
SUBRIEMANNIAN GEOMETRY: TWO OPEN PROBLEMS AND

ONE FALLING CAT

RICHARD MONTGOMERY

I describe two open and closely related problems in subRiemannian geometry. I
begin introducing this geometry through the problem of the falling cat. I end by
reviewing some recent progress on the problems.

1.

A cat, falling from upside down with no spin, will right herself and land on her
feet. How does she do it? What is her optimal strategy? We will use these questions
to acquaint ourselves with subRiemannian geometry.

Imagine dropping a cat and a brick at the same time from the same height. (Hold
them a few meters apart. Drop them from a meter or so above a couch, not from
the top of the leaning tower of Pisa.) Drop them with no spin. See figure 1. They
fall according to freshman physics, and land at the same time. The brick cannot
suddenly stop its descent to hover in mid-air, nor can it start suddenly rotating
about its long axis. Neither can the cat.

What the cat can do that the brick cannot is change shape. Through a sequence
of mid-air shape changes she achieves an overall 180 degree rotation about the axis
of her backbone. Upright, she stops changing shape and continues falling like the
brick with no spin and lands on her feet. How do her shape changes lead to an
overall rotation?

Figure 1. One of the earliest stroboscopic photos, taken in 1894
by Étienne-Jules Marey. See https://publicdomainreview.org/
collection/photographs-of-a-falling-cat-1894/ for details.
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What is “a shape”? Two objects in space have the “same shape” if a rigid motion
takes one object to the other. The set of rigid motions of space forms a Lie group
G, the group generated by translations and rotations. So, “a shape” of the cat is a
point in the quotient space S which we call shape space. This quotient space forms
the base of a principal G-bundle whose total space is the configuration space of the
cat, a space whose points represent shapes of cats, located and oriented in space.

There is nothing at all that the cat can do to affect her overall descent, which
is to say the translational part of G. She translates downward just like a brick. So
we may as well get rid of the translational part of G and just focus on the rotation
group SO(3). We will do so by going into an accelerating reference frame whose
origin is at the cat’s center of mass and whose axes are parallel to some inertial
axes, say the edges made of the walls of the room. Having drug Galileo into our
conversation we now drag Einstein in and invoke his principle of equivalence. The
physics experienced by a cat in free-fall is the same physics experienced by a cat
floating in zero gravity. Now imagine our outer-space cat making her shape changes.
At the end of her shape changes she suffers some rigid rotation g about the origin.
This rotation is the same as what she would suffer if she performed the same shape
changes while in freefall.

The relevant physics turning a curve in the cat’s shape space into an overall
rotation is conservation of angular momentum. Angular momentum is a vector
quantity which does not change during free-fall. It measures the spin of objects
and is zero for non-spinning objects. Since the cat was dropped with no spin,
her angular momentum remains zero throughout free-fall. We recall a formula for
angular momentum. The total angular momentum of N point masses m1, . . . ,mN

located instantaneously at positions q1, . . . , qN ∈ R3 and moving with velocities
v1, . . . vN is given by

(1) J(q, v) =
∑
a

maqa × va ∈ R3.

By taking N large enough we can suppose that the N vectors qa describe the com-
plete configuration of the cat relative to our origin. Think of them as representative
marker points, head, feet, hips, vertebrae, etc. There will be constraints amongst
the vectors representing fixed bone lengths, ligaments and muscles holding the cat
together to make it a cat. Note that

(2)
∑

maqa = 0.

since the cat’s center of mass is the origin. The set of all allowable q = (q1, q2, . . . , qN )
sweep out the cat’s configuration space denoted Q. In this model Q ⊂ (R3)N . Al-
ternatively, we could make up some continuum model of the cat. However we model
the cat, her configuration space will be a manifold Q on which SO(3) acts freely
and the angular momentum will be a vector-valued one-form J : TQ → R3 so that
J(q, v) is linear in v ∈ TqQ. Thus

D(q) := {v ∈ TqQ : J(q, v) = 0} ⊂ TqQ

is a linear subspace. Conservation of angular momentum tells us that in free-fall
any motion q(t) ∈ Q of the cat must satisfy

(3) v(t) =
dq

dt
∈ D(q(t))
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Figure 2. The loop in shape space represents a re-orientation
strategy for the falling cat. The group G is SO(3). The holonomy,
represented by the small top arrow, is the amount by which the cat
rotates upon traversing this loop. The total space containing the
G-fibers is the configuration space for the cat. The small planes in
the configuration space represent the distribution planes.

We reorganize the above facts into a standard geometric set-up. Shape space
S is the quotient space of Q by SO(3) so it forms the base space of a principal
SO(3)-bundle

(4) π : Q
SO(3) // S

The distribution D =
⋃

q D(q) is the horizontal space for a connection on this

principal bundle. This means that D(q) is transverse to the fiber of π. The map π
is the quotient map, and so assigns to each cat configuration the shape of that cat.

As the cat changes her shape this shape traces out a curve s(t) in S. The actual
cat configuration, the curve q(t) of “located oriented cats” sitting in space, is the
horizontal lift of this curve, which means that π(q(t)) = s(t) and that the velocity
constraint (3) holds. High-speed photography shows that the shape curve s(t) is
nearly closed: s(0) = s(1). The cat’s first problem, ‘how do I change my shape so
as to land on my feet?” has become the problem of finding a loop s(t), 0 ≤ t ≤ 1
in her shape space whose holonomy is the element g ∈ SO(3) which is a 180 degree
rotation about her ventral axis: q(1) = gq(0). This problem has a function space’s
worth of solutions s(t).
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The second problem we had posed for our falling cat was to find an optimal
re-orientation strategy s(t). The answer of course depends on the choice of what
to optimize. What the actual cat optimizes, if anything, is more up to evolution,
chance, timing, and survival of the fittest, than it is up to mathematics or physics.
But , being mathematicians, we use the natural metric lying around from mechanics.
Return to our N landmark points q1, q2, . . . qN and their velocities v1, . . . , vN . The
kinetic energy K of a motion is given by

(5) K(v) :=
1

2

∑
ma|va|2

which we write as ∥v∥2 = 2K(v) where ∥v∥2 = ⟨v, v⟩ and where ⟨·, ·⟩ is an SO(3)-
invariant Euclidean inner product on (R3)N and hence, by restriction, a Riemannian

metric on Q. The second problem then becomes: minimize
∫ 1

0
K(v(t))dt subject to

the constraint that the loop s(t) in S solves the first problem: namely its horizontal
lift q(t) leads to an upright cat q(1), which is to say the correct holonomy g.

This is a constrained minimization problem. The constraints are that v(t) ∈
D(q(t)) and that the endpoints generated by the associated horizontal curve q(t), 0 ≤
t ≤ 1 with q̇(t) = v(t) are related by the required holonomy: q(1) = gq(0) where g
is the 180 degree rotation about the ventral axis of the located cat q(0).

2. What is subRiemannian geometry?

Forget the Lie group action on Q. Keep the linear sub-bundle

D ⊂ TQ

of its tangent bundle TQ and the fiber inner product ⟨·, ·⟩ on D. The data (D, ⟨·, ·⟩)
defines a subRiemannian geometry on the manifold Q.

Call an absolutely continuous path ‘horizontal’ if it is tangent to D. (Recall the
derivative of an absolutely continuous path q : I → Q exists at almost all points
t of the interval I of its domain.) Use the inner product to measure the length of
such a path, as in Riemannian geometry:

(6) ℓ(q) =

∫
I

√
⟨q̇, q̇⟩dt.

Given two points A,B ∈ Q we look for the shortest horizontal path that joins them.
Such a path is called a subRiemannian geodesic. The optimal cat re-orientation
problem as we formulated it is a problem of finding a subRiemannian geodesic.

Open Problem 1. Must a subRiemannian geodesic be smooth?

3. Geting from A to B

Before delving into the subRiemannian geodesic problem we ought to know
whether or not there is any horizontal path at all joining A to B. If D is invo-
lutive then the answer is typically ‘no’. Recall that to say that D is involutive
means [D,D] ⊂ D. The brackets denote Lie brackets of vector field and we have
abused notation by letting D also mean the sheaf of all smooth vector fields on Q
which take values in D ⊂ TQ. Thus [D,D] denotes the sheaf generated by the Lie
brackets of pairs of vector fields taken from the sheaf D. The Frobenius theorem
asserts that if D is involutive then the set of all points B joined to A by horizontal
paths forms the leaf of a foliation which is tangent to D. These leaves are immersed
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submanifolds of Q whose dimension equals the rank of D. A typical B does not lie
on the leaf through A, so one cannot go from A to B.

At the other extreme of being involutive are the bracket-generating distributions.
Suppose that [D,D] ̸= D. Set D2 = [D,D] and keep taking Lie brackets with D,
setting D3 = [D,D2] and so on. If for some j we have that Dj = TQ then we say
that D is bracket-generating. Equivalently, D is bracket-generating if every vector
in the tangent space to Q at any point can be written as a linear combination of
iterated Lie brackets of vector fields tangent to D at that point. A theorem due to
Rashevskii in 1938 and independently to Chow in 1939 asserts that for a bracket-
generating distribution on a connected manifold any two points can be connected
by a horizontal path.

I pause the narrative for a biographical “station break”. Chow (1911-1995) is
the same Chow whose name is central in algebraic geometry. His remarkable story
of leaving China, beginning college education in Kentucky, continuing in Chicago,
Gottingen, and Hamburg, marrying, leaving Nazi Germany, returning to China
to find himself in Nanking during the war with Japan, and then, with some help
from Chern, moving again to the U.S. where he had a position at the Institute of
Advanced Studies can be found at [3]. Rashevskii (1907-1983) was born, graduated,
and died in Moscow. He was the head of the differential geometry department
at Moscow State (Lomonosov) University from 1964 until his death. Agrachev, a
central figure in the research around the problems I describe here, wrote to me about
Rashevskii’s influence on him when he was an undergraduate, “I more liked history,
philosophy and things like that but it was the Soviet Union and I realised that any
activity of this kind is under total ideological control of the authorities. Trying to
find something ideologically neutral, I took the book by Hilbert ‘Foundations of
Geometry’ (Russian translation). This is an extremely boring book but there was
a long introductory article (something like 50 pages or more) about the history of
the 5th Euclidean postulate written by Rashevskii. It was so exciting and I decided
to try to enter the Math. department.”

4. Control theory

We can view the Chow-Rashevksii theorem and subRiemannian geodesics from
a control-theoretic perspective. For simplicity, assume D is rank 2 and is framed by
two smooth vector fields X1, X2 : Q → TQ. Then the derivative of any horizontal
path q(t) can be expressed as

(7) q̇(t) = u1(t)X1(q(t)) + u2(t)X2(q(t))

The u1(t), u2(t) are viewed as “controls”- internal torques for changing the shape
of the cat, if you will. Take the controls to be square integrable functions of t
with t ∈ I = [0, 1]. Consider (7) as an initial value problem. Specifying the initial
condition q(0) = A and the controls yields a unique absolutely continuous path q(t),
t ∈ I by solving (7). Write ΩA for the space of horizontal absolutely continuous
horizontal paths starting at A and parameterized by I. Then (7) together with
q(0) = A defines a global chart ϕ : L2(I,R2) → ΩA. The endpoint map is the map
q(·) 7→ q(1) which sends a path to its endpoint. We write it as

(8) endA : ΩA → Q; endA(q) = q(1)

The Chow-Rashevskii theorem asserts that if D is bracket-generating then endA is
an open mapping. It is not hard to show that the image of endA is also closed,
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so as a corollary we get the original version of Chow-Rashevskii: every point B
can be connected to A by a horizontal path when D is bracket-generating and Q is
connected.

We move on to the problem of subRiemannian geodesics. We may assume that
X1, X2 are orthonormal relative to our inner product on D. Then the length (6) of
our horizontal path as specified by our chart is

ℓ(q) = ℓ(u) =

∫
I

√
u1(t)2 + u2(t)2dt.

The subRiemannian geodesic problem is thus a constrained minimization problem:
minimize ℓ(u) subject to the constraint endA(u) = B.

As we explain in the next section, a non-smooth subRiemannian geodesic q ∈ ΩA

must be a critical point of the endpoint map. Consequently, the following problem
becomes important in answering our first problem, problem 1.

Open Problem 2. Does Sard’s theorem hold for the endpoint map? In other
words, is the set of critical values of the endpoint map (8) a set of measure zero in
Q?

A ‘yes’ answer to this question would imply that for almost every end point B every
subRiemannian geodesic connecting A to B is smooth.

We recall that the standard Sard theorem asserts that if G is a smooth map
between finite-dimensional smooth manifolds then the set of critical values of G
has measure zero within the range manifold. This theorem is one of the basic
workhorse theorems of differential topology. However the Sard theorem is false
in general when the domain manifold is infinite-dimensional. See for example [5]
where Kupka wrote out a scalar cubic polynomial P : ℓ2 → R whose set of critical
values is the unit interval.

We reserve a special name for the horizontal curves which are critical points for
the endpoint map.

Definition 4.1. A singular curve for a distribution D is a horizontal curve which
is a critical point for the endpoint map (8), where the base point A of the map is
the curve’s starting point.

5. Singular Geodesics.

The subRiemannian geodesic problem is a constrained minimization problem:
minimize F subject to a constraint G = k. Here F and G are smooth functions
and k is a constant. We teach multi-variable calculus students to approach such
problems by introducing a Lagrange multiplier λ for the constraint function. We
tell them to form F + λG, set its differential to zero and solve, remembering to
impose G = const. This prescription works great if k is a regular value for the
constraint function G. But if k is a singular value for G then the method may fail
to detect minimizers which lie on the singular locus of G. As a simple example
suppose that G(x, y) = y3 − x2 and k = 0. Then the cusp (x, y) = (0, 0) of G = 0
is a local minimum for any linear function F (x, y) = ax + by for which b > 0.
The prescription we teach our students fails to catch the singular point on the zero
locus.

To fix up the Lagrange multiplier method we must also include a multiplier λ0

for the function F to be minimized. We insist that (λ0, λ) ̸= (0, 0). It is a theorem
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that any constrained minimizer must lie among the critical points of the pencil of
functions λ0F + λG. The cusp point of our above example is caught by allowing
λ0 = 0, λ ̸= 0. Minimizers for which λ0 = 0 are called “singular” minimizers in
that they correspond to critical points of the constraint function and so possible
singular points of the variety G = k. The extremals for which λ0 ̸= 0 are called
‘normal’ or “regular”.

The regular minimizers of the subRiemannian geodesic problem are character-
ized as being the projections to Q of solutions to a smooth ODE, in particular of a
smooth Hamiltonian vector field. For several decades it was believed that all sub-
Riemannian geodesics were regular minimizers. Several false proofs could be found
in reputable journals. In 1990 I established the existence of singular minimizers:
subRiemannian metrics supporting geodesics which are singular curves which are
not regular minimizers. My examples could not be perturbed away: their singular
geodesics persist when the distribution and metric on it are perturbed. The exis-
tence of these geodesics turned the previously apparently closed problem (1) back
into an open one.

6. Magnetic fields and first examples

Simplify the cat problem by replacing the group SO(3) by the additive group R
and the principal bundle (4) by the bundle R → R3 → R2 where π(x, y, z) = (x, y).
Continue to take the distribution D to be the horizontal distribution associated to
a connection on this bundle. Such a distribution can be expressed as the vanishing
of a connection one-form

θ = dz −A1(x, y)dx−A2(x, y)dy(9)

= dz − α,(10)

so that a curve c(t) = (x(t), y(t), z(t)) is horizontal if and only if

ż(t) = A1(x(t), y(t))ẋ(t) +A2(x(t), y(t))ẏ(t)

where the dots denote time derivatives. The horizontal curve c(t) is uniquely de-
termined by its planar projection (x(t), y(t)) and the value of z at a single value of
t.

Write

dα = β(x, y)dx ∧ dy

For reasons to be described momentarily we think of β as a magnetic field, or more
accurately, the z-component of a magnetic field orthogonal to the xy plane.

Theorem 6.1. A non-constant horizontal curve is singular if and only if its pro-
jection lies in the zero locus β = 0 of the magnetic field. If zero is a regular value of
β then any sufficiently short arc of such a singular horizontal curve is a minimizing
geodesic between its endpoints.

This fact regarding the geodesic nature of the zero locus is independent of the
inner product on D used to define the subRiemannian structure. The lengths of
the “sufficiently short” arcs which minimize will depend on this inner product.
In order to explain why we used the words “magnetic”, take for inner product
the one for which the length of a horizontal curve is the Euclidean length of its
planar projection. With respect to this inner product the horizontal vector fields
X1 = ∂

∂x +A1(x, y)
∂
∂z and X2 = ∂

∂y +A2(x, y)
∂
∂z form an orthonormal frame for D.
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Endowed with this subRiemannian structure the ODEs characterizing the regular
geodesics are:

ẍ = λβ(x, y)ẏ

ÿ = −λβ(x, y)ẋ

λ̇ = 0

ż = A1(x, y)ẋ+Ax(x, y)ẏ

The constant λ plays the role is the Lagrange multiplier of F + λG. These are
precisely the ODEs which describe the motion of a non-relativistic charged particle
travelling in the plane under the influence of the planar magnetic field β. The
constant λ is λ = e/m where e is the charge of the particle and m its mass.

A simple computation shows that the curve β = 0 (assumed a smooth curve)
satisfies the regular geodesic equations if and only if the curve is a straight line.
Consequently as long as our zero locus does not contain a straight line segment no
arc of any of the geodesics of the theorem are regular geodesics.

7. Progress

We describe three recent results which represent progress on these two open
problems.

7.1. No Corners. Theorem 6.1 covered the case where zero is a regular value of
β and consequently the zero locus β−1(0) is a smooth curve. However we can take
0 to be a critical value and the zero locus continues to capture all of the singular
curves. That is, any singular non-constant horizontal curve lies within the zero
locus. As an example, take β = xy. Its zero locus is the union of the x and y axes.
Travel down along the y axis to the origin then turn along the x axis to form a
right angle. Parameterize it and take its horizontal lift. Could this be a geodesic?
No!

Theorem 7.1. [4] SubRiemannian geodesics cannot have corners. More precisely,
if at some point along a geodesic both its right and left derivatives exist then these
two derivatives must be equal.

This theorem, published in 2016 by Hakavouri and LeDonne in [4], represents the
most serious progress made to date on problem (1).

At first glance it might seem this theorem solves problem 1, or at least shows that
the geodesics must be continuously differentiable (i.e. C1). However a rectifiable
path (parameterized by arclength) can have singularities much less tractable than
corners. It can have spirals leading to a point on the curve where neither the right
nor the left-handed derivative exist. Worse, its set of non-differentiable points may
form a measure zero Cantor set in which case we cannot separate the bad points
from each other. Showing that the set of non-differentiable points of a singular
geodesic forms a finite set would be huge progress. So the problem remains open
and we do not even know if geodesics need be C1.
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7.2. Singular minimizers. The extent of our ignorance around problem 2 is large.
We cannot even exclude the possibility that the set of endpoints of singular curves
starting at A forms a neighborhood of A. However, if we restrict ourselves to
singular curves which are also minimizers the situation is markedly better.

Theorem 7.2. The set of endpoints of singular minimizers forms a set whose
complement is open and dense.

Recall that a subset of a manifold whose complement is open and dense may still
have postive measure. Examples are the fat Cantor subsets of the real line. So this
theorem allows for the possibility that the endpoints of singular minimizers form a
set of positive measure. See chapter 11 of [1] for a proof of the theorem and further
information around it.

7.3. Strong Sard. This next result is specific to rank 2 distributions in 3 di-
mensions. The magnetic field case of (10) is such a case. We can define such a
distribution locally by the vanishing of a one-form θ as we did in equation (10).
Choose a volume dx ∧ dy ∧ dz for Q = Q3 and write

(11) θ ∧ dθ = fdx ∧ dy ∧ dz

In our magnetic example f = β is the magnetic field. The distribution is said to
be “contact” if f ̸= 0. The study of contact distributions and their invariants has
become an active area in the last 30 years, the area called “contact topology”. But
contact distributions admit no non-constant singular curves. Consequently, the
Sard problem becomes vacuous near contact points of our distribution, i.e. near
points A with f(A) ̸= 0.

Suppose that θ and the volume form are analytic so that f is analytic. It is zero
if and only if the distribution is involutive. So suppose that f is a nonconstant
analytic function with a nontrivial zero locus

{q : f(q) = 0} = M ⊂ Q.

This zero locus M , known as the Martinet surface, is an analytic surface which
may have singularities, and which contains all singular curves. Since surfaces of a
3-manifold have measure zero, the Sard problem, Open Problem 2, is automatically
answered in the affirmative.

Subsequent analysis suggested the following strengthening of the Sard problem.

Problem 7.1 (Strong Sard). Suppose A ∈ M and that M ⊂ Q with M the Martinet
(=non-contact) hypersurface for an analytic rank 2 distribution as described above.
Do the set of critical values B of the end point map have measure zero within M?

In 2022 A. Belotto da Silva, A. Figalli, A. Paruśınski and L. Rifford [2] answered
this question affirmatively.

8. Further Reading

I can recommend two books on the subject, [1] and [6]. For a short and lively
introduction making connections between subRiemannian geometry and the geome-
tries associated to other 2nd order linear PDE see the article “Realms of Mathemat-
ics: Elliptic, Hyperbolic, Parabolic, Sub-Elliptic” [7]. SubRiemannian geometry is
the geometry of the “sub-elliptic” realm, being represented by the subLaplacian for
a subRiemannian geometry.
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