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1. Introduction

Are all subRiemannian geodesics smooth? I posed this question about 30 years
ago after having shown that previous “proofs” asserting “yes” were fatally flawed.
See [1] and [2]. The question was answered quite recently with a decisive “no”. See
[3]. This paper was written by Yacine Chitour, Fréderic Jean, Roberto Monti, Lu-
dovic Rifford, Ludovic Sacchelli, Mario Sigalotti, and Alessandro Socionovo, whom
I will be referring to as “the team”. The team constructed an analytic subRie-
mannian structure on R3 having a geodesic segment which fails to be C3 at one of
its endpoint.

A few months before the team published their resounding ‘no’ I had advertised
this question as ‘Open Problem 1” for an article in the Open Problems section of the
web site maintained by the Association for Mathematical Research. See [4]. The
present article was written to set the record straight: the problem is now solved!
I give the team’s construction, say some words on their proof of the minimality
of their non-smooth geodesic and state an important question which remains open
about their example.

2. The construction

We can define a subRiemannian structure on R3 by specifying two everywhere
linearly independent vector fields X and Y on R3. Declare X and Y to be an
orthonormal frame for the 2-plane field D which they span. In this way we get a
2-plane field on R3 together with an inner product on the field – that is to say, a
subRiemannian structure. A curve is called “horizontal” if it is tangent to D. We
define the subRiemannian distance between two points to be the infimum of the
lengths of the horizontal curves joining the two points. A subRiemannian geodesic
is a shortest horizontal curve connecting its endpoints, i.e. a horizontal curve whose
length realizes the distance between its endpoints. See [4] for more on these ideas
and [6] or [7] for a detailed treatise on subRiemannian geometry.

The team took their vector fields to have the form

(1) X =
∂

∂x
, Y =

∂

∂y
+A(x, y)

∂

∂z
.

I will call A the “vector potential”. The specific A that the team used is recorded
below as equation (5). The Lie bracket of our two vector fields is

(2) [X,Y ] = B(x, y)
∂

∂z
where B =

∂A

∂x
.

I will call B the “magnetic field”. The condition that D be a contact distribution
in a neighborhood U ⊂ R3 is the condition that the triple of vector fields X,Y and
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Figure 1. The zero locus of the magnetic field in the team’s ex-
ample is the Ak singularity x2 = yk+1 together with the y axis.
The team needs k ≥ 4 and even. The non-smooth geodesic is the
horizontal lift of the right half of the cusp, starting from the cusp
point, and parameterized by arclength. The ± signs indicate the
sign taken by the magnetic field in the indicated regions.

[X,Y ] are linearly independent at every point of U . Thus our D is contact precisely
on the open set B ̸= 0. It is well-known that if a geodesic intersects the contact
region then it must satisfy the “normal subRiemannian geodesic equations” stated
momentarily. Solutions to these equations are analytic. It follows that the team’s
non-smooth geodesic must lie within the zero locus of the magnetic field, the locus
where the distribution fails to be contact.

Write c(s) = (x(s), y(s)) for the planar projection of the space curve γ(s) =
(x(s), y(s), z(s)) and κc(s) for the signed curvature of the plane curve c(s). The
normal subRiemannian geodesic equations for γ are

(3) κc(s) = λB(c(s))

for some constant λ (which arises as a Lagrange multiplier) together with the hor-
izontality condition

(4) ż(s) = A(c(s)).

We call these two equations, (3) and (4), the “normal geodesic equations”. Being
ODEs with analytic coefficients, all solutions to the normal geodesic equations are
analytic.

Remark 2.1. The ODEs (3) for c(s) are precisely the Lorentz equations for a non-
relativistic charged particle with charge λ and mass 1 travelling on the Euclidean xy
plane under the influence of the magnetic field B(x, y) ∂

∂z orthogonal to that plane.
For this and other reasons we refer to B as a “magnetic field”.

The team chose their “vector potential” A(x, y) in equation (1) to be the square
of the function whose zero locus defines the Ak singularity:

(5) A(x, y) = (x2 − yk+1)2 for k ≥ 4 an even integer.

The resulting magnetic field

(6) B(x, y) = 4x(x2 − yk+1)

has zero locus the two branches x = 0 and x2 − yk+1 = 0, the latter being the
equation of the Ak singularity, or “cusp”. This zero locus is depicted in figure 1.
The team’s putative non-smooth geodesic Γ is half of the Ak cusp, one endpoint
being the cusp point which is the origin. Specifically, parametrize the Ak branch
by x = tk+1, y = t2. Take the right branch t ≥ 0. Then the team’s main assertion
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is that the horizontal lift of this right branch of the cusp is a geodesic (in the
metric sense) through the origin when k ≥ 4 is even. Here, the horizontal lift is
obtained by setting z = 0 since A(x, y) = 0 along the cusp. When reparameterized
by arc length s the right branch of the cusp is given by ω̄(s) = (x(s), y(s)) were
x = s(k+1)/2[1+O(s)] and y = s[1+O(s)] and so its (k/2)+1-st derivative blows up
as s−1/2 when s → 0. Hence the arc-length parameterized curve Γ(s) = (ω̄(s), 0) is
not smooth at the origin. When k = 4 this curve is C2 but not C3 at the origin.

The hard work of the paper is to show that the putative geodesic Γ just described,
beginning from the origin which is the cusp point, is actually a geodesic. The team
argues by contradiction. Suppose Γ is not a geodesic upon leaving the origin. Then
for all ϵ > 0 there must be shorter horizontal curves connecting the origin to Γ(ϵ).
For fixed small ϵ take γϵ to be the shortest such curve and write ω = ωϵ for its
plane projection. Of necessity this shortest curve must leave the zero-locus and
hence, being minimal, and travelling into the contact region B ̸= 0, must satisfy
the normal subRiemannian geodesic equations. See figure 2.

At this point the argument becomes a detailed intricate proof, one might even
call it a slog, which reminded me of my own old proof in [2]. The team must
understand in detail all solutions to the normal subRiemannian geodesic equations
(3) starting at the origin and satisfying the required endpoint conditions. The curve
ω has been set up so that the x and y values of γ = γϵ and Γ match up at 0 and
Γ(ϵ). The interesting and useful endpoint condition is the z-endpoint condition on
ω which we can write as

(7) 0 =

∫
ω

Ady −
∫
ω̄

Ady =

∫ ∫
Bdx ∧ dy

where the last equality comes from Stoke’s equations using d(Ady) = Bdx ∧ dy
and that last integral is over the immersed disc bounded by ω and ω̄. This in-
tegral equality is repeatedly used in combination with (3) in their analysis. The
team rightly refers to their study of properties of all solutions to (3) satisfying the
endpoint conditions (7) as a study of the “anatomy of ω”. They summarize their
anatomical findings as Proposition 2.2 on p. 4 of the article.

First, they observe that the “charge” λ appearing (3) cannot be zero, for oth-
erwise ωϵ would be a straight line, and would fail to satisfy the vertical endpoint
condition (7). Equation (3) shows that every time the curve ω crosses the zero
locus the sign of its curvature must switch. See figure 1. Being analytic, ω can
only cross the zero locus a finite number of times. Anatomical finding one: ω
does not cross the zero locus at all except at its endpoints where it lies on the zero
locus. Anatomical finding two: ω must suffer exactly one loop. This loop is
required to cancel weighted area (the weight being the magnetic field) accumulated
during travel so that the vertical endpoint condition (7) will hold. In addition they
show that the charge λ in (3) is negative and ω lies in the region B > 0 except at
its endpoints. Thus ω lies entirely in the + region in figure 1 and has the shape
indicated in figure 2.

The anatomical findings stated on p. 4 within Proposition 2.2 require at least
22 pages to prove. These pages include detailed analysis regarding lengths and
B-weighted areas (see (7)) of closed curves cut out by ω and ω̄. Many non-trivial
estimates and theorems are invoked along the way. A detailed analysis regarding
the asymptotics of the length and weighted area of the loop within ωϵ versus the
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Figure 2. The putative geodesic ω̄ drawn in comparison with
nearby solutions ω to the normal geodesic equations which share
its endpoints. A key part of the proof reduces to analyzing those
solutions which lie in a region A(x, y) ≤ β2 where β ∼ ϵ

3
2 (k+1)−1, a

region which is a strip of thickness β1/2 about the zero locus. The
figure is modified from one found in [3].

rest of ωϵ as ϵ → 0 yield contradictions which show that a solution ω = ωϵ with the
required properties cannot exist. These contradictions conclude the proof.

Remark 2.2. That Γ is a geodesic away from the cusp point at s = 0 follows from
my own work in [2].

Remark 2.3. Team member Socionovo showed in [5] that using the A2 curve, which
is to say the vector potential A(x, y) = (x2 − y3)2, will not work. What Socionovo
showed is that the the lifted half-cusp Γ([0, ϵ]) in this case fails to be a minimizing
geodesic between its endpoints. His result means that one cannot obtain curves that
fail to be C2 using the team’s construction.

3. But the question remains ...

Can the team’s geodesic be extended beyond the cusp and remain geodesic?
The obvious extension of the team’s geodesic is to follow the lift of the negative

y-axis, which is to say, follow the curve s 7→ (0, s, 0) for s ≤ 0, up to the cusp point
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and then continue along their geodesic Γ(s) for s ≥ 0. In other words, concatenate
their lifted axis with their lifted cusp Γ. To date the team has been unable to say
whether or not this extension is a geodesic. Call this extension Γ̃. What would be
required is showing that for sufficiently small ϵ > 0 the curve Γ̃([−ϵ, ϵ]) beats out
all competing normal subRiemannian geodesics sharing its endpoints (which are
(0,−ϵ, 0) and (ω̄(ϵ), 0))

Either answer would be interesting. If ‘no’ then subRiemannian geometries enjoy
yet one more property not enjoyed by Riemannian geometries: they can support
the existence of inextendible geodesics. If ‘yes’, well then, we get a non-smooth
point inside of a geodesic.
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