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Abstract

Introductory text on the dimer model and its links to combinatorics,
statistical physics, and geometry.

Note:This article is a translation of the French orginal published in 2016. In the
meantime, the study of the dimer model has seen several interesting develop-
ments, reflected in the final section, which was added at the time of translation
in October 2025.

Consider a chessboard. We want to cover the entire board with dominoes of
size 1×2. For this we need 32 dominoes so that each domino is placed on exactly
two squares of the 8×8 board, with no dominoes overlapping. A simple way to
do this is to lay all dominoes in the same direction (horizontal or vertical). This
is not very interesting. A more interesting, less regular tiling is shown in Fig-
ure 1 in the center. There are many other ways to tile an 8×8 chessboard with
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dominoes. To list all different tilings is quite a task since there are 12,988,816
of them! There is more to say: for example, if we change the setup very slightly,
namely remove two squares from two opposite corners, still wanting to tile the
board with dominoes, now 31 of them, we quickly get stuck. This seemingly
innocuous change turns out to be radical: we have to face the fact that the task
is impossible. We leave it to the reader to find the simple reason while contem-
plating the coloring of the chipped board.

Figure 1: From left to right: a standard chessboard that allows 12,988,816
domino tilings; one such tiling; a chipped chessboard with no possible domino
tilings

Let us look at the quintessence of domino tiling and try to extract its math-
ematical core. We notice that there are black and white squares that alternate
(no two squares of the same color are adjacent). Then we remark that when we
place a domino on the chessboard, we cover a white square and a black square,
thus connecting them together. The standard way to mathematically encode
this data uses graph theory. We replace the chessboard with a finite bipartite
graph. A finite graph is a finite set of vertices connected by edges. A bipartite
graph is a graph with vertices colored either black or white; moreover, in our
setting every edge connects vertices of different colors. Thus black vertices of
the graph correspond to black squares of the board and white vertices to white
squares. Placing a domino is equivalent to choosing an edge in the graph. So
instead of having to cover the chessboard with dominoes, the goal of the game
now is to choose a set of (necessarily disjoint) edges that connect every black
vertex to a (single) white vertex. This is called a perfect matching. An illustration
on a small chessboard 4×4 is presented in Figure 2.
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Figure 2: Above: a chessboard and one of its domino coverings. Below: the
associated bipartite graph, and the corresponding perfect matching

Combinatorics and complexity

In the example of the chipped chessboard, it is very easy to demonstrate that
there is no perfect matching since a necessary condition for the existence of a
perfect matching is that there are as many black squares as white squares (a
domino covers exactly two squares: one black, the other white).

This is not a sufficient condition; it depends on the shape of the chessboard,
as shown by the example in Figure 3. 1

In the general case, determining whether a bipartite graph has a perfect
matching can be done using Hall’s criterion: a bipartite graph has a perfect
matching if and only if, for any subset of black vertices (resp. white vertices),

1Thurston [10] discusses more refined necessary conditions as well as sufficient conditions
for the existence of tilings. These conditions are based on the notion of a height function, which
we will introduce below.
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Figure 3: A portion of the starting chessboard containing as many black and
white squares which cannot be covered by 4 dominoes. This illustrates the im-
portance of the shape of the area to be covered.

the number of neighboring white vertices (resp. black vertices) is at least the
size of the subset. This criterion can be verified using the example in Figure 3.
A nice application of this criterion to a geometry problem has been described
in an Image des Maths article by Frédéric Le Roux.

To go further

Finding a particular matching is a relatively straightforward problem since there is an
algorithm for solving it (called the Hungarian algorithm) that runs in polynomial time
in the number of vertices2. This problem is in the complexity class P.

2This algorithm is due to Kuhn in 1955 and is based on the earlier work of the Hungarian
mathematicians Egerváry and Kőnig. Successive improvements to this algorithm are due to
Munkres in 1957, and Hopcroft and Karp in 1972. Although it seems that a polynomial-time
algorithm had already been proposed by the German mathematician Jacobi at the beginning
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The question of determining the total number of different tilings (as in our initial ex-
ample of a chessboard) is much more difficult. Its difficulty can be expressed using the
language of complexity theory (these notions have been discussed by Pierre Pansu in
an Image des maths article "Cutting graphs"). This problem is in the class #P (it is
a famous theorem of Leslie Valiant obtained in 1979), which means that there is no
algorithm allowing this number to be calculated exactly in polynomial time, assuming
that P⊊NP3. This problem is among the list of #P-complete problems. In particular,
it means that to show that any counting problem is in the class #P, it suffices to show
that it is at least as difficult as counting the number of perfect matchings of a graph.
More details on the combinatorial and algorithmic aspects of matchings, in particular,
their approximate counting, can be found in the seminal work of Lovász and Plummer
[7].

The fact that one can explicitly determine the number of perfect matchings
in the case of a chessboard of size 8×8 is rather exceptional and is due to the
fact that the graph is planar4. This important result is due to the Dutch physi-
cist Pieter Kasteleyn [4], who in 1961 obtained an exact formula for the number
of perfect matchings of any planar graph. The formula uses a basic notion of
linear algebra, the determinant of a matrix, which can be calculated in poly-
nomial time in the size of the matrix (by elementary matrix operations such as
Gaussian row-reduction).

A bit of linear algebra

Consider a 3×3 matrix M0 =
a b c

d e f
g h i

 . The determinant of an n ×n matrix M

is

detM = ∑
σ∈Sn

ϵ(σ)
n∏

k=1
mk,σ(k),

where Sn denotes the permutation group of n elements and ϵ(σ) =±1 is the signature
of the permutation σ. For the matrix M0 we get

detM0 = aei −a f h −bdi +b f g + cdh −ceg .

of the 19th century, as attested by a posthumous text in Latin [9].
3Deciding on the validity of this assertion remains a major open problem to this day, with a

Clay Mathematics Institute major reward for its solution.
4A graph is said to be planar if it can be drawn in the plane without its edges crossing. The

graph in Figure 2 is planar. An example of a non-planar graph is the complete graph on 5 ver-
tices, that is, a pentagon with all its diagonals.
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The determinant of an n ×n matrix has n! terms.

Consider a 3×3 matrix M0 =
a b c

d e f
g h i

 . The determinant of an n×n matrix

M is

detM = ∑
σ∈Sn

ϵ(σ)
n∏

k=1
mk,σ(k),

where Sn denotes the permutation group of n elements and ϵ(σ) =±1 is the signature
of the permutation σ. For the matrix M0 we get

detM0 = aei −a f h −bdi +b f g + cdh −ceg .

The determinant of an n×n matrix has n! terms. The permanent is a number associated
with a matrix which differs from the determinant by the absence of signs5:

permM = ∑
σ∈Sn

n∏
k=1

mk,σ(k).

For M0 it is permM0 = aei +a f h +bdi +b f g + cdh +ceg .
Let us introduce the adjacency matrix A of a bipartite graph. Consider a

graph with n black vertices, numbered from 1 to n and n white vertices, num-
bered from 1 to n. It gives rise to an n ×n matrix with rows indexed by black
vertices and columns by white vertices. A coefficient ai j of this matrix is zero
unless the vertices i and j are connected by an edge, in which case ai j = 1. The
number of perfect matchings of a bipartite graph is

N = ∑
σpermutation of{1,...,n}

n∏
k=1

ak,σ(k) .

This is exactly the permanent of the matrix A!
For example, for the complete bipartite graph with 2n vertices (each of the

n black vertices is connected to each of the n white vertices), there are |Sn | = n!
possible perfect matchings.

The permanent of an arbitrary matrix is usually difficult to calculate, and
there is no efficient algorithm to do so.

5More prosaically, the permanent of an n ×n matrix is a sum of products of coefficients of
the matrix: each product contains exactly one coefficient from each row and one coefficient
from each column, and the sum covers all the ways of choosing n coefficients satisfying these
conditions.
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To go further

If the matrix has only 0 and 1 entries, then the problem of calculating its permanent is
#P-complete. In fact it is the same problem as counting the number of perfect match-
ings on a bipartite graph! Indeed a perfect matching corresponds to a product of matrix
entries with no repetitions in neither row indices nor column indices. Thus the problem
of counting perfect matchings is reformulated in the language of linear algebra.

Kasteleyn’s idea was to show that for planar graphs one can always construct
a matrix K starting from the adjacency matrix A so that the determinant of K
computes the number of perfect matchings:

permK = detA,

This is achieved by introducing some signs in the entries of A (signs on the
edges of the graph) so that the signs in the standard determinant formula can-
cel and the permanent of the original matrix effectively coincides with the de-
terminant of the new one6. Thus counting the number of perfect matchings, a
difficult problem involving a permanent, becomes a simpler problem of calcu-
lating a determinant. The matrix K is called the Kasteleyn matrix.

In our first example of an 8×8 chessboard, a modification of the Kasteleyn
matrix was suggested first by Jerome Percus and then by Richard Kenyon: they
took K to be a square adjacency matrix with the entries encoding the edges
between black and white vertices by 1 if the vertices are connected by a vertical
edge and by i (where i 2 =−1) if the connecting edge is horizontal.

Let us consider a toy example of a graph with 6 vertices first (see Figure 4).
In this case the adjacency matrix is

A =
1 1 0

1 1 1
0 1 1

 ,

6It suffices to choose the signs in such a way that their product along each face (a face being a
connected component of the complement of the graph in the plane) is (−1)k/2+1, where k is the
number of edges bordering the face. We leave it to the reader as an exercise to verify that such
a choice is indeed possible (hint: use a spanning tree) and that it leads to the expected result.
More generally, the Kasteleyn method applies to all planar graphs, including those that are not
bipartite. In the general case, the choice of signs is somewhat more subtle and is based on
the notion of a Kasteleyn orientation. Furthermore, one must then consider the full adjacency
matrix and take the square root of the determinant.
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Figure 4: In this example the black and white vertices are numbered, which
allows us to write down the adjacency matrix A and the Kasteleyn matrix K
with rows indexed by black vertices and columns by white vertices.

and the Kasteleyn matrix

K =
1 i 0

i 1 i
0 i 1

 .

Hence detK = 3 and so permA = detK = 3 which is exactly the number of per-
fect matchings of this graph. For the 8×8 chessboard, one obtains

|detK | =
8∏

k=1

8∏
ℓ=1

√∣∣∣∣2cos

(
πk

9

)
+2i sin

(
πℓ

9

)∣∣∣∣= 12988816 = 24 ×172 ×532.

This gives the value mentioned earlier7. In general, the number Nn of perfect
matchings on the 2n ×2n chessboard is given by the sequence A004003 from
the Encyclopedia of Sequences [8]. This sequence grows exponentially with n2.

7It may seem surprising that a product of complicated numbers (with trigonometric func-
tions) gives an integer: this is nevertheless the case since the determinant of a matrix with
integer coefficients is an integer, even if its eigenvalues (obtained by diagonalization) are non-
integer real numbers. A computer calculation yields 12,988,816. We refer the curious reader to
the following article, which offers another demonstration of this formula, valid for rectangular
2n ×2m chessboards, as a product of special values of Chebyshev polynomials of the second
kind.
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When n goes to infinity

Nn→exp

[
4

π
C n2(1+o(1))

]
,

where

C = 1− 1

32
+ 1

52
− 1

72
+·· · =

∫ 1

0

arctan x

x
d x = 0.915. . .

is the Catalan constant — named after the Franco-Belgian mathematician Eu-
gène Charles Catalan8.

A hexagonal lattice is also quite interesting (see Figure 5). The dominoes in
this case are lozenges. We can see the tiling as a plane projection of a surface of
piled cubes. For a hexagonal portion of the hexagonal lattice (with integer side
lengths a,b,c, a,b,c), the number of tilings is

a∏
i=1

b∏
j=1

c∏
k=1

i + j +k −1

i + j +k −2
.

This result was obtained before Kasteleyn’s work, and it is a particular case of
the famous Percy MacMahon formula for the number of plane partitions. In
the example of Figure 5 this formula gives 50 possible tilings.

In what follows all considered graphs are bipartite and planar.

Statistical Physics

In the 1960s, Kasteleyn, who also had a background in chemistry, was trying to
understand a model of polymers in solution. Because of the difficulty of the
general problem, he was forced to restrict himself to a particular case, that of
a solution of dimers (polymers with only one bond). This is what is now called
the dimer model. If Kasteleyn was interested in perfect matchings, it is in con-
nection with this model 9

8Another sequence, probably more familiar to the reader, is the Fibonacci sequence ∀n ≥
2,un = un−1 + un−2,u0 = 0,u1 = 1, which grows exponentially like the powers of the golden
ratio. The Fibonacci sequence can also be interpreted in terms of dominoes: the n-th term
of this sequence counts the number of tilings of a rectangular 2×n chessboard. This classic
exercise is easily solved without resorting to Kasteleyn’s method.

9The importance of the dimer model also lies in the fact that the Ising model can be stud-
ied through it. This model was introduced in 1920 by the German physicist Wilhelm Lenz,
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Figure 5: Center: tiling by lozenges of a hexagonal region with a = b = c and
c = 3 with 50 possible tilings. Left: Representation of the tiling by a perfect
matching. Right: interpreting a hexagonal tiling as a pile of cubes; numbers
indicate the height with respect to the horizontal reference plane for cubes of
side length 1.

From a physical point of view, we can think of the adsorption of diatomic
molecules on the surface of a crystal in solution as being modeled. In this case,
a dimer is a diatomic molecule, and to describe the dimer model, we think of a
dimer as an edge of a perfect matching of a very large finite graph that models
the structure of the crystal. To understand this phenomenon, statistical physics
leads us to study a random perfect matching. In the following, we will therefore
discuss probability measures on the set of perfect matchings.

To go further

In statistical physics, any edge e is associated a positive weight ν(e) > 0, representing
the logarithm of some form of internal energy, and the total weight of a matching can
be defined as the product of the weights on the edges of the matching:

Zν =
∑
ω

∏
e∈ω

ν(e)

For a finite graph, the weighted sum over all possible perfect matchings is called the
partition function of the model. In the case where all weights are equal to 1, the par-
tition function is nothing other than the number of perfect matchings. The probability

then the doctoral supervisor of the German physicist Ernst Ising, as a simplified model of mag-
netic interaction. The study of the Ising model in dimension 2 via the dimer model was further
developed by Kasteleyn and, in parallel, by the English physicists Michael Fisher and Harold
Temperley. This approach gave a detailed understanding of the Ising model in dimension 2. An
introduction to this model has been published in this article from Images des maths.
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measure under consideration associates to each matching a probability

P(ω) =
∏

e∈ων(e)

Zν
.

From a physical and mathematical point of view, it is interesting to study the
probability measures on the perfect matchings of an infinite graph, which we
will assume to be periodic. We therefore imagine an infinite biperiodic planar
bipartite graph like the square lattice. But be careful, this graph is weighted (by
weights that we also assume to be periodic).

We are not interested in all possible measures. A first obvious constraint
is that we impose translation invariance, which represents a form of isotropy
of the model. Two physical principles determine the additional characteris-
tics that probability measures of interest must verify. The first comes from the
theory of the American physicist Josiah Willard Gibbs of systems in thermo-
dynamic equilibrium, which predicts the structure that a probability measure
must take: in short, the measure in a given region must be invariant under re-
sampling in a disjoint region (the Gibbs measures of the Ising model were dis-
cussed here). The second comes from the ergodicity hypothesis formulated by
the Austrian physicist Ludwig Boltzmann. In technical mathematical jargon,
this is called an ergodic Gibbs measure.

Probability and algebraic geometry

In a remarkable work from 2003, Richard Kenyon, Andrei Okounkov and Scott
Sheffield succeeded in classifying and describing precisely all the ergodic Gibbs
measures of the dimer model on a biperiodic planar graph. Let us try to sketch
the heuristic outlines of this major result.

If a fundamental domain of the graph10 contains vertices of each color, there
exists an explicit Laurent polynomial P in two variables of degree d , called the
characteristic polynomial, which serves as an elementary building block to cal-
culate all the interesting quantities of the model. For example, if the graph is
the hexagonal lattice (with all weights equal to 1), the fundamental domain is
represented in Figure 6, d = 1 and we have P (z, w) = 1+ z +1/w .

The Newton polygon of P is the convex hull N (P ) of integer points (i , j ) ∈
Z2 such that zi w j is a monomial in P ; see Figure 6 for the Newton polygon

10A fundamental domain denotes a smallest portion of the graph which determines the infi-
nite graph by translation in two directions.
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Figure 6: A fundamental domain of a hexagonal lattice whose characteristic
polynomial is P (z, w) = 1+ z +1/w and the corresponding Newton polygon

corresponding to the hexagonal lattice. A theorem of Sheffield shows that the
Newton polygon N (P ) provides a parametrization of all ergodic Gibbs proba-
bility measures.

In order to understand how a point in the Newton polygon N (P ) corre-
sponds to a probability measure, a height function is introduced. The repre-
sentation of a tiling via the height function goes back to John Conway, and was
popularized by William Thurston [10].

The height function of a tiling is an integer-valued function on the internal
faces of the graph (the bounded connected components of the complement of
the graph in the plane: in the square lattice they are the unit squares; in the
hexagonal lattice, the hexagons). There is some freedom in how one defines
it. For the square lattice (of our chessboard), it is often defined as follows (up
to an additive constant). Given its value h on one face, it is defined for the
neighboring faces by moving along the sides of a domino: the height function
decreases by 1 whenever one passes a black vertex on the left (and therefore a
white vertex on the right) and increases by 1 when passing a white vertex on the
left (and therefore a black vertex on the right).

To define it everywhere, one starts by extending the function to faces adja-
cent to the same domino, and then gradually to all faces (this procedure is well
defined since the net change in height going around a domino is 0).

This definition might seem a bit mysterious, but we will see later that it gives
rise to some nice limits. It is important to understand that the height function,
or more precisely the difference of two height functions, has as its level lines
paths formed by double dominoes as in Figure 7, this provides a more direct
definition valid for any planar bipartite graph as we now explain.

Modulo a multiplicative factor, we can define this function as follows (see

12



Figure 7): it associates an integer to any interior face of the graph. We are given
two bags of dominoes: some are blue, others red. Construct a first blue tiling.
On top, place a red tiling. We remove the pairs of dominoes that overlap exactly.
Now let’s see what remains. These are simple loops of even length. Moreover,
they are oriented if we agree that a cycle inherits the black-white orientation
from the red dominoes’ tiling. By fixing the value of the function on one face,
we define it for the other faces by adding 1 or −1 each time we cross a cycle
oriented clockwise or counterclockwise respectively. Given the blue configura-
tion, this method associates a function to any red tiling. The height function
is not unique and to determine it one must specify a reference choice — the
choice of the blue tiling (this can be expressed in terms of boundary condi-
tions).

Figure 7: On the left: two superposed domino tilings; on the right: the associ-
ated loops and their height function.

It turns out that in the case of a hexagonal lattice, the graph of the height
function is, up to a scaling factor, the surface whose tiling is a projection when
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seen as a pile of cubes in Figure 5).
If one fixes a bounded domain in the plane whose boundary is analytic and

covers it by a large finite portion of the infinite graph with a very fine lattice
such that there exist dimer coverings, one can look at the sequence of random
tilings. One then obtains (after rescaling) a limit surface for the corresponding
height function (this is a kind of law of large numbers) which is a minimal sur-
face determined by its surface tension; this is a theorem of Henry Cohn, Richard
Kenyon and James Propp. The slope of this surface reflects the local random-
ness of the tiling. In particular, near the boundary there is no randomness:
the configuration is frozen and we speak of a limit shape. See an example in
Figure 8 11 Sheffield proved that the set of possible gradients (slopes in the two

Figure 8: Left: a limit shape in a domain approximated by the hexagonal lattice
(sampled by Richard Kenyon); Right: the amoeba of the polynomial P (z, w) =
1+ z +1/w associated with the hexagonal lattice.

coordinate directions) is N (P ), but the link between a slope (s, t ) and the corre-
sponding probability measure is very subtle 12 — yet it is possible to understand
this link heuristically, as we will see now. As can be seen from Figure 813, some

11The circular limit shape obtained in the case of a particular shape, called the Aztec diamond
(a certain portion of the square lattice), has been described in in an Images des Maths article
by Élise Janvresse and Thierry de la Rue.

12For specialists: the free energy of the probability measure associated with (s, t ) is given by
the Legendre dual evaluated at (s, t ) of the Ronkin function of P .

13it is possible to sample the dimer model using the Coupling from the past algorithm of
Propp and Wilson.
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parts are more deterministic and others are more random. There is a classifica-
tion of this randomness that mimics the usual physical classification: gaseous,
liquid, or solid (frozen) state. To describe this phase diagram elegantly, Kenyon,
Okounkov, and Sheffield used a subtle change of variable using another set as-
sociated with the polynomial P , namely, its amoeba.

To go further: Amoebas

The amoeba A (P )14 of a polynomial P is defined as the logarithmic image of the
modulus of elements of the set {(z, w) ∈ C2 | P (z, w) = 0}, called the spectral curve
of P . In other words,

A (P ) = {(log |z|, log |w |) | P (z, w) = 0, (z, w) ∈C2}.

When the amoeba has the same area as the Newton polygon, one says the spectral curve
is Harnack. This is related to algebraic properties of the curve (Mikhalkin, Rullgård).
One of the results of Kenyon, Okounkov and Sheffield was to prove that the spectral
curve of a dimer model is a Harnack curve. Moreover, Kenyon and Okounkov have
demonstrated the spectacular result that any Harnack curve is the spectral curve of
such a dimer model. See the overview texts by Kenyon [5] and Felder [2] for more
detail.

Figure 9: A fundamental domain of a weighted infinite square graph whose
characteristic polynomial is P (z, w) = 9−2w +1/w2−7/w +1/z+z/w ; the cor-
responding Newton polygon; the corresponding amoeba. The amoeba repre-
sents the phase diagram: the white zone outside corresponds to frozen mea-
sures, the blue zone to liquid measures, and the two white zones inside to
gaseous measures.

14This notion was introduced in 1994 by I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky
in their influential book from 1994.
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Another example providing gaseous measures has been studied on an Aztec
diamond domain. In Figure 10, one clearly sees the three different phases from
the center outward: gaseous, liquid, solid.

Figure 10: A dimer model on a weighted square graph in a bounded domain
shaped as an Aztec diamond (rotated 45° for convenience). Left: the dominoes
are of 4 colors depending on orientation and parity. Corners: frozen; circular
region: liquid; center: gaseous. Right: the height function (by Vincent Beffara).

The fundamental domain of a weighted graph is given in Figure 11 along
with the Newton polygon and the associated amoeba.

For more details please refer to Kenyon’s lectures [6] as well as [3].

Conformal geometry and random fractals

The limit of the height function when the graph edges tend to zero (the scaling
limit) was discussed earlier. We can understand this convergence result as a
law of large numbers. This limit is very sensitive to the shape of the domain but
also to the type of periodic graph that approaches it.

But what about its fluctuations (in short: the central limit theorem)? And
what about the cycles associated with the overlapping of the blue and red domi-
noes? It turns out that there are underlying universal random objects that are
independent of the microscopic structure of the tiling. These objects somehow
forget all the complexity of the tiling and retain only its random fluctuations.

Under good assumptions (see the work of Richard Kenyon, Béatrice de Tilière,
and more recently Leonid Petrov), the fluctuations of the height function in a
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Figure 11: Fundamental domain of the underlying weighted infinite biperiodic
square graph. Its characteristic polynomial is P (z, w) =−(5/2)−1/(2w)−w/2−
1/(2z) − z/2; its Newton polygon and amoeba are shown. The “hole” in the
center of the amoeba corresponds to the gaseous phase.

liquid region of the phase diagram converge towards the Gaussian free field (see
Figure 12), a distribution (in the sense of Laurent Schwartz) which is random 15.

It is conjectured16 that the loops obtained from the double-domino model
converge to the conformal set of closed curves with parameter k = 4 (see Fig-
ure 13). This set of loops is part of a one-parameter family of fractal objects
introduced by Scott Sheffield and Wendelin Werner in 2010.

These two random fractal objects share two fundamental properties: the
Markov property (what happens in two distant disjoint parts is independent
of each other) and conformal invariance. It is this second notion that makes
the link with complex geometry. It means that if we transform the domain into
another by a map that preserves the angles locally (such a map is said to be
conformal), then the law of these two random objects is unchanged. A popular
discussion of this can be found here and there.

For the past 20 years, the probabilistic study of conformal geometry (or con-
formal field theory in physics) has been expanding rapidly. See this and that

15Even though the random field shown in Figure 12 already looks very irregular, what we see
here is actually a discrete regularization by discrete approximation of the real object — the
object itself is not a function, and so we cannot draw its graph.

16Works by Richard Kenyon and Julien Dubédat support this conjecture.
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Figure 12: A Gaussian free field

article. Significant progress has been made since then, notably with the recent
advent of so-called imaginary geometry, notably thanks to the work of Oded
Schramm, Wendelin Werner, Greg Lawler, Scott Sheffield, Jason Miller, Julien
Dubédat, Bertrand Duplantier and many others. See also the related articles
here and in [1]. Two of the most important objects in this theory are the con-
formal set of loops with parameter k = 4 and the Gaussian free field.

These fractal objects possess fascinating properties. In particular, one can
make sense of the following assertion: the loops of the conformal set of loops
(Figure 13) are the level curves of the Gaussian free field (Figure 12). From the
point of view of their discrete analogues (i.e., height functions), this is the defi-
nition, but proving it for fractal objects is another matter!

Open problems

It seems reasonable to think that the domino game still has many surprises in
store for us. In conclusion, we mention three areas of active research related to
dominoes.

In algorithmic and combinatorial optimization, many applied problems re-
quire efficient algorithms to find a perfect matching (the so-called assignment
problem) for a huge graph with certain properties (for example, if it is a sparse
graph, i.e., one with few edges relative to the number of vertices, or, conversely,
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Figure 13: Conformal set of closed curves with the parameter k = 4 (example by
David Wilson).

if the graph is dense), and it is important to optimize them. It is also important
to calculate an approximate number of possibilities.

In physics, it is interesting to consider polymer models that are closer to re-
ality. However, Kasteleyn’s method no longer works in this case. Some models
allow interactions between dominoes or consider graphs that are no longer pla-
nar. Breakthroughs in the first direction have recently been made by a group of
Italian researchers (Alessandro Giuliani, Vieri Mastropietro, Fabio Lucio Toninelli)
using ideas from the physical theory known as renormalization flow.

From a mathematical point of view (in combinatorics and geometry), it is
tempting to change the initial rules and replace the domino with other elemen-
tary tiles, such as triominoes (size 1× 3), other elongated rectangles, or other
polyominoes. In this case, the techniques mentioned above no longer apply
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directly, and new ones must be invented.

State of the art in 2025

In the decade since the original write-up of this invitation to the dimer model,
the research community has produced new results, insights, and developments
in the study of this model. A comprehensive survey would go far beyond the
scope of this article, but let us highlight a few advances closely related to the
themes discussed above.

Boutillier, Cimasoni and de Tilière have extended the description of the
spectral data associated with a dimer model on an infinite (so-called mini-
mal) bipartite planar graph, following the steps taken by Goncharov-Kenyon
and Fock, based on the initial Kenyon-Okounkov-Sheffield description men-
tioned above. They managed to describe completely the set of spectral curves
appearing, Harnack curves of higher arbitrary genus, thus establishing a beau-
tiful correspondence between a probabilistic model and the classical theory of
compact Riemann surfaces.

Lozenge tilings of planar domains with holes have been successfully studied
by Gorin, Petrov, and others. In joint work with Borot and Guionnet, they es-
tablished connections with discrete beta ensembles and random matrix theory,
thus contributing to the now-vast field known as integrable probability.

The connection between the level lines of the dimer height function and the
conformal loop ensemble with parameter 4 has been further substantiated in
works by Basok–Chelkak and Lis–Rey–Ryan.

New and impressive results by Catherine Wolfram, in collaboration with
Nishant Chandgotia and Scott Sheffield, have established large deviation prin-
ciples for three-dimensional dimers extending the analysis beyond the inte-
grable planar case. A recent preprint by Caroline J. Klivans and Nicolau C.
Saldanha Domino tilings beyond 2D surveys what is currently known about
dimers in higher dimensions.

In another line of research, Kenyon, Prause, Wolfram, and others introduced
and studied N-fold dimer models, a generalization of the double-dimer model.
They obtained intriguing large-N limits and found exactly solvable solutions
even on non-planar graphs, despite the general non-solvability of the dimer
model in such settings. Kenyon and collaborators have also explored quantum
deformations of these N-fold dimer models.

Recent progress on the study of trimer tilings has also been presented by
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James Propp.
Interested reader may consult a list of recent papers by a France-based group

of researchers on this topic and view talks from a recent conference dedicated
to the subject – and honoring one of its central figures, Richard Kenyon.
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