, so that @X is the closure of the complement of this
mirror interval in @A. There is an isolated essential simple arc in (X, @0X)
i� @1X is empty or is a component of @X .

6. The underlying surface of X is a disc D, and the boundary @X of X con-
sists of a single interval in @D with re�ector ends, and the rest of @D is
divided into three mirrors separated by two boundary cone points, labeled
2p and 2q. There is an isolated essential simple arc in (X, @0X) i� @1X is
empty.

7. The underlying surface of X is a disc D. The boundary @X of X consists
of two disjoint intervals in @D each with re�ector ends, and the rest of @D
is divided into a single mirror and two mirrors separated by a boundary
cone point, labeled 2p. There is an isolated essential simple arc in (X, @0X)
i� @1X is empty or is a component of @X .

8. The underlying surface of X is a disc D. The boundary @X of X consists
of three disjoint intervals in @D each with re�ector ends, and the rest of
@D consists of three mirrors. There is an isolated essential simple arc in
(X, @0X) i� @1X is a component of @X , or is the union of two components
of @X .

Thus when �(X) < 0, we have fourteen orbifolds with an isolated essential
simple arc, of which the six shown in Figure 3.3 have @1X empty. In these six
cases, the group G (in Theorem 3.5.10) is V PCn–by–⇡orb

1 (X).
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Finally we can show that the family Sn,n+1(G) has a regular neighbourhood
which is a re�nement ⌃n,n+1(G) of �n,n+1(G). Every element of Sn,n+1(G) de-
termines a simple closed curve or simple arc in the base 2–orbifold of one of
the V0–vertices of �n,n+1(G). Now a connected compact 2–orbifold is �lled by
simple closed curves and simple arcs, unless it is one of the exceptional cases
listed above. Thus cutting the base 2–orbifold along the exceptional arc yields
2–orbifolds which contain no isolated essential simple arc. However, in sev-
eral cases the 2–orbifolds obtained by cutting along an isolated arc contain non-
isolated essential simple arcs. Now splitting an exceptional V0–vertex v along
the exceptional annulus yields a vertex or vertices with base orbifold obtained
by cutting Xv along the isolated essential arc. These new vertices enclose ele-
ments of Sn,n+1(G) which correspond to simple arcs in the new base orbifolds.
Thus these new vertices enclose elements of Sn,n+1(G) other than edge splittings
of �n,n+1(G) if and only if the new base orbifold contains essential simple arcs.

Using the above notation, we can now describe the regular neighbourhood
⌃n,n+1(G) of Sn,n+1(G). It is a re�nement of �n,n+1(G) which can be obtained
essentially by splitting each exceptional V0–vertex of �n,n+1(G) along the excep-
tional annulus it contains. Each non-exceptional V0–vertex of �n,n+1(G) yields
unchanged a V0–vertex of⌃n,n+1(G), and each V1–vertex of�n,n+1(G) yields un-
changed a V1–vertex of⌃n,n+1(G). If v is an exceptional V0–vertex of �n,n+1(G),
which contains a separating exceptional annulus, then v is split into two new
vertices. If v is an exceptional V0–vertex of �n,n+1(G), which contains a non-
separating exceptional annulus, then v is split into a single new vertex. If a new
vertex encloses elements of Sn,n+1(G) other than edge splittings of �n,n+1(G)
we label it as a V0–vertex. Otherwise, we label it as a V1–vertex. This yields
a re�nement of �n,n+1(G), but it may not be bipartite. By adding an isolated
V0–vertex between adjacent V1–vertices, and an isolated V1–vertex between ad-
jacent V0–vertices, and then reducing if needed, we can create a bipartite graph
of groups which will be the regular neighbourhood ⌃n,n+1(G) of Sn,n+1(G). We
have shown the following result.

Theorem 3.5.10. Let (G, @G) be an orientable PD(n+2) pair such thatG is not
V PC , and let Sn,n+1(G) denote the family of all a.i. subsets of G which are dual
to splittings of G over annuli or tori in (G, @G). Then the regular neighbourhood
⌃n,n+1(G) of Sn,n+1(G) in G exists and is obtained from �n,n+1(G) by omitting
special canonical tori and splitting each exceptional V0–vertex along the exceptional
annulus it contains, as described above.

Remark 3.5.11. It follows from this theorem that if @G is empty, so thatG is an ori-



3.6. RESULTS IN DIMENSION 3 173

entable PD(n+2) group, then the regular neighbourhood⌃n,n+1(G) of Sn,n+1(G)
in G exists and is equal to �n,n+1(G) = �n+1(G).

In Figures 3.1, 3.3 and 3.4, we drew only the essential isolated arcs. In Figure
3.5 we draw some examples with other possible essential arcs to illustrate that
they do not lead to isolated arcs. We point out the corresponding �gures from
the text, but omit the labels.

3.6 Results in dimension 3

In this section, we consider the special case ofPD3 pairs and compare our results
in this case with the results of Neumann and Swarup in [12]. In the previous
section, a key role was played by the classi�cation of compact 2–orbifolds with
certain properties. In the case when n = 1, so that we are consideringPD3 pairs,
the following result greatly reduces the number of cases which need considering.

Lemma 3.6.1. Let (G, @G) be an orientable PD3 pair, let v be a V0–vertex of
�1,2(G) which is of Seifert type or of commensuriser type, and let X denote the
base 2–orbifold of v. Then X has no mirrors.

Remark 3.6.2. Note that we are allowing G to be V PC in the above statement.
This result means that when n = 1, only Figures 3.1a), 3.1d)-f), 3.3a),b) and 3.4a)-
c) are relevant to the results in this section. It also means that each V0–vertex of
�1,2(G) can be regarded as a Seifert �bre space or an I–bundle.

Proof. Recall that G(v) is V PC1–by–⇡orb

1 (X), and that G is torsion free. Now
a V PC1 group is a �nite extension of Z, so a torsion free V PC1 group is PD1
and must also be isomorphic to Z. And a V PC2 group is a �nite extension of
Z⇥ Z, so a torsion free V PC2 group is PD2 and must be isomorphic to Z⇥ Z
or to ⇡1(K), where K denotes the Klein bottle. In particular, a torus in a PD3
pair must be isomorphic to Z⇥ Z.

If X contains a mirror, there are three possibilities. The mirror must be a
circle, or meet @X , or meet another mirror (or itself) in a corner re�ector point.
We will show that each of these cases is impossible, which implies thatX has no
mirrors, as required.

First we consider a component C of @X , which must be a circle or the quo-
tientQ of a circle by a re�ection. We know that ⇡orb

1 (C) is the image of a torus in
@Mv. As ⇡orb

1 (Q) ⇠= Z2 ⇤Z2, which is not abelian, ⇡1(Q) cannot be a quotient of



174 CHAPTER 3. COMPARING DECOMPOSITIONS

@0

@1

p

�

(a)

@0

@0

@1�

(b)

@0

@1

@1

�

(c)

2

2 2

@1

@0

�

(d)

2

2 2

�

@0
@1

(e)

2

@0

22

@1

2p

�

22

22

(f)

�

22

2

22

2

2

2

2

@0@0

@1

(g)

�

22

2

22

2

2

2

2

@1@0

@1

(h)

Figure 3.4: Cases with @1X 6= ?

�

(a) For Figure 3.3b) (b) For Figure 3.2c)

�

(c) For Figure 3.4b)

�

(d) For Figure 3.3d)

�

(e) For Figure 3.2g) (f) For Figure 3.2h)

�

(g) For Figure 3.4g)

Figure 3.5: Note that @1 = ; in all cases except (c) and (g)



3.6. RESULTS IN DIMENSION 3 175

the abelian group Z⇥Z. It follows that all components of @X are circles. Hence
no mirror of X can meet @X , as required.

Next suppose that X has a corner re�ector. This yields a �nite dihedral sub-
groupD of ⇡orb

1 (X), where the term dihedral group includes the group Z2 ⇥Z2.
In particular D is not cyclic. But the pre-image of D in G(v) is a torsion free
V PC1 group and so is isomorphic to Z, which implies that D must be cyclic.
This contradiction show that X cannot have corner re�ectors, as required.

Finally suppose thatX has a mirrormwhich is a circle. Thenm has a neigh-
bourhood orbifold Y in X with underlying space an annulus, such that @Y is
equal to one boundary component C of the annulus and the other boundary
component is m. We have ⇡orb

1 (C) = ⇡1(C) ⇠= Z, and ⇡
orb

1 (m) = ⇡1(C) ⇥ Z2,
and we let R and S denote the pre-images in G(v) of ⇡1(C) and ⇡

orb

1 (m) re-
spectively. Thus R is a subgroup of S of index 2. Each of R and S is a torsion
free V PC2 group. As C determines a splitting of ⇡orb

1 (X) over ⇡1(C) which is
adapted to @X , this yields a splitting of G(v) over R which is adapted to @1v,
and hence determines a splitting of G over R which is adapted to @G. As the
pair (G, @G) is orientable, it follows that R is orientable, and so is a torus in G.
Also the splitting ofG overR yields one or two PD3 pairs withR as a boundary
group. Now Lemma 2.2 of [11] implies thatR is maximal among torus subgroups
of G, so that S cannot be a torus. Thus S is isomorphic to ⇡1(K). Now consider
the presentation < a, b : bab

�1 = a
�1

> of ⇡1(K). The kernel of the map
S ⇠= ⇡1(K) ! ⇡

orb

1 (m) ⇠= Z⇥ Z2 must be the subgroup A generated by a
2, and

this must also be the kernel of the map R ! ⇡1(C) ⇠= Z. As R has index 2 in
⇡1(K), it must be the orientation subgroup generated by a and b

2. But then the
quotient of R by A is isomorphic to Z⇥ Z2, which is a contradiction.

This completes the proof that X has no mirrors.

Nowwe can compare our results from section 3.5, with those of Neumann and
Swarup in [12]. Recall that in section 3.5, we considered an orientable PD(n+2)
pair (G, @G) such that G is not V PC and described the possible exceptional
annuli. These are splittings of G dual to an annulus which are not edge split-
tings of �c

n,n+1(G). Each exceptional annulus is enclosed by some V0–vertex v

of �c

n,n+1(G) of commensuriser type, and corresponds to an isolated arc � in the
base 2–orbifold Xv of v. In Figures 3.1a)-c), 3.3 and 3.4 we showed all possible
such arcs and orbifolds. We will be interested in the special case when n = 1, so
that (G, @G) is an orientable PD3 pair. Lemma 3.6.1 tells us that those �gures
in which the orbifold X has a mirror, are not relevant in this case. This sub-
stantially reduces the number of possibilities. We only need to consider the six
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isolated arcs shown in Figures 3.1a), 3.3a),b) and 3.4a)-c).
Recall from the beginning of section 3.2 that an annulus in aPD(n+2) pair is

a certain type of orientable PD(n+1) pair, whose fundamental group is V PCn.
When n = 1, a torsion free V PC1 group must be isomorphic to Z, and this is
an orientable PD1 group. Thus twisted annuli do not appear when considering
PD3 pairs, and an untwisted annulus in our generalized sense is exactly the
same as the ordinary annulus S1 ⇥ I . Further if our PD3 pair (G, @G) comes
from a compact orientable 3–manifoldM , then there is a precise correspondence
between �c

1,2(G) and the JSJ decomposition ofM . Also any exceptional annuli in
(G, @G) correspond to embedded annuli in M which cross no other embedded
essential annulus in M and are not splitting annuli of the JSJ decomposition
of M . In [12], such annuli are called matched annuli, and the possibilities are
listed in Lemma 3.4 of [12]. We would expect this list to be the same as our list
of six possible isolated arcs in Figures 3.1a), 3.3a),b) and 3.4a)-c), but there are
some di�erences. The four isolated arcs shown in Figures 3.1a), 3.3a), 3.4a) and
3.4c) yield the examples of matched annuli shown in Figure 5 of [12], but the two
isolated arcs shown in 3.3b) and 3.4b) do not correspond tomatched annuli shown
in Figure 5 of [12]. In 3.3b), @1X is empty which implies thatG = G(v), and that
M is a Seifert �bre space, so this case is not of much interest. But in Figure
3.4b), @1X is non-empty, so the isolated arc � in this �gure corresponds to an
interesting matched annulus inM . This seems to be an omission in [12]. Figure
3.5c) shows that the orbifold X in Figure 3.4b) contains two essential arcs other
than �, but they cross, so neither is isolated. Cutting along the vertical one of the
two crossing arcs in Figure 3.5c) expressesX as the union of two orbifolds glued
along a boundary arc. These are the �rst and second orbifolds shown in Figure 1
of [12]. This is the unique case where gluing two of the orbifolds shown in Figure
1 of [12] yields an orbifold with no isolated essential arc. This possibility was
omitted in the discussion in the second paragraph on page 35 of [12]. Speci�cally
the last sentence of that paragraph is incorrect.

The result of Lemma 3.6.1 fails in higher dimensions. Mirrors of all three
types discussed in the proof of Lemma 3.6.1 can exist in all dimensions greater
than 3. We discuss some examples in dimension 4. Again higher dimensional
examples can be obtained by taking the product with circles.

Our starting point is that the orientable 3–manifold W which is a twisted
I–bundle over the Klein bottle K is an example of a twisted 3–dimensional an-
nulus, and the double DW of W is a 3–dimensional torus. Thus the orientable
4–manifoldDW ⇥I is the underlying space of a PD4 pair (G, @G), and �2,3(G)
consists of a single V0–vertex v, so G = G(v), and v is of V PC2–by–Fuchsian



3.6. RESULTS IN DIMENSION 3 177

type with base orbifold Q ⇥ I , where Q is the quotient of the circle by a re-
�ection. This orbifold has two mirrors each meeting the orbifold boundary in
re�ector points. If instead one considers the manifold DW ⇥ S

1, one will have
two mirrors each homeomorphic to a circle.

Finally, one can also give examples with corner re�ectors as follows. A useful
way to think about W is as the I–bundle over K associated to the @I = S

0–
bundle given by the double covering map T ! K . Note that this map is deter-
mined by a surjective homomorphism ⇡1(K) ! Z2. One way to constructW is
to start with the product T⇥I of the 2–torus with the unit interval, and consider
the involution (⌧, �) on T ⇥ I , where ⌧ is the free involution of T associated to
the double covering map T ! K , and � is the re�ection of I . As ⌧ is free, so is
(⌧, �), and the quotient of T ⇥ I by (⌧, �) is clearlyW .

We will perform a similar construction starting with the product T ⇥ I ⇥ I ,
and using the natural homomorphism ' : ⇡1(K) ! H1(K;Z2) ⇠= Z2 ⇥ Z2.
Only one of the three surjections ⇡1(K) ! Z2 yields an orientable double cover,
and we will choose the basis of H1(K;Z2) so that projection onto each factor
yields non-orientable double covers K 0 and K

00. Let T denote the torus which
is the 4–fold cover of K corresponding to the kernel of '. Thus Z2 ⇥ Z2 acts
freely on T with quotient K . It also acts on I ⇥ I as the group generated by
re�ections in each factor, and we let X denote the quotient 2–orbifold of this
action. The underlying space of X is a disc D, whose boundary is divided into
two mirrors and an arc of @X . The product action on T ⇥ I ⇥ I is free and
orientation preserving, so that the quotient of T ⇥ I ⇥ I by this action is an
aspherical orientable 4–manifold Z , and Z has a natural projection to X . The
pre-image in Z of each interior point of X is T . The pre-image of the corner
re�ector of X is K , and the pre-image of all other points of one mirror is K 0

and of the other mirror is K 00. Finally the pre-image of all other points of @X is
T . Further the pre-image of @X , which is equal to @Z , consists of the union of
the twisted I–bundle over K 0 with boundary T and the twisted I–bundle over
K

00 with boundary T , glued along T . The pre-image of one mirror is a twisted
I–bundle over K with boundary K

0, and the pre-image of the other mirror is
a twisted I–bundle over K with boundary K

00. Thus (Z, @Z) is the underlying
space of a PD4 pair (G, @G), and �2,3(G) consists of a single V0–vertex v, so
G = G(v), and v is of V PC2–by–Fuchsian type with base orbifold X .
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3.7 Some related questions
An unsatisfactory part of our work is that there is no algebraic treatment of the
triple (G(v), @0v, @1v) we discussed.

Problem 3.7.1. Construct a theory of Poincaré triads for groups.

There is a discussion by Wall in the case of complexes [22].
In Johannson’s Deformation Theorem, he considers a homotopy equivalence

F : M ! M
0 between two Haken 3–manifolds with incompressible boundary.

He shows that there is a bijection between the pieces of the JSJ decomposition
of M and those of M 0, and that F can be homotoped to send the pieces of M
to the pieces of M 0. In particular, the splitting annuli and tori of M are sent to
splitting annuli and tori ofM 0. For the non-characteristic pieces ofM , he shows
one can further homotop F to arrange that the intersection with the boundary
of M is mapped to the boundary of the corresponding piece of M 0. Finally one
can arrange that the restriction of F to each non-characteristic piece is a homeo-
morphism to the corresponding piece ofM 0. It is natural to ask whether there is
an algebraic analogue of this. The natural analogue would be when one consid-
ers two PD(n + 2) pairs (G, @G) and (G0

, @G
0) with an isomorphism between

G and G
0. There is a bijection between the underlying graphs of �c

n,n+1(G) and
�c

n,n+1(G
0), and one would like to know that for a V1–vertex v of �c

n,n+1(G), the
part @0v of @v coming from @G can be deformed into @0v

0 of the corresponding
V1–vertex of �c

n,n+1(G
0). It seems reasonable this should hold when n = 1, but

this seems far from clear when n > 1. The reason is that the proof of Johannson’s
Deformation Theorem depends on the non-existence of certain types of essential
annulus in the non-characteristic pieces of M . In higher dimensions the anal-
ogous fact would be the non-existence of essential higher dimensional annuli,
but that may not exclude the existence of essential maps of the 2–dimensional
annulus.

Problem 3.7.2. In the case of orientable PD3 pairs (G, @G) and (G0
, @

0
G), with

G and G
0 isomorphic, for any V1–vertex v of �c

n,n+1(G), and the corresponding
V1–vertex v0 of �c

n,n+1(G
0), show that @0v can be deformed into @0v0.

In Theorem 8.1 of [1], Bieri and Eckmann proved a result which we have used
several times. Namely that if a PDn pair is split along a PD(n � 1) subgroup
relative to the boundary, then we again get PDn pairs.

Problem 3.7.3. Is there an analogue of the Bieri-Eckmann Theorem when a PDn

pair is split along a PD(n� 1) pair?



3.7. SOME RELATED QUESTIONS 179

Examples in dimension 3 show that if one splits a 3–manifold with incom-
pressible boundary along a surfacewith non-empty boundary, the resultingman-
ifold may have compressible boundary. Thus if one splits a PD3 pair along a
PD2 pair, the resulting object need not be a PD3 pair. This again seems to need
a theory of PD triples for groups. However, Gitik [5] has proven an analogue of
the Bieri-Eckmann Theorem in the special case when splitting a PDn pair along
a PD(n� 1) pair does yield a PDn pair.

A related natural question is:

Problem 3.7.4. Is there a theory of PD pairs when the maps from the boundary
groups are not injective?
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Chapter 4

A deformation theorem for
Poincaré duality pairs in
dimension 3

Lawrence Reeves, G. Peter Scott and Gadde A. Swarup
Abtract. We prove the analogue of Johannson’s Deformation Theorem for PD3
pairs.

Dedicated to Walter Neumann on his 75th birthday

4.1 Introduction
In [10], the authors gave an analogue forPD(n+2) pairs, [1], of the JSJ-decomposition
of a 3–manifold. For a PD(n+2) pair (G, @G), this depends only onG, and is a
bipartite graph of groups, which the authors denoted by�c

n,n+1(G). Note that this
is not quite the same as the decomposition �n,n+1(G), which they also discuss in
[10]. For brevity, we will denote �c

n,n+1(G) by �G in this paper. In the case of the
group G of an orientable 3-manifold M with incompressible boundary, �1,2(G)
is the graph of the JSJ decomposition of G. The union of the manifolds in V0(G)
is called the characteristic submanifold of M and the union of those intersect-
ing the boundary is called the peripheral characteristic submanifold This graph
of groups has vertices of two types denoted V0 and V1. The V0–vertices of �G

correspond to the components of the characteristic submanifold V (M) of a 3–
manifoldM , and the V1–vertices of �G correspond to components ofM�V (M).

183
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The edges of �G correspond to the annuli and tori which form the frontier of
V (M) inM . For each vertex v of �G, the edges of the decomposition determine
a family of subgroups of G(v) which is denoted by @1v. The authors of [10] also
showed that the decomposition of @G induced from �G determines a family of
subgroups of G(v) denoted @0v. Each of the groups in @0v and @1v has a natural
structure as a PD(n+1) pair, and @v = @0v [ @1v naturally has the structure of
a family of PD(n+ 1) groups obtained by gluing the pairs in @0v and @1v along
their boundaries. Thus @v forms a sort of boundary of v but since the groups
in @v may not inject into G(v), we do not have a notion of Poincaré duality for
the pair (G(v), @v). However, in the case of a 3–dimensional Poincaré duality
pair (G, @G), the family @v consists of closed surfaces, for each vertex v of �G,
and we showed in [7] that if v is a V0–vertex of �G then the pair (G(v), @v) is a
3–dimensional manifold.

In this paper, we will prove the following analogue of Johannson’s Deforma-
tion Theorem [3] for PD3 pairs.

Theorem 4.1.1. 4.2.12 Let (G, @G) and (H, @H) be two PD3 pairs with G iso-
morphic toH , and let �G and �H be the corresponding isomorphic bipartite graphs
of groups. If v in �G and w in �H are corresponding V1–vertices, then the isomor-
phism carries @1v to @1w, and @0v to @0w, and @v isomorphically to @w.

That @1v is carried to @1w follows from the fact that �G depends only on G,
and not on @G, as was shown in [10]. The new element is that @0v is carried to
@0w.

The approach here gives another proof of Johannson’s Deformation Theorem
in the 3-manifold case. The arguments are sketched at the end in section 3.

4.2 Proof of the Main result
For PD3 pairs (G, @G) and (H, @H), the decompositions �G and �H induce
decompositions of @G and @H giving rise to @0v and @0w. These decompositions
are described in detail in [10] usingK(⇡, 1) spaces representing the group pairs.
We take spaces (M, @M) and (N, @N) to represent the above pairs and start
with a split homotopy equivalence f : M ! N with inverse g : N ! M .
As the edge spaces are now 2–dimensional annuli and tori, we can homotop f

and g to be homeomorphisms on the edge spaces. For i = 0, 1, we denote by Vi

the subspace ofM which is the union of all Vi–vertex spaces, and letW0 andW1

denote the corresponding subspaces ofN . ThusM = V0[V1, andN = W0[W1,
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and f(V0) ⇢ W0, f(V1) ⇢ W1, and f is a homeomorphism on the edge spaces
V0 \ V1.

A crucial role in our arguments is played by the fact that an essential annulus
in aPD3 pair (G, @G) is enclosed by a V0–vertex of �G. In particular, if an essen-
tial annulus in (G, @G) is enclosed by a V1–vertex of �G, it must be homotopic
into an edge annulus of that vertex.

Now we establish some notation to be used throughout this section. We �x
corresponding V1–vertices v and w of �G and �H respectively, letX be the com-
ponent of V1 corresponding to v, and let Y be the component ofW1, correspond-
ing to w. Thus f carries X to Y with @1X going homeomorphically to @1Y ,
where @1X and @1Y denote the unions of the annuli and tori which form the
edge surfaces of X and Y respectively. Also @0X and @0Y denote the unions of
the surfaces X \ @M and Y \ @N respectively. Finally @X denotes the union
@0X [ @1X , and @Y denotes the union @0Y [ @1Y .

For each component t of @0X , we want to deform t into @0Y , and then obtain
a homeomorphism from @X to @Y . LetMt denote the cover ofM corresponding
to ⇡1(t̄), and let Nt denote the corresponding cover of N . Denote by t the lift of
t intoMt, and byXt the component of the pre-image ofX inMt which contains
t. Let Yt denote the corresponding component of the pre-image of Y in Nt. Let
@0Xt denote the pre-image inXt of @0X , and let @1Xt denote the pre-image inXt

of @1X . De�ne @0Yt and @1Yt in the same way. Finally let ft denote the induced
homotopy equivalence from Mt to Nt.

Let A be an annulus component of @1X , and let B be the corresponding
annulus component of @1Y . We are assuming that f maps A to B by a home-
omorphism inducing the given isomorphism on the corresponding edge groups
of �G and �H . But there are two possible isotopy classes for this homeomor-
phism, and we may need to alter the initial choice. We de�ne a "�ip" on A to be
a map fromM to itself which preserves each of V0 and V1, is the identity outside
some small neighbourhood ofA, andwhose restriction toA is a homeomorphism
which interchanges the components of @A. Further a �ip on A is homotopic to
the identity map ofM by a homotopy supported on a small neighbourhood ofA.
Thus by composing f with a �ip on A, we can homotop f to change the initial
choice of isotopy class of homeomorphism from A to B, and this homotopy is
supported on a small neighbourhood of A.

We start by considering some special cases.

Lemma 4.2.1. Suppose that one of the following holds:

1. A component t of @0X is an annulus.
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2. There is a component t of @0X such that t is not closed, and ⇡1(t̄) has �nite
index in ⇡1(X).

Then v andw are isolated V1–vertices of �G and �H respectively. Further we can
homotop f : M ! N to arrange that it maps @1X to @1Y by a homeomorphism,
and maps @0X to @0Y by a homeomorphism. Thus f also maps @X to @Y by a
homeomorphism.

Proof. 1) As v is a V1–vertex of �H = �c

n,n+1, and t is an annulus in X with
boundary in @1X , we can apply Proposition 2.5 of [7]. This tells us that either @t
lies in a single component s of @1X , and that t is homotopic into s �xing @t, or
that v is isolated. The �rst case would imply that s is homotopic into t �xing @s,
and so is homotopic into @M �xing @s, which contradicts the fact that s is an
essential annulus in (M, @M). It follows that v is an isolated V1–vertex of �G, as
required. In particular, ⇡1(X) is in�nite cyclic. Hence ⇡1(Y ) is also in�nite cyclic,
so that any component of @0Y must be an annulus. Now applying Proposition
2.5 of [7] again shows that Y is an isolated V1–vertex of �H , as required. Thus
by �ipping on one of the annuli in @1X if needed, we can homotop f to map
@1X to @1Y by a homeomorphism, and simultaneously map @0X to @0Y by a
homeomorphism. This completes the proof of part 1) of the lemma.

2) We will show that some component of @0X is an annulus, so that the result
follows from part 1). We use the above notation. As ⇡1(t̄) has �nite index in
⇡1(X), it follows that Xt is compact. In particular, @0Xt is also compact. As the
inclusion of t in Xt is a homotopy equivalence, there is a retraction ⇢ of Xt to t.

If @0Xt equals t, and A is an annulus component of @1Xt, the retraction ⇢

induces a map fromA to twhich sends @A by a homeomorphism to two compo-
nents of @t. Hence themap fromA to t is a propermap of degree 1, and so induces
a surjection ⇡1(A) ! ⇡1(t). This implies that t is an annulus, as required.

If @0Xt is not equal to t, we let s be another component of @0Xt. Any loop �

in s is homotopic inXt into t, and so determines an annulus inXt. If s is not an
annulus, we can choose � to be an essential non-peripheral loop in s. It follows
that the annulus in Xt determined by � is ⇡1–injective, and cannot be properly
homotoped in Xt into @1Xt, nor into @0Xt, while keeping its boundary in @0Xt.
It follows that this annulus is essential in (M, @M) and cannot be homotoped
into @1Xt, which contradicts the fact that any essential annulus in a PD3 pair
(G, @G) is enclosed by a V0–vertex of �G. This contradiction shows that s must
be an annulus, which completes the proof of part 2) of the lemma.
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Next we consider the case in which t is closed. This case was considered in
[11] and the proof here is similar (see also [4]).

Lemma 4.2.2. Using the above notation, if t is a component of @0X which is a
closed surface, then we can homotop f to arrange that f maps t to a component of
@0Y by a homeomorphism.

Proof. Again we use the above notation. We claim that each component of @Mt�
t is contractible. For suppose a component r of @Mt� t is not contractible. Then
there is an annulus A from r to t, since ⇡1(t) ! ⇡1(Mt) is an isomorphism. As
r and t are distinct components of @Mt, the annulus A is essential in Mt, and
so must be properly homotopic to an annulus in @1Xt. As t is closed, this is a
contradiction which proves the claim.

The long exact homology sequence for the pair (Mt, @Mt) with integer coef-
�cients yields the exact sequence

H2(@Mt) ! H2(Mt) ! H2(Mt, @Mt) ! H1(@Mt) ! H1(Mt).

As the inclusion of t into Mt is a homotopy equivalence, and the other compo-
nents of @Mt are contractible, it follows that the �rst and last maps in this se-
quence are isomorphisms. AlsoH3(Mt) = H3(t) = 0. It follows thatH3(Mt, @Mt) =
0 and H2(Mt, @Mt) = 0. The �rst equality tells us that Mt is not compact, and
the second implies, by duality, that H1

c
(Mt) = 0. Since ft is a proper homotopy

equivalence from Mt to Nt, it follows that Nt is not compact and H
1
c
(Nt) = 0.

Hence H3(Nt, @Nt) = 0, and by duality H2(Nt, @Nt) = 0. As H2(Nt) ⇠= Z, the
long exact homology sequence of the pair (Nt, @Nt) shows that H2(@Nt) ⇠= Z.
Thus there is exactly one closed component s of @Nt, and the induced map
H2(s) ! H2(Nt) is an isomorphism. Now let ⇢ denote a retraction Mt ! t,
and consider the composite map s ⇢ Nt

gt! Mt

⇢! t. Since each of these three
maps induces an isomorphism on H2, the composite map s ! t has degree 1.
Thus the induced map ⇡1(s) ! ⇡1(t) is surjective and hence an isomorphism.
Thus s is a retract of Nt, and ft | t : t ! Nt can be deformed into s.

We next want to show that s is actually in Yt. Since each component of
@Mt � t is contractible, there are no annuli in @1Xt, and so no annuli in @1Yt.
If s is not in Yt, the fact that s is homotopic into Yt implies that there must
be a non-contractible component of @1Yt which can only be a torus. Denote
this torus by T , and note that as s is closed, ⇡1(s) must be of �nite index in
⇡1(T ). Consider the images s and T in N of s and T respectively. If we cut N
along T we get one or two PD3 pairs, depending on whether T separates N .
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Let (K, @K) denote the pair such that @K contains s̄. Then @K also contains
one or two copies of T , depending on whether T separates N . Since s̄ and T

carry commensurable subgroups of ⇡1(Y ), it follows from Lemma 2.2 of [5] that
(K, @K)must be trivial, meaning that @K consists of two copies ofK . Thus @K
consists entirely of one copy of s̄ and one copy of T , and each carriesK . But this
implies that T separatesN and splits ⇡1(N) trivially, which is a contradiction. It
follows that s must lie in Yt, and hence that t can be deformed into s staying in
Yt. Thus we can homotop f to arrange that f maps t to a component of @0Y by
a homeomorphism, as required.

The main part of the proof of Theorem 4.2.12 will be the remaining cases in
which t has boundary, which we handle with a sequence of propositions. By
Lemma 4.2.1, we can assume that no component of @0X is an annulus, and that
⇡1(t̄) has in�nite index in ⇡1(X). Using our previous notation, the cover Xt of
X contains t, and Xt andMt are non-compact.

Proposition 4.2.3. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. Then the following hold.

1. Each component of @1Xt which covers an annulus component of @1X is either
an annulus meeting t in a single boundary component, or is contractible.

2. LetC be a non-contractible component of @0Xt, other than t. Then there is an
annulus componentA of @1Xt, such that one component of @A is contained in
C , and the other component of @A is contained in t. Further ⇡1(C) is in�nite
cyclic.

3. Each component of @1Xt which covers a torus component of @1X is con-
tractible.

Proof. 1) Suppose that C is an annulus component of @1Xt which does not meet
t. There is a ⇡1–injective annulus A in Xt joining a component of @C to t. As
@C lies in a component s of @0Xt, the annulus A is in (Mt, @Mt). As s and t

are distinct components of @0Xt, it follows that A is essential in (Mt, @Mt), and
so must be homotopic into @1Xt while keeping @A in @0Xt. But this implies
that either C meets t, or that s is an annulus, either of which contradicts our
hypotheses. We conclude that any annulus component of @1Xt must meet t.

LetA be a component of @1Xt which meets t. ThusA is an annulus. Suppose
that @A is contained in t. There is a retraction ofXt to t and it mapsA to t sending
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@A by a homeomorphism to two components of @t. Hence this map A ! t has
degree 1, which implies that t is an annulus. This contradiction shows that each
component of @1Xt which meets t is a compact annulus which meets t in exactly
one boundary component. This completes the proof of part 1).

2) As C is non-contractible, there is a ⇡1–injective annulus joining C to t.
This cannot be homotopic into @0Xt while keeping its boundary in @0Xt, and so
it must be homotopic into @1Xt while keeping its boundary in @0Xt. This implies
that there is an annulus component A of @1Xt, such that one component of @A
is contained in C , and the other component of @A is contained in t. Further this
argument shows that any loop inC is homotopic intoA\C , showing that ⇡1(C)
must be in�nite cyclic, as required.

3) Suppose there is a non-contractible component C of @1Xt which covers a
torus component T of @1X , and letH be an in�nite cyclic subgroup of ⇡1(C). As
⇡1(T ) normalises H , it follows that H is a subgroup of ⇡1(t) which has in�nite
index in its normalizer. Consider the cover MH of M , with ⇡1(MH) = H , and
let tH denote the component of the pre-image of t with ⇡1(tH) = H . As H has
in�nite index in its normalizer, MH has in�nitely many components of @MH

which contain translates of tH and have fundamental group H . It follows that
there are in�nitely many distinct annuli in (MH , @MH), all carrying H , so that
there are crossing such annuli. As these annuli are all enclosed by the V1–vertex
v of �H , corresponding to X , this is a contradiction, which completes the proof
of part 3).

Now let A1, . . . , An denote the annuli of @1Xt which meet t, and let @Ai =
{a1, a0i} with ai in t. We have corresponding annuli B1, . . . , Bn in @1Yt with
@Bi = {bi, b0i}. We may assume that ft carries Ai homeomorphically to Bi with
ai going to bi initially. Note that in the covering projections pt : Mt ! M ,
qt : Nt ! N some of these annuli may be identi�ed. An annulus A in @1X

which meets t lifts to two annuli in @1Xt if @A ⇢ @ t̄, and lifts to one annulus
otherwise.

Since the cover pt : Mt ! M is formed with respect to the image of ⇡1(t),
we have a clearer picture of the cover Mt than of Nt. We can use this to obtain
some information about the homology of Xt, as follows. Each annulus Ai lies
in a component, say Pi, of the closure of Mt � Xt. As the inclusion of Xt in
Mt is a homotopy equivalence, it follows that Xt meets Pi only in Ai, and that
the inclusion of Ai into Pi is a homotopy equivalence. Note that @0Xt equals the
intersection @Mt\Xt. We let @0Pi denote the intersection @Mt\Pi. Proposition
4.2.3 tells us that if ⇥ is a component of @1Xt other than the Ai’s, then ⇥ is
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contractible. As the inclusion of Xt in Mt is a homotopy equivalence, it follows
that ⇥ lies in a component, say P⇥, of the closure ofMt �Xt, thatXt meets P⇥

only in ⇥, and that P⇥ is contractible. We have that Mt is the union of Xt, the
Pi’s, and the P⇥’s, and that @Mt is the union of @0Xt, the @0Pi’s, and the @0P⇥’s.

Proposition 4.2.4. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. Then H2(Xt, @0Xt) ⇠= Zn, and is freely gen-
erated by [A1], . . . , [An].

Proof. Recall that @0Xt consists of t, various components containing some a0
i
, and

perhaps some other components. Proposition 4.2.3 tells us that these extra com-
ponents are contractible, and that any component of @0Xt which contains some
a
0
i
has in�nite cyclic fundamental group. The long exact homology sequence of

the pair (Xt, @0Xt) implies that

0 ! H2(Xt, @0Xt) ! H1(@0Xt) ! H1(Xt) ! 0

is exact, as H2(Xt) = H2(t) = 0, and H1(@0Xt) ⇠= H1(t) �
P

n

i=1 H1(a0i), and
H1(t) maps isomorphically onto H1(Xt). Since ai and a

0
i
map to the same ele-

ments in H1(Xt), the proposition follows.

Next we prove the following.

Proposition 4.2.5. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. Then H2(Xt, @0Xt) ! H2(Mt, @Mt) is an
isomorphism and both are freely generated by [A1], . . . , [An].

Proof. Similar arguments to those in Proposition 4.2.3 tell us that the compo-
nents of @0Pi which do not contain ai or a0i are contractible, and the other com-
ponents of @0Pi have in�nite cyclic fundamental group. Also, for each con-
tractible component ⇥ of @1Xt, all components of @0P⇥ are contractible. It fol-
lows that the inclusion of Ai into Pi induces an isomorphism from H1(@Ai) to
H1(@0Pi) and an injection from H0(@Ai) to H0(@0Pi), and similar statements
hold when ⇥ is the universal cover of an annulus. If ⇥ is the universal cover
of a torus, we note that H1(@0P⇥) is zero. As the inclusion of Ai into Pi is a
homotopy equivalence, it follows from the long exact homology sequences of
the pairs (Ai, @Ai) and (Pi, @0Pi) that H2(Ai, @Ai) ! H2(Pi, @0Pi) is an iso-
morphism and H1(Ai, @Ai) ! H1(Pi, @0Pi) is an injection. If ⇥ is the uni-
versal cover of an annulus or torus, then H2(⇥, @⇥) = H2(P⇥, @0P⇥) = 0,
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and H1(⇥, @⇥) ! H1(P⇥, @0P⇥) is an injection. Now we consider the Mayer-
Vietoris sequence for the pair (Mt, @Mt) expressed as the union of (Xt, @0Xt)
and ([Pi,[@0Pi) [ ([P⇥,[@0P⇥). We obtain the short exact sequence

0 !
nX

i=1

H2(Ai, @Ai)�
X

⇥

H2(⇥, @⇥) !

nX

i=1

H2(Pi, @0Pi)�
X

⇥

H2(P⇥, @0P⇥)�H2(Xt, @0Xt) ! H2(Mt, @Mt) ! 0

where the �rst term isH3(Mt, @Mt) which is zero asMt is not compact. The
�nal term being zero re�ects the fact that the boundary map from H2(Mt, @Mt)
is zero, as the next map in the Mayer-Vietoris sequence is injective.

As H2(⇥, @⇥) = H2(P⇥, @0P⇥) = 0, and H2(Ai, @Ai) ! H2(Pi, @0Pi) is an
isomorphism, it follows that H2(Xt, @0Xt) ! H2(Mt, @Mt) is an isomorphism,
as required.

Next we want to apply the same arguments to Nt, Yt and the components
of the closure of Nt � Yt. to obtain the analogous isomorphism but without the
information about the generators. For Yt we have only the following.

Proposition 4.2.6. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. Then H2(Yt, @0Yt) ! H2(Nt, @Nt) is an
isomorphism.

Proof. Proposition 4.2.3 shows that the components of @1Xt consist of the an-
nuli A1, . . . An together with contractible components. As we have a graph of
groups isomorphism between �G and �H , it follows that the components of @1Yt

consist of the annuli B1, . . . Bn together with contractible components. Each
annulus Bi lies in a component, say Qi, of the closure of Nt � Yt, and Yt meets
Qi only in Bi. If ⇥ is one of these contractible components of @1Yt, then ⇥
lies in a component, say Q⇥, of the closure of Nt � Yt, such that Yt meets Q⇥

only in ⇥, and Q⇥ is contractible. We have that Nt is the union of Yt, the Qi’s,
and the Q⇥’s, and that @Nt is the union of @0Yt, the @0Qi’s, and the @0Q⇥’s.
Further, as in the proof of Proposition 4.2.5, the components of @0Qi which do
not contain bi or b0i are contractible, and the other components of @0Qi have
in�nite cyclic fundamental group. Also, for each contractible component ⇥ of
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@1Yt, all components of @0Q⇥ are contractible. As the inclusion of Bi into Qi

is a homotopy equivalence, it follows from the long exact homology sequences
of the pairs (Bi, @Bi) and (Qi, @0Qi) that H2(Bi, @Bi) ! H2(Qi, @0Qi) is an
isomorphism and H1(Bi, @Bi) ! H1(Qi, @0Qi) is an injection. If ⇥ is the uni-
versal cover of an annulus or torus, then H2(⇥, @⇥) = H2(Q⇥, @0Q⇥) = 0, and
H1(⇥, @⇥) ! H1(Q⇥, @0Q⇥) is an injection. Now as in the proof of Proposition
4.2.5, we apply the Mayer-Vietoris sequence for the pair (Nt, @Nt) expressed as
the union of (Yt, @0Yt) and ([Qi,[@0Qi)[ ([Q⇥,[@0Q⇥), to deduce the result.
But note that although this argument is very similar to the proof of Proposition
4.2.5, the groups involved may be very di�erent, as @Mt and @Nt may be di�er-
ent.

However duality implies thatH2(Mt, @Mt) ⇠= H
1
c
(Mt) ⇠= H

1
c
(Nt) ⇠= H2(Nt, @Nt).

Thus

Proposition 4.2.7. All the groups in Propositions 4.2.5 and 4.2.6 are free abelian
of rank n.

In the 3–manifold setting, the map H2(Yt, @0Yt) ! H2(Yt, @Yt) is zero, and
later we will be able to show this holds in the present setting. But we will begin
by proving something weaker in Proposition 4.2.10 below.

WewriteA for the union of theAi’s, andB for the union of theBi’s. Note that
we have homotopy equivalences of pairs (Mt, A) ! (Nt, B) and (Mt, @A) !
(Nt, @B).

Proposition 4.2.8. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. ThenH2(Mt, @A) is free abelian of rank n+1,
generated by [t] and [A1], . . . , [An].

Proof. Consider the long exact homology sequence of the triple (Mt, @Mt, @A).
AsMt is not compact, we haveH3(Mt, @Mt) = 0. Also Proposition 4.2.5 implies
that the boundary map H2(Mt, @Mt) ! H1(@Mt, @A) is zero. Thus we obtain
the short exact sequence

0 ! H2(@Mt, @A) ! H2(Mt, @A) ! H2(Mt, @Mt) ! 0.

Recall that @Mt is the union of @0Xt, [@0Pi and [@0P⌃. Further the proofs
of Propositions 4.2.4 and 4.2.5 show that each component of @0Xt, [@0Pi and
[@0P⌃ other than t, is either contractible and disjoint from t, or meets t in a
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single boundary component and has in�nite cyclic fundamental group. It follows
that H2(@Mt, @A) is in�nite cyclic generated by [t]. Now the above short exact
sequence implies the result of the proposition.

The homotopy equivalence (Mt, @A) ! (Nt, @B) immediately implies the
following result.

Proposition 4.2.9. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. ThenH2(Nt, @B) is free abelian of rank n+1,
generated by [f(t)] and [B1], . . . , [Bn].

Now we are able to show the following result.

Proposition 4.2.10. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. Then the map H2(Yt, @0Yt) ! H2(Yt, @Yt)
sends [f(t)] to zero.

Proof. Consider the long exact homology sequence of the triple (Nt, @Nt, @B).
As Nt is not compact, we have H3(Nt, @Nt) = 0, as in the proof of Proposition
4.2.7. Thus we obtain the exact sequence

0 ! H2(@Nt, @B) ! H2(Nt, @B) ! H2(Nt, @Nt).

We do not know that the boundary map H2(Nt, @Nt) ! H1(@Nt, @B) is
zero, nor do we know the rank of H2(@Nt, @B). However Proposition 4.2.7
tells us that H2(Nt, @Nt) is free abelian of rank n. Thus the image of the map
H2(Nt, @B) ! H2(Nt, @Nt) has rank at most n. In particular, the generators
[f(t)] and [B1], . . . , [Bn] of H2(Nt, @B) are mapped to dependent elements of
H2(Nt, @Nt). Now Proposition 4.2.6 tells us that H2(Yt, @0Yt) ! H2(Nt, @Nt)
is an isomorphism. Thus the elements [f(t)] and [B1], . . . , [Bn] are dependent
elements of H2(Yt, @0Yt). As the map H2(Yt, @0Yt) ! H2(Yt, @Yt) sends each
[Bi] to zero, it must also send [f(t)] to zero, as required.

Now we come to the key argument.

Proposition 4.2.11. Using the above notation, let t be a component of @0X with
non-empty boundary, such that ⇡1(t̄) has in�nite index in ⇡1(X), and suppose that
no component of @0X is an annulus. Then there is a component S of @0Yt whose
boundary is contained in @B, and contains exactly one component from each @Bi,
such that ⇡1(S) ! ⇡1(Nt) is an isomorphism.
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Proof. As @t is the union of the ai’s, it follows that f(@t) is the union of the bi’s.
Thus Proposition 4.2.10 implies that there is a (possibly disconnected) compact
surface S in @Yt whose boundary is the union of the bi’s. If S is not contained
in @0Yt, it must contain some Bi. By replacing S by the closure of S � Bi, we
can replace S by a new (possibly disconnected) compact surface in @Yt whose
boundary is contained in @B, and contains exactly one component from each
@Bi. By repeating this process as needed, we will eventually �nd a (possibly
disconnected) compact surface S in @0Yt whose boundary is contained in @B,
and contains exactly one component from each @Bi.

Let s be a component of S and consider the composite map s
gt! Xt

⇢! t,
where ⇢ is a retraction ofXt to t. The resulting map is ⇡1–injective, carries each
boundary component of s to a boundary component of t by a homeomorphism,
and sends distinct components of @s to distinct components of @t. It follows
that the composite map s ! t has degree 1. Hence it is onto on ⇡1, and so an
isomorphism on ⇡1. It follows that this map s ! t it is properly homotopic to a
homeomorphism, so that s must be equal to S. Hence S satis�es the conclusion
of the proposition, as required.

Now we are ready to complete the proof of Theorem 4.2.12.

Theorem 4.2.12. Let (G, @G) and (H, @H) be two PD3 pairs withG isomorphic
toH , and let�G and�H be the corresponding isomorphic bipartite graphs of groups.
If v in �G and w in �H are corresponding V1–vertices, then the isomorphism carries
@1v to @1w, and @0v to @0w, and @v isomorphically to @w.

Proof. If there is a component t of @0X , which is a closed surface, then the result
was proved in Lemma 4.2.2.

If there is a component t of @0X , which is an annulus, or if there is a compo-
nent t of @0X such that t is not closed, and ⇡1(t̄) has �nite index in ⇡1(X), then
the result was proved in Lemma 4.2.1.

Now we consider the remaining cases. Suppose that no component of @0X
is an annulus, and let t be a component of @0X , which has boundary, such that
⇡1(t̄) has in�nite index in ⇡1(X). Proposition 4.2.11 produces a component S of
@0Yt such that @S consists of one and exactly one from each pair {bj, b0j}, and
⇡1(S) ! ⇡1(Nt) is an isomorphism. Let S denote the image in @0Y of S.

Under our indexing, f(ai) = bi and @S contains only one of {bi, b0i}. Thus
by deforming along Bi if necessary, we can push ft(t) homeomorphically onto
S. We will use �ips to alter f to arrange that, after applying these �ips, f(t)
can be deformed into S while �xing @t. By repeating for all components of @0X ,
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we will arrange that, after applying certain �ips, f(@X) can be deformed to a
homeomorphism from @X to @Y , while �xing @1X .

There are two cases to consider, depending on whether two of the Ai have
the same image in M , under pt.

Case 1: pt(A1) = pt(A2), and so qt(B1) = qt(B2).
Recall that in our notation, ft(a1) = b1 and ft(a2) = b2. Thus under these

identi�cations, we have pt(a01) = pt(a2), pt(a1) = pt(a02), qt(b01) = qt(b2), qt(b1) =
qt(b02). Moreover, @S contains one of {b1, b01} and one of {b2, b02}.

Case 1a: @S contains b1 = ft(a1).
We claim that in this case b2 = ft(a2) is in @S. If not @S contains b1 and

b
0
2 which are identi�ed under qt. Thus, the image of @Xt contains the image of
S with b1 and b

0
2 identi�ed and also the image of B1 and B2. Thus we have a

branched surface at qt(b1) with three branches, whereas @X = @0X [ @1X is
a closed surface. Therefore, if @S contains b1, it also contains b2 and so we can
homotop ft(t) into S �xing @t. Hence we can homotop f(t) into the image of S
in N �xing @t, as required.

Case 1b: @S contains b01 = ft(a01).
Arguing as in case 1a), it follows that @S must consist of b01 and b

0
2. We also

have ft(a1) = b1 and ft(a2) = b2. Thus it is not possible to homotop ft(t) into S
�xing @t. However, if we compose f with simultaneous �ips on A1 and A2, the
images of a1 and a

0
1 are interchanged, as are the images of b1 and b

0
1. We have

now arranged that ft(a1) and ft(a2) are in @S, so that we can homotop ft(t) into
S �xing @t. Hence we can homotop f(t) into S while �xing @t, as required.

Case 2: pt(A1) 6= pt(A2), and so qt(B1) 6= qt(B2).
This case is easier. If f(ai) = bi is in @S, then we leave f as it is. Otherwise,

we �ip on Ai to arrange that f(ai) = bi. After a �nite number of such �ips we
have newmaps f , ft which send @t homeomorphically onto @S andwhich induce
the previous map on the fundamental groups and thus map ⇡1(t) isomorphically
to ⇡1(S). In particular, we can homotop ft(t) into S �xing @t, as required.

In conclusion, we have shown the following. We start with a given map
f : M ! N such that f(V0) ⇢ W0, f(V1) ⇢ W1, and f is a homeomorphism on
the edge spaces V0 \ V1. Suppose that @0X has no annulus component, and also
has no component t such that t is not closed, and ⇡1(t̄) has �nite index in ⇡1(X).
If t is a component of @0X , then after applying �ips on some of the annuli in
@1X which meet t, we can homotop f(t) �xing @t, to arrange that f maps t to a
component S of @0Y by a homeomorphism.

Now we examine how to inductively extend the above procedure to the re-
maining components of @0X . Let r̄ 6= t̄ be a component of @0X . As above, after
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applying �ips on some of the annuli in @1X which meet r, we can homotopf(r)
�xing @r, to arrange that f maps r to a component R of @0Y by a homeomor-
phism. We claim that R cannot equal S. For if they were equal, then r̄ and t

would be homotopic to each other in X . As neither is an annulus, choosing a
non-peripheral curve in t yields a ⇡1–injective annulus joining r̄ and t which
cannot be homotopic into @1X while keeping its boundary in @0X . This is an es-
sential annulus in (M, @M)which cannot be homotoped into a V0–vertex which
is impossible.

We conclude that R cannot equal S, so that they are disjoint. Now there is
no problem except possibly if there is an annulus component A of @1X which
meets both r̄ and t̄. If we need to �ip on A in order to map r to R, then before
the �ip, the circle A\ r must be mapped to the same component of @B as A\ t,
which is impossible, as the restriction of f to A is a homeomorphism.

Thus after a �nite number of steps we canmodify f by a homotopy, which is a
product of �ips, which preserves the decomposition, and thus carries each group
in @1X to a group in @1Y and similarly @0X to @0Y and giving a homeomorphism
@X to @Y . This completes the proof of Theorem 4.2.12.

4.3 Discussion of Johannson’s Deformation The-
orem

We sketch below how to adapt the arguments of the previous sections to a proof
of Johannson’s Deformation Theorem (JDT). The proof of JDT consists of three
elements.

3.1 The existence of JSJ decomposition.

3.2 The enclosing property of the characteristic manifold, that is, that essential
maps of annuli and tori can be homotoped into the characteristic manifold.

3.3 Deforming @0(v) for a V1 vertex, that is a vertex outside the characteristic
manifold, into @0(w) of the corresponding vertex of the target manifold.

An elementary construction of the JSJ decomposition is given in [6]. Note
that there is an omission in the matching lemma 3.4 of [6] which is corrected in
Figure 4.o

¯
f [7].

That the characteristic submanifold as constructed in [6] has the enclosing
property was proved by Scott in [8].
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This takes care of steps 3.1 and 3.2 above. We next outline how to adapt the
arguments of section two to a proof of JDT.

For Lemma 4.2.1 part 1 we can use Proposition 3.2 of [6], or prove it directly.
The crucial part of the proof as in [9] is that the map H2(v, @0v) ! H2(v, @v)
is trivial for a V1-vertex. This follows from Proposition 4.2.4. Thus Propositions
4.2.5 to 4.2.10 are unnecessary. The proofs after Proposition 4.2.10 proceed as
before.

We note that only a version of the annulus theorem is needed in the proof
of JDT. Thus we only need that the peripheral characteristic submanifold has
the encolsing property for annuli. It is an open question whether the peripheral
characteristic submanifold can be constructed by elementary methods as in [6].
This is done in section 8 of [10] in the general case, but the proof is complicated.
Wall has several questions about PD3 pairs in [13].
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Errata for \Regular Neighbourhoods and Canonical

Decompositions for Groups", Asterisque 289 (2003), by Peter

Scott and Gadde A. Swarup

There are two errors in the discussion of our construction of algebraic

regular neighbourhoods. While they are easy to x, this requires changes to

the paper in several places. We discuss these errors rst. Then we list the

remaining errors in order of their occurrence.

Invertible almost invariant sets
The rst problem is in our treatment of almost invariant sets which are

invertible (see Denition 2.12). Before discussing the details, we need to

briey recall the construction in chapter 3. We have a nitely generated

group G with nitely generated subgroups H1; : : : ; Hn and, for 1  i  n, we
have a nontrivial Hi{almost invariant subset Xi of G. Recall that E denotes
the set of all translates of all the Xi's and X


i 's, and that an element U of E

is isolated if it crosses no element of E. We construct the algebraic regular
neighbourhood (X1; : : : ; Xn) in stages. First we consider the case when the

Xi's are in good position. This means that if U and V are any elements of

E and two of the four sets U () \ V () are small, then one must be empty.
In Theorem 3.8, we describe a graph of groups structure (X1; : : : ; Xn) for

G. If no Xi is simultaneously isolated and equivalent to an invertible almost

invariant set, then (X1; : : : ; Xn) is dened to be (X1; : : : ; Xn). If some

Xi is isolated and is equivalent to an invertible almost invariant set Yi, we
claimed (see the last ve lines of page 48) that we could replace each such Xi

by an equivalent almost invariant set Zi such that Zi is not invertible and the
new family is in good enough position. (Good enough position means that if

U and V are any elements of E and two of the four sets U ()\V () are small,
then either one must be empty, or some element of E crosses both U and

V .) This allowed us to dene (X1; : : : ; Xn) in general. Unfortunately this

claim is incorrect. The error is in the existence part of Lemma 3.14 and is

already clear in the case when n = k = 1.
Here is the statement of the existence part of Lemma 3.14 in this case.

Let G denote a nitely generated group, and let H be a nitely generated

subgroup of G. Let X be a nontrivial H{almost invariant subset of G, such
that X is isolated. Then there is an almost invariant set Z equivalent to X,
such that Z is not invertible, and is in good enough position.

1

Appendix 203



The following example shows that this statement is false.

Example Let G denote the group Z2  Z2, let H denote the trivial sub-

group and let  denote the given splitting of G over H. Let X be a H{almost
invariant subset of G associated to . As X is associated to a splitting, it

crosses none of its translates and so is isolated in the set E(X) which con-
sists of all translates of X and X. Let Z be an almost invariant set which
is equivalent to X. If Z is in good enough position, we claim that Z must
be invertible. Thus we have the required counterexample to the above state-

ment.

Here is the proof of the claim that Z must be invertible. The key point
is that every translate of Z is equivalent to Z or Z, so that two translates
of Z never cross. Thus the fact that Z is in good enough position implies

that Z is in good position. It follows that E(Z), the set of all translates of
Z and Z, is nested. Now we can use Dunwoody's construction to produce
a G{tree T whose oriented edges correspond to the elements of E(Z). As Z
is equivalent to X which is associated to the given splitting , the splitting
of G determined by T must be conjugate to . In particular, the quotient
graph of groups GnT has one edge and two vertices, with the edge group

being trivial and the vertex groups having order 2. Thus T is a copy of the
real line and the elements in G of order 2 act on T by reections. Further
each vertex of T is the xed point of one of these reections. Let s denote
the oriented edge of T which corresponds to Z, choose the terminal vertex
w of s as the basepoint, and let ' : G ! V (T ) denote the G{equivariant
map such that '(e) = w. Then Z equals Zs. Let v denote the second vertex
of s. As v does not lie in the G{orbit of w, it follows that '1(v) is empty.
If k denotes the element of G which acts on T by a reection xing v, then
clearly kZs = Z


s so that kZ = Z

. Thus Z is invertible as claimed.

Here is the way to resolve this problem. If some isolated Xi is equivalent

to an invertible almost invariant set Yi, we need to make slight adjustments
at each stage of our construction. The above example shows that we may

not be able to nd almost invariant sets Zi equivalent to Xi, such that the

Zi's are in good enough position and not invertible. Thus we will not be able
to construct our algebraic regular neighbourhood of the Xi's as described on

pages 46{50. Instead of replacing each Xi by such a non-invertible set Zi,
we replace each Xi by an equivalent almost invariant set Yi so that the Yi's
are in good enough position. This can be done by Lemma 3.13. Then we

simply construct the graph of groups (Y1; : : : ; Yn). If no Yi is isolated and

2
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invertible, then this is (X1; : : : ; Xn). If some Yi is isolated and invertible, we
subdivide the corresponding edge of (Y1; : : : ; Yn), as discussed in Examples
3.10 and 3.11 on pages 44 and 45, and take (X1; : : : ; Xn) to be the resulting

graph of groups.

This involves corresponding changes in the statements and proofs at sev-

eral points in chapters 3, 4, 5 and 6:

Pages 50-51: the statement of Summary 3.16.

Pages 51-52: the proof of Lemma 3.17.

Pages 53-54: the discussion of the construction of an algebraic regular

neighbourhood of an innite family.

Page 62: the proof of part 2) of Lemma 4.10.

Page 67: Lemma 5.1 and its proof are correct, but the comment just be-

fore Lemma 5.1 that "it suces to prove that the V0{vertices of (fXg2 :
G) enclose the given X's in the case when the X's are in good position and

isolated X's are not invertible" is not correct. Thus Lemma 5.1 should be

stated and proved without this last assumption.

Page 75: the proof of Lemma 5.10.

Page 78: the proof of Theorem 5.16.

Pages 80-83: the discussion of the construction of an algebraic regular

neighbourhood of a family of almost invariant sets over groups which need

not be nitely generated.

Page 89: the proof of Theorem 6.6.

3
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Splittings over non-nitely generated groups
The second problem is in our treatment of splittings over non-nitely

generated groups. Before discussing the details, we need some background

discussion.

Let G be a nitely generated group. A HNN extension  of G is said to
be ascending if G = AC where at least one of the two injections of C into

A is an isomorphism. Note that if both injections are isomorphisms, then A
is normal in G with innite cyclic quotient. The diculty arises when one

considers ascending HNN extensions G = AC for which A is not nitely

generated. Such extensions are not at all unusual, as all that is needed is a

surjection from G to Z whose kernel A is not nitely generated. Whether or
not A is nitely generated, ascending HNN extensions have the property that
they can only be compatible with ascending HNN extensions. (Recall that

two splittings  and  of a group G are compatible if G is the fundamental
group of a graph of groups with two edges such that the associated edge

splittings are  and  .) The precise result is the following.

Lemma 1 Let  be an ascending HNN extension of a group G. If  is
compatible with a splitting  of G, then  is also an ascending HNN extension.

Proof. If  is compatible with  , then G is the fundamental group of a

graph  of groups such that  has two edges s and t and the associated edge
splittings are  and  respectively. As  is HNN, it follows that  has at
most two vertices. We claim that  has two vertices each of valence 2, so that

 is a circle. For otherwise, the edge s would be a loop, and the subgraph
given by t would carry the vertex group A of . But this is impossible as
one of the inclusions of the edge group of s into A is an isomorphism. Now
we know that  is a circle, it is easy to see that  is also an ascending HNN
extension.

Note that compatible ascending HNN extensions need not be conjugate.

To construct examples, let K be a subgroup of a group H such that K itself

has a subgroup L isomorphic to H. Let G be the fundamental group of a

graph of groups with underlying graph a circle, with two vertices labeled by

H and K and two edges labeled by K and L, so that the inclusion of the edge
group L into the vertex group H is an isomorphism and the other inclusions

are clear. If K and L are not isomorphic, the two edge splittings cannot be
conjugate. A simple such example can be found with H (and hence L) free
of rank 2, and K free of rank 3.

4
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The problem in our arguments is a technical one which relates to the

question of when two splittings are compatible. In particular, we are grate-

ful to Vincent Guirardel for showing us an example which demonstrates that

Theorem 5.16 is incorrect. His example consists of two splittings which have

intersection number zero but are not compatible. Both splittings are as-

cending HNN extensions over non-nitely generated groups. However such

splittings are the only source of problems, and we can correct our devel-

opment of the theory of algebraic regular neighbourhoods fairly easily. This

requires many changes to the paper including a modication of the denition

of an algebraic regular neighbourhood (Denition 6.1).

Here is Guirardel's example. Let G denote the free group on two genera-
tors a and b, and let f : G! Z be given by f(a) = 0, and f(b) = 1. Let K
denote the kernel of f , so that K is freely generated by the elements bkabk,
k 2 Z. Let  denote the splitting of G as KK , where both injections of
the edge group into the vertex group are isomorphisms. Let H denote the

subgroup of G generated by the elements bkabk, k  0, and let  denote the
splitting of G as HH , in which one inclusion is the identity and the other is
conjugation by b. We will show that the splittings  and  have intersection
number zero and cannot be compatible.

Let S and T denote the G{trees corresponding to  and  respectively.
Thus T is a copy of the real line, with a vertex at each integer point. Think of
T as the x{axis in the plane with S above it. We can describe S pictorially
by saying that each vertex of S has integer x{coordinate, no edge of S is
vertical, and at each vertex v of S, there is exactly one edge incident to v
from the right. Now the projection of the plane onto the x{axis induces a
G{equivariant map p : S ! T which induces the identity on G. Let s be an
edge of S and let t denote the edge p(s) of T , and orient s and t to point
to the left. Choose a base vertex  for S and let p() be the base vertex of
T . Thus we have ' : G ! V (S) given by '(g) = g(), for all g 2 G. If
we remove the interior of s from S, we are left with two subtrees of S. The
one which contains the terminal vertex of s is denoted by Ys, and we let Zs
denote '1(Ys). Similarly removing the interior of t from T yields two half
lines in T , and the one which contains the terminal vertex of t is denoted
by Yt, and we let Zt denote '

1(p1(Yt)). The sets Zs and Zt are almost
invariant subsets of G over H and K respectively which are associated to the

splittings  and  of G. Clearly Zs  Zt. As gZt is equivalent to Zt for every
g in G, we have Zs < gZt, for every g in G. Thus  and  have intersection
number zero. Now consider the set E of all translates of Zs and Zt and their

5
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complements in G. If  and  were compatible, E would correspond to the

edges of a G{tree. In turn this would imply that there must some translate
of Zt (or of Z


t ) which is < Zs. As Zs < gZt, for every g in G, this is clearly

impossible.

It is interesting to see how our construction of an algebraic regular neigh-

bourhood fails in this case. As no two elements of E cross, each element

of E is isolated in E and so forms a CCC by itself. It follows immediately

that the CCC's of E form a pretree. The problem is that this pretree is not

discrete. For if b acts on T by translating one unit to the left, then we have
the inclusions : : :  b2Zt  bZt  Zt and Zs < bkZt for each k  0. Thus

there are innitely many CCC's of E between Zs and Zt.

The error which causes all the problems occurs in the proof of Proposition

5.7. On page 72, lines -13 to -12, we assert that \there must be an element g
of G such that gX  U ." This is not correct in general. In order to appreciate
the problem, we need to discuss the proof of Proposition 5.7. Recall that we

have a family fXg of almost invariant subsets ofG in good position such that
the regular neighbourhoods of this family can be constructed as in chapter

3. Recall also that E denotes the collection of all translates of the X's and

X
's, and thatX is a nontrivialH{almost invariant subset of G which crosses

no element of E. Proposition 5.7 asserts that X is enclosed by a V1{vertex of
 so long as either H is nitely generated or X is associated to a splitting of

G. Our proof starts by showing that X is sandwiched between two elements

of E, i.e. there are elements U and V of E such that U < X < V . If this
condition holds then the remainder of our proof is correct. Further our proof

that X must be sandwiched between two elements of E is correct, so long as
H is nitely generated. In the case when H is not nitely generated, so that

X is associated to a splitting  of G, our proof is also correct so long as 
is not an ascending HNN extension. This was the case which we discussed

incorrectly on page 72, line -12. For convenience in what follows we will

say that a splitting of a group which is an ascending HNN extension over a

non-nitely generated group is special.

Given a collection E of almost invariant subsets of G, we will say that
an almost invariant subset X of G is sandwiched by E if there are elements
U and V of E such that U  X  V . We can now correct the statement
of part 2) of Proposition 5.7 by simply adding the hypothesis that X be

sandwiched by E. Our published proof of Proposition 5.7 shows that this
is automatic except possibly when X is associated to a special splitting of

6

208 Appendix



G. This weakens Proposition 5.7, but almost all of our applications will still
follow from this weakened version. Note that the proof of this weakened form

of Proposition 5.7 is substantially shorter.

Here is a list of consequential changes:

Lemmas 5.10 and 5.15 need an extra sandwiching assumption. In the last

paragraph of the proof of Lemma 5.10, on page 75, our arguments use the

assumptions that A is sandwiched between two elements of E and that any
element of E is sandwiched between two translates of A and A. The rst
assumption follows from the hypotheses of the lemma, but the second does

not and needs to be added to the list of hypotheses. Of course, the second

assumption is correct unless some edge splitting of  is special, and in this

case, we know that  must be a circle. The same point arises on page 77 in

the proof of Lemma 5.15.

The existence part of Theorem 5.16 is correct so long as we exclude special

splittings. Otherwise the two splittings  and  described above form a

counterexample. But the uniqueness part of Theorem 5.16 is correct, so that

Theorem 5.17 is still correct.

Lemma 5.19 is correct.

Lemma 5.21 is also correct. We note that the assumption in this lemma

and several later results that the regular neighbourhood has been constructed

as in chapter 3 avoids many of the above worries about sandwiching. In

particular, it implies that if P denotes the pretree of CCC's of E, the set of
all translates of all the X's and X


's, then P is discrete.

On pages 80-83, in the discussion of algebraic regular neighbourhoods of

almost invariant sets over possibly non-nitely generated groups, we need to

add a sandwiching assumption in order to prove existence for nite families.

For example, we could assume that each Xi is sandwiched by E(Xj), for each

i and j.
Proposition 5.23 also needs an additional sandwiching assumption.

In part 2) of the denition of an algebraic regular neighbourhood (Def-

inition 6.1), we need to add the assumption that the almost invariant set

associated to the splitting  is sandwiched by E.
Our main existence result (Theorem 6.6) is ne if the Hi's are all nitely

generated. In general, we need to add a sandwiching assumption. For exam-

ple, we could assume that each Xi is sandwiched by E(Xj), for each i and
j.
Our main uniqueness result (Theorem 6.7) is correct as stated. The proof

7
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uses Lemma 5.10 crucially, but the sandwiching assumption which needs to

be added to the statement of Lemma 5.10 holds automatically in the present

context.

The change in the denition of an algebraic regular neighbourhood means

that we need to change the statements of many later theorems in which we

describe the properties of the regular neighbourhoods we construct. For ex-

ample, part (5) of Theorem 9.4 needs the addition of a sandwiching assump-

tion. Note that we also used Proposition 5.7 to prove part (9) of Theorem

9.4, but this needs no change as the splittings considered are over nitely

generated subgroups of G. The same comments apply to all the similar later
results.

8
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Having discussed the two errors in the construction of an algebraic regular

neighbourhood, we now continue this list of errata in order of occurrence.

Page 28: There is an error in the second sentence of Example 2.34. In
this example, G denotes the free group of rank 2. The sentence in question
asserts that if C is a subgroup of G which is not nitely generated, then

e(G;C) = 1. This is incorrect. For example, if C is the kernel of the

abelianisation map G ! Z2, then e(G;C) = e(Z2) = 1. However this does
not invalidate Example 2.34. It is easy to see that there are many subgroups

C of G which are not nitely generated for which e(G;C) =1. For a specic
example, let H be a subgroup of G of index 2, so that H is free of rank 3,

and let C denote the kernel of some surjection from H to the free group F2
of rank 2. Then e(G;C) = e(H;C) = e(F2) =1.
Note that the argument in Example 2.34 does not need e(G;C) = 1.

All that is needed is that e(G;C) > 1 in order that there be a nontrivial

C{almost invariant subset of G.

Page 103: Theorem 7.11 is incorrect as stated, and this requires some

minor modications in the proofs of the applications of this result.

The wording of the statement needs to be modied. Let 1 and 2 be

graphs of groups decompositions of a group G. We will say that 2 is a proper
renement of 1 if it is obtained from 1 by splitting at a vertex so that the

induced splitting of the vertex group is nontrivial. A sequence of proper

renements will also be called a proper renement. Our proof of Theorem

7.11 assumes that k+1 is a proper renement of k. This assumption is

implicit in the second sentence of the proof, where we assert that we have only

to bound the length of chains of splittings of G over descending subgroups.
All of the above comments apply also to Theorem 7.13.

The rst paragraph of the proof of Theorem 8.2 uses Theorem 7.11, and

this paragraph needs changing as follows. Lines 1-6 of this paragraph are

ne. But the next sentence is incorrect. It should assert that if G possesses
a splitting 0 over a two-ended subgroup C 0 commensurable with H which

has intersection number zero with the edge splittings of G, then this splitting
is enclosed by some V0{vertex v of G, and determines a trivial splitting of
the vertex group G(v). This does not imply that 0 is conjugate to one of
the edge splittings of G. This requires changing the proof of Theorem 8.2

on lines 17-18 of page 111. Our choice of G does not imply that  must be
conjugate to one of the edge splittings of G, as claimed, but it does imply
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the result of the next sentence which is all we need.

At the end of the proof of Proposition 8.4, we quote Theorem 7.11 to

show that one cannot have an unbounded chain i of compatible splittings of
G over strictly descending subgroups, and this does follow from the corrected
version of Theorem 7.11. The use of Theorem 7.11 in the proof of Theorem

9.2 is correct as i+1 is a proper renement of i for each i.
Theorems 7.11 and 7.13 are used in several other places. The key point

to note is that the only problem which might occur is the existence of an

unbounded chain i of compatible splittings of G over strictly ascending

subgroups Hi. If this occurs and all the Hi's are V PC of the same length,

then they are all commensurable, and hence eachHi has large commensuriser.
In particular, when constructing an algebraic regular neighbourhood, the

splittings i must all be enclosed by a single V0{vertex of large commensuriser
type.

Page 132: Theorem 10.8 is false. This claries why it is so important

for our theory to consider all almost invariant subsets not just those which

correspond to splittings. The generalisations of Theorem 10.8 in Theorems

12.6, 13.15 and 14.11 are also false. We will describe a counterexample.

Let K denote the Baumslag-Solitar group BS(1; 2) = ha; t : tat1 = a2i.
Thus K has a natural expression as a HNN extension with innite cyclic

vertex group generated by a. It follows that K is nitely presented and

torsion free. The map from K to the integers Z given by killing a has kernel
C which is isomorphic to the additive group of the dyadic rationals Z[1

2
]. If we

choose the isomorphism so that a corresponds to 1, then t1at corresponds
to

1
2
and in general tnatn corresponds to 1

2n
. We let A denote the cyclic

subgroup of C generated by a and let An denote the cyclic subgroup of C
generated by tnatn. Thus A = A0 and the union of all the An's equals C.
It is easy to see that K admits no free product splitting. As K is torsion

free, it follows that K admits no splitting over any nite subgroup and so

is one-ended. Next we let G denote the group K  Z. Then G admits no

splitting over any V PCk subgroup, for k  1. Let H be an isomorphic copy

of G, let D, B and Bn denote the subgroups of H which correspond to C,
A and An respectively, and dene G to be G A=B H, the double of G along
A. Note that G is also nitely presented, and it is easy to see that G is

also one-ended. Thus the regular neighbourhood 1(G) exists. Note that G
commensurises A so that A has large commensuriser in G.
Now G admits splittings i over Ai and i over Bi which can be described
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in the following simple way. We dene i by writing

G = G A H = (G Ai Ai) A H = G Ai (Ai A H);

and dene i by writing

G = G B H = G B (Bi Bi H) = (G B Bi) Bi H:

Note that 0 = 0. It is easy to see that all these splittings are compatible.
In fact the denitions already show that i and 0 are compatible and that
i and 0 are compatible. The lemma below states that these are the only
splittings of G over a two-ended subgroup, up to conjugacy. It follows that
the family S1 of all splittings of G over two-ended subgroups contains an

innite collection of isolated splittings of G, which shows that S1 cannot
have a regular neighbourhood. Thus Theorems 10.8, 12.6, 13.15 and 14.11

are all false.

Lemma 2 Any splitting of G over a two-ended subgroup is conjugate to some
i or j.

Proof. Suppose that G has a splitting  over a two-ended subgroup. Let T
be the corresponding G{tree, so that GnT has a single edge. Recall that G
admits no splitting over any V PCk subgroup, for k  1. It follows that the
subgroups G and H of G must each x a vertex of T . These vertices must
be distinct as otherwise G itself would x a vertex of T . Also note that G
and H can each x only a single vertex of T , as otherwise G or H would x

some edge of T and hence itself be V PCk, for k  1, which is not the case.
Let v and w denote the vertices xed by G and H respectively, and let 
denote the edge path in T which joins them. As G and H together generate

G, it follows that  is an amalgamated free product. Further, by considering
canonical forms of elements, it is easy to see that  must consist of a single
edge. Thus G = P RQ, where P , Q and R denote the stabilisers of v, w and
 respectively. Note that this splitting of G is conjugate to . As G  P and
H  Q, it follows that G \ H = A  R. As R and A are each two-ended,
it follows that R contains A with nite index. In particular we have the

well known fact that R must be conjugate into G or into H. Now consider
the subgroup GR of P generated by G and R. If R is contained in G, this
subgroup equals G. Otherwise the fact that R lies in some conjugate of G or
H implies that GR = GAR. Similarly the subgroup HR of Q generated by
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H and R is equal either to H or to R AH. Now the inclusions GR  P and
HR  Q induce a natural injection of GR R HR into G = P R Q. As G
and H together generate G, this injection must also be surjective and hence
an isomorphism. It follows that GR = P and HR = Q. If R lies in G and in
H, the fact that R contains A implies that R = A. In this case GR = G and
HR = H, and the splitting  is conjugate to 0. If R lies in G, the facts that
G is isomorphic to K  Z and R contains A with nite index imply that R
must equal An, for some n  0. In this case GR = G and HR = AnAH, and
the splitting  is conjugate to n. Similarly if R lies in H, then R must equal
Bn, for some n  0, and in this case the splitting  is conjugate to n. This
leaves the case when R is not contained in G or in H. In this case we have an
isomorphism between G AH and (G AR) R (R AH) = G AR AH. But
this is impossible as we know that R is conjugate into G or H. The result
follows.

Page 144: The statement of Theorem 12.3 is not quite correct. There

is a special case when n consists of a single V0{vertex. In this case there
is a possibility which is not mentioned in the statement. Namely G may be
V PC(n + 1). This possibility is contained in the paper by Dunwoody and
Swenson but we omitted it in error when we applied their results.

The same omission occurs in the statements of Theorems 12.5, 12.6, 13.12,

13.13, 14.5, and 14.6.

Page 161: Example 14.1 is wrong. Recall that in chapter 14, we gave a
construction of the regular neighbourhood 1;2;:::;n in which we restrict atten-

tion to almost invariant sets over virtually abelian subgroups. The point of

Example 14.1 was to show that this construction does not work if one consid-

ers almost invariant sets over virtually polycyclic subgroups. After discussing

the error in Example 14.1, we will give a new example which demonstrates

the phenomenon which Example 14.1 was supposed to demonstrate. Thus

it is still correct to say that the construction of 1;2;:::;n does not work if one

considers almost invariant sets over virtually polycyclic subgroups.

Example 14.1 is supposed to be an example of a one-ended group G with
incommensurable polycyclic subgroups H andK of length 3, and 2{canonical

almost invariant sets X and Y over H andK respectively which cross weakly.

The sets X and Y described in the example do cross weakly but they are not
2{canonical, as we will now show.
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Recall that G is constructed by amalgamating H, K and a third group

L along a certain innite cyclic subgroup C. Thus G has subgroups H CK,
H CL, KCL. Further G can be expressed as the amalgamated free product
of the rst two groups over H, and X is an H{almost invariant subset of G
associated to this splitting. Similarly, the rst and third groups give an

amalgamated free product decomposition of G over K, and Y is associated

to this splitting. Recall that  denotes the graph of groups structure for

G which is a tree with four vertices carrying the subgroups C, H, K and

L such that each edge group is C. We will label the vertices c, h, k and l
correspondingly. Note that all three edges are incident to c.
The error in our argument occurs where we claim that ifW is a nontrivial

almost invariant subset ofG over a two-ended subgroup A, thenW is enclosed

by the vertex l of  which carries L. The two edge splittings given by the
edges ch and ck of  are clearly not enclosed by l, and so the associated
C{almost invariant subsets of G are also not enclosed by l.
Now we will show that X and Y are not 2{canonical. In fact, they

are not 1{canonical. Recall that X is associated to the splitting  of G
as (H C K) H (H C L). We claim that this splitting is not compatible

with the splitting  of G over C as H C (K C L). This means that X
crosses the C{almost invariant subset of G associated to  , so that X is not

1{canonical. A similar argument shows that Y is also not 1{canonical. To

prove our claim suppose that  and  are compatible. This implies that G is
the fundamental group of a graph 0 of groups which has two edges such that

the associated edge splittings are  and  . As neither splitting is HNN, 0

must be homeomorphic to an interval with vertices P and R at the endpoints
and one interior vertex Q. Choose notation so that  is the edge splitting
associated to PQ, and that  is the edge splitting associated to QR. Thus
the edge group associated to QR is C. Also the group GP must be H C K
or H C L, and the group GR must be H or K C L. If GR is H, the fact that
in either case GP also contains H implies that H is contained in each edge

group of 0. But this is impossible as C cannot contain H, as C is cyclic and
H is not. It follows that GR must be K C L. But GP contains one of K or

L, which implies that K or L is contained in C which is again impossible.

This completes the proof of the claim.

Here is an example of a one-ended, nitely presented groupG which has 2{
canonical splittings 1 and 2 over V PC3 subgroups C1 and C2 respectively,
such that 1 and 2 cross weakly and C1 and C2 are not commensurable.
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This replaces the incorrect Example 14.1.

Let B denote the free abelian group of rank 2, let  be a hyperbolic
automorphism of B (i.e.  has two real eigenvalues with absolute value not
equal to 1), and let C be the extension of B by Z determined by . Thus B
is normal in C with quotient isomorphic to Z. Fix an element  of C such

that conjugation of B by  induces the automorphism , and let A denote
the innite cyclic subgroup of C generated by . Thus A projects onto the
innite cyclic quotient of C by B. A crucial property of C, which follows
from the hyperbolicity of , is that any V PC2 subgroup of C must be a

subgroup of B. Let nA denote the subgroup of A of index n. As A is a

maximal cyclic subgroup of C, it follows that ZC(nA) = A, where ZC(X)
denotes the centraliser in C of X. Note that C is the fundamental group of
a closed 3{manifold M which is a torus bundle over the circle.

For any integer i, let Bi denote a copy of B, let i denote the automor-
phism of Bi which corresponds to , let Ci denote the corresponding copy of
C, and let i denote the corresponding element of Ci. For any pair i; j of
distinct integers, let Cij denote the extension of Bi  Bj by Z, given by the
automorphism i  j. Fix an element ij of Cij such that conjugation of
BiBj by ij induces the automorphism i j, and let Aij denote the in-
nite cyclic subgroup of Cij generated by ij. Thus there is a natural inclusion
of Ci into Cij which sends i to ij, and hence sends Ai to Aij.
We note the following facts about the Cij's. Each Cij is one-ended and

torsion free, and any V PC2 subgroup of Cij must be a subgroup of BiBj.
It follows that each Cij has no nontrivial almost invariant subsets over any
V PC subgroup of length  2. It is easy to see that ZCij(nAij) = Aij.
We construct a group H = C13C1C01C0C02C2C24, where the inclusions

of the edge groups into the vertex groups are the natural ones. Thus we have

in H the equations 13 = 1 = 01 = 0 = 02 = 2 = 24, and we
abuse notation and denote this element by  and the cyclic subgroup of H
it generates by A. The natural homomorphisms Cij ! Z all t together to
yield a homomorphismH ! Z which maps A onto Z. We also choose a group
D which is the fundamental group of a closed hyperbolic 3{manifold and has
H1(D) = Z. Then D is one-ended and torsion free. It has no nontrivial

almost invariant subsets over any V PC1 subgroup and contains no V PC2
subgroups. Thus D has no nontrivial almost invariant subsets over any V PC
subgroup of length  2. We dene G = H A D, where A is identied with
a cyclic subgroup of D which maps onto H1(D). Thus the homomorphism
H ! Z extends to one from G to Z which maps A onto Z. As H and D are
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both torsion free, so is G. Note that as A is a maximal cyclic subgroup of
D, it follows that ZD(A) = A.
The group H is the fundamental group of a graph  of groups with

underlying graph an interval divided into three edges. The edge groups are

C1, C0 and C2, and we denote the corresponding edges by e1, e0 and e2
respectively. The vertex groups are C13, C01, C02 and C24, and we denote
the corresponding vertices by v13, v01, v02 and v24 respectively. The group G
is the fundamental group of a graph  of groups obtained from  by adding

one edge e with associated group A. One end of e is at v13 and the other end
has associated group D.
We take the splitting 1 of G to be the edge splitting of  associated to

the edge e1. Thus 1 is a splitting of G of the form

G = hC13; Di C1 hC01; C02; C24i :

To describe the splitting 2 of G, we rst slide the edge e so as to be attached
to v24 instead of v13. Now 2 is the edge splitting of this new graph of groups
which is associated to the edge e2. Thus 2 is a splitting of G of the form

G = hC13; C01; C02i C2 hC24; Di :

It is easy to check that 1 and 2 are not compatible. If 1 and 2 cross
strongly, then some conjugate of C1 must intersect C2 in a V PC2 subgroup.
But our construction of G shows that conjugates of C1 and C2 intersect
trivially or in a conjugate of A. It follows that 1 and 2 must cross weakly.
Note that it also follows that C1 and C2 are not commensurable subgroups
of G.
It remains to prove that the splittings 1 and 2 are 2{canonical. We

will show that G has no nontrivial almost invariant subsets over any V PC2
subgroup, and that it has only one (up to equivalence, complementation and

translation) nontrivial almost invariant subset over a V PC1 subgroup, which
arises from the splitting  of G over A associated to the edge e of . Thus
 is the splitting of G as G = H A D. As each of 1 and 2 is clearly
compatible with  , it follows that they do not cross the associated almost
invariant subset over A, and so are 2{canonical, as required.
First we prove the following technical result.

Lemma 3 Let K be a subgroup of G such that, for any conjugate L of K in

G,
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1. the number e(Cij; L \ Cij) = 1, for ij = 13, 01, 02 or 24, and

2. the number e(D;L \D) = 1, and

3. L \ Ci has innite index in Ci, for i = 0, 1 or 2, and

4. L \ A has innite index in A.

Then e(G;K) = 1.

Proof. Corresponding to the graph of groups decomposition  of G, there
is a graph of spaces decomposition of a space X with fundamental group G.
The covering space XK of X with fundamental group K is a graph of spaces,

where each vertex space has fundamental group equal to the intersection of

K with a conjugate of some Cij or of D, and each edge space has fundamental
group equal to the intersection of K with a conjugate of C0, C1, C2 or A. The
hypotheses imply that each vertex space has 1 end and that each edge space

is non-compact. It follows easily that XK has 1 end, so that e(G;K) = 1 as
required.

Now we summarise the main properties of G.

Lemma 4 The group G has the following properties.

1. G has 1 end.

2. If K is a V PC1 subgroup of G, then either e(G;K) = 1 or K is

conjugate commensurable with A.

3. CommG(A) = A.

4. If K is a V PC2 subgroup of G, then e(G;K) = 1.

Proof. 1) Each Cij is one-ended, as is D, and each of C1, C2 and A is

innite. Now we apply Lemma 3, with K equal to the trivial group, to see

that e(G) = 1, as required.
2) Let K be a V PC1 subgroup of G. Thus the intersection of K with

any subgroup of G is V PCk, for some k  1. Now we apply Lemma 3. It

follows that conditions 1)-3) of that lemma are satised. Hence e(G;K) = 1
unless condition 4) fails. This would mean that there is a conjugate L of K
such that L\A has nite index in A. As K and A are both V PC1, it follows
that e(G;K) = 1 unless K is conjugate commensurable with A.
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3) Let g denote an element of CommG(A). As there is a homomorphism
of G to Z which maps A onto Z, it follows that g must lie in ZG(kA),
the centraliser of kA in G, for some non-zero k. Now recall that G is the

fundamental group of the graph  of groups. As A is contained in each vertex
group, and the centraliser in each vertex group of kA is equal to A, it follows
that ZG(kA) = A. Hence CommG(A) = A, as required.
4) Let K be a V PC2 subgroup of G. Thus the intersection of K with

any subgroup of G is V PCk, for some k  2. Now we apply Lemma 3. It

follows that condition 1) and 3) of that lemma hold. As the intersection of

any conjugate of K with D must be V PCk, with k  1, it also follows that
condition 2) holds. Hence e(G;K) = 1 unless condition 4) fails. This would
mean that there is a conjugate L of K such that L\A has nite index in A.
As any V PC2 group has a subgroup of nite index isomorphic to Z  Z, it
follows that any V PC1 subgroup of K has large commensuriser in K. Thus
this would imply that A has large commensuriser in G. Now part 3) of this
lemma shows that this also is impossible. It follows that if K is a V PC2
subgroup of G, then e(G;K) = 1, as required.
Next we consider almost invariant subsets of G which are over a V PC1

subgroup.

Lemma 5 G has only one (up to equivalence, complementation and transla-
tion) nontrivial almost invariant subset over a V PC1 subgroup, which arises
from the splitting  of G over A as G = H A D.

Proof. Suppose that G has a nontrivial almost invariant subset over a V PC1
subgroup K, so that e(G;K) > 1. Recall from part 2) of Lemma 4 that if

K is a V PC1 subgroup of G, then either e(G;K) = 1 or K is conjugate

commensurable with A. As CommG(A) = A, by part 3) of Lemma 4, this
implies that K is conjugate to a subgroup of A.
Now suppose that K is a subgroup of A and, as in the proof of Lemma 3,

consider the cover XK of X with fundamental group K. Part 3) of Lemma
4 tells us that CommG(A) = A, so that exactly one edge space of XK is

compact. Thus, as in the proof of Lemma 3, each of the two complementary

components of this edge space has one end. It follows that e(G;K) = 2, for
any subgroupK of nite index in A. HenceG has only one (up to equivalence,
complementation and translation) nontrivial almost invariant subset over a

V PC1 subgroup. As the splitting  of G over A has such an almost invariant
subset of G associated, the result follows.
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