
A Bit of Geometric Group Theory

by Gilbert Levitt

Maurits Cornelis Escher, Circle Limit III, Print, 1959

Discrete groups appear in every area of mathematics — and even in
Escher’s art. Even if they are defined algebraically, we often under-
stand them better by their action on geometric objects. More and
more often, they are viewed as geometric entities in their own right.
Their properties are especially striking when the curvature is negative.

1. A Few Examples of Groups

Groups we will consider will be generally non-commutative. We will write the
group operation multiplicatively, with the neutral element in a group G denoted
1G or simply 1. Groups that will interest us most are finitely generated — that is,
they can be generated by a finite number of elements. Let’s take a look at a few
examples.

• The free Abelian group Z2, also written as Z × Z, or Z ⊕ Z, is the set
of pairs of integers (m,n), with addition defined by (m,n) + (m′, n′) =
(m + m′, n + n′). To write it multiplicatively, let a := (1, 0), b := (0, 1),
and view Z2 as the set of elements ambn, equipped with the multiplication
rule (ambn)(am

′
bn

′
) = am+m′

bn+n
′
. The neutral element a0b0 is denoted

1, and the inverse of ambn is a−mb−n.
• Let us consider the group Aff(R) acting on the real line R by homotheties

and translations — that is, transformations of the form x 7→ a · x+ b with
a, b ∈ R and a 6= 0, the product being given by composition: (f ◦ g)(x) =
f(g(x)).

This is a “continuous” group (a Lie group), but we can consider finitely
generated subgroups, for example, the group G1 generated by t : x 7→ x+ 1
and h : x 7→ 2x. One can deduce that G1 is the set of transformations fmnp
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of the forma fmnp(x) = 2mx+n/2p, with m,n, p ∈ Z. Indeed the identities

(fmnp ◦ fm′n′p′)(x) = 2m+m′
x+

n′ · 2m+p + n · 2p′

2p+p′
= fm′′n′′p′′(x)

with m′′ = m+m′, n′′ = n′ ·2m+p+n ·2p′ , p′′ = p+p′, and f−1mnp = fm′n′p′

where m′ = −m, n′ = −n, and p′ = m + p, show that the set {fmnp :
m,n, p ∈ Z} is a subgroup. It contains h and t, and it is the smallest such
subgroup because fmnp = h−ptnhm+p is contained in every subgroup that
contains h and t.
• The group GL(n,R) of invertible (with determinant 6= 0) n × n matrices

with real coefficients is also a Lie group.
The matrices with integer entries do not form a subgroup, because the

determinant appears in the denominator when computing the inverse of a
matrix. However, SL(n,Z), the set of matrices with integer entries and
determinant 1, is a subgroup.

We will consider the group G2 ⊂ SL(n,Z), generated by

A =

(
1 0
2 1

)
, B =

(
1 2
0 1

)

2. Free Groups

In a group G, the subgroup generated by g1, . . . , gk is the set of all elements of G
that can be written as a reduced word gni

i1
. . . g

np

ip
, where the nj are nonzero integers

and ij 6= ij+1. For example, a2, b−1c, and c−3a3b2acb−5 are reduced words in a, b, c.
Care must be taken not to forget the empty word, denoted 1, which represents the
identity element 1G. The length |W | of a word W is the total number of letters,
taking exponents into account, for example |c−3a3b2acb−5| = 15.

We say that elements g1, . . . , gk of G are independentb (or form a free family)
if two different reduced words always represent two different elements of G, or
equivalently, if there is no nontrivial relation gn1

i1
· · · gnp

ip
= 1. For example, the

family {g}, consisting of the single element g ∈ G, is free if and only if there is no
nontrivial relation gn = 1, that is, if g has infinite order.

In the examples above, the families a, b ⊂ Z2 and h, t ⊂ G1 are not free, because
of the relations ab = ba and hth−1 = t2.

We will, however, show — using the so-called ping-pong technique — that the
pair of matrices A and B is a free family in SL(n,Z).

To this end, let us make SL(n,Z) act on P = R∪∞ (the real projective line) by
associating to the SL(n,Z)-matrix

M =

(
a b
c d

)

aSuch a transformation does not determine the triple m,n, p uniquely, e.g. if n′ = 2n and p′ = p+1

then fmnp = fmn′p′ . (Ed.)
bOften, in English literature, independence of the collection {g1, . . . , gk} of elements of a group,

means another, in general strictly stronger, property — namely, that no element is equal to a
reduced word in other elements of the collection; thus, free family seems to be a more appropriate

term and it is used below. (Ed.)
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the homographyc

hM : x 7→ ax+ b

cx+ d

with the usual conventions, in particular hM (−d/c) = ∞ and hM (∞) = a/c if
c 6= 0. The definition is constructed so that hMN = hMhN for all pairs of SL(n,Z)-
matrices M and N .

Let PA = (−1, 1), and let PB be the complement of [−1, 1] in P . We have
hA(x) = x + 2, and therefore hnA(PA) ⊂ PB for all n 6= 0. Similarly, hB(x) =
x/(2x + 1) and hnB(PB) ⊂ PA for n 6= 0.d Let’s now play ping-pong with PA and
PB .

To show that the pair A and B is a free family, consider a nontrivial reduced
word, for example W = B2AB−3A5. Apply hW = h2BhAh

−3
B h5A to PA. The element

h5A sends it into PB , the element h−3B sends it back into PA, and so on, and finally
hW (PA) is contained in PA, but not equal to it. This prevents hW from being the
identity, and therefore W from being equal to 1 in SL(2,Z).

This reasoning applies to any word W beginning with a power of B and ending
with a power of A. The other cases are treated similarly: if W begins and ends
with a power of A, we have hW 6= id because hW (PA) ⊂ PB ; if W ends with a
power of B, we apply hW to PB .

Since A and B form a free family, every element of G2 can be written uniquely
as a reduced word in A and B. At this point we can forget that A and B are
matrices and regard G2 as the set F (A,B) of reduced words in two abstract sym-
bols A and B. Multiplication consists of concatenation and reduction; for ex-
ample, (B2AB−3A5)(A−5BA4) = B2AB−2A4, and the inverse of B2AB−3A5 is
A−5B3A−1B−2.

We say that G2 is the free group of rank 2, often denoted F2. Similarly, we define
Fn, the free group of rank n, for n > 2.

Many groups contain subgroups which are free groups. For example, one can
show that two randomly chosen rotations of the sphere generate a free group, as do
the transformations x 7→ x+ 1 and x 7→ x3 on R.

The group F2 contains arbitrarily large free families: it is easy to see, that
the infinite family {AnBA−n}n∈N is free, because the B’s do not cancel when
these elements are multiplied. The free group of rank 2 therefore contains free
groups of any rank, and even free groups that are not finitely generated. The
Nielsen–Schreier theorem guarantees that every subgroup of a free group is free,
that is, it is generated by a free family.

3. Tits Alternative

We have already noted that G1 is not free,e since its generators satisfy hth−1 =
t2. To find other relations, observe that in Aff(R), and therefore in G1, every

cHomography is a synonym for projective transformation. (Ed.)
dNote also, that the inclusions hnA(PA) ⊂ PB and hnB(PB) ⊂ PA are strict. (Ed.)
eStrictly speaking, it has only been shown that {h, t} is not a free family of generators. This

doesn’t imply that G1 is not a free group. However, looking at the relation, one immediately

concludes that the abelianization of G1 is generated by the single element h and therefore is
of rank one, while every noncommutative free group must have abelianization of higher rank,

Ab(Fn) ∼= Zn. (Ed.)
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commutator [g1, g2] := g1g2g
−1
1 g−12 is a translation, and that two translations com-

mute. Therefore any two commutators commute, [g1, g2][g3, g4] = [g3, g4][g1, g2] for
all g1, g2, g3, g4 ∈ G1. This “universal” relation expresses that G1 is metabelian, or
equivalently, solvable of class 2.

More generally, we say that G is solvable of class ≤ p if the subgroup generated
by all commutators [g1, g2] is solvable of class ≤ p − 1, that is, if any 2p elements
of G satisfy a certain identity built from iterated commutators. Solvable groups
are those that can be obtained by successive extensions from commutative groups.
The impossibility of solving algebraic equations of degree 5 by radicals is due to the
non-solvability of the symmetric group S5. This is the subject of the Galois theory.

It is easy to verify that, for any field K, the subgroup of GL(n,K) consisting
of invertible upper triangular matrices is solvable (of class n). The famous Tits
alternative (1972) states that if a finitely generated group G is linear — that is,
isomorphic to a subgroup of some GL(n,K) — then either

• G contains a subgroup isomorphic to F2, or
• a subgroup of finite index in G is solvable.

In other words, either G contains arbitrarily large free families, or (up to finite
index) the elements of G satisfy a universal relation. The Tits alternative has been
extended to other classes of groups. For instance, Bestvina, Feighn, and Handel
have recently proved it for subgroups of the group Out(Fn) of automorphisms of a
finitely generated free group, modulo conjugations.

4. Relations and Presentations

If a group G is not free, different reduced words may represent the same element;
we say that such words are equivalent in G. The word problem is the problem of
determining, by an algorithm, whether two given words represent the same element.
In fact, it suffices to determine which words are trivial, that is, which represent the
neutral element 1G.

a a

b−1a−1

b−1a−1

b−1

a−1

b

a−1b

a−1a−1

b−1 E

F

The words
a2b−1a−1b−1a−1b−1a−1ba−1b and
a−2b−1 represent the same element
of Z2: the corresponding paths have
the same endpoint F .

This is easy in Z2, which is commutative.
For instance, it is immediately clear to us that
a100b100a−100b−100 = 1. But a machine that
could only apply mechanically the basic rela-
tion ab = ba (and, to be generous, the rela-
tions a±1b±1 = b±1a±1) would find it tedious
to show this equality: it would, in fact, have to
move each of the one hundred a’s past each b
— that is, about 10 000 operations for a word
of length 400. In general, the number of oper-
ations required to show that a word of length
n in Z2 is trivial, in the worst case, is of the
order of n2 for large n. We say that Z2 has a
quadratic isoperimetric inequality.

The geometric interpretation is as follows (see figure). Tile the plane with a
grid whose horizontal edges oriented to the right are labeled a, and whose vertical
edges oriented upward are labeled b. Fix a vertex E of this graph as the origin. A
word in a and b can then be represented as a path starting from E; for example,
a2b−1a−1b−1 moves two units to the right, one down, one to the left, and one down
again.
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We note that two words are equivalent if and only if their associated paths
have the same endpoint; for example, a2b−1a−1b−1a−1b−1a−1ba−1b is equivalent
to a−2b−1. In particular, the vertices of the graph correspond to the elements of
Z2, and a word is trivial if and only if the associated path is a loop (it closes back
at E). Thus, a100b100a−100b−100 represents the boundary of a square of side 100.
Applying the relation a±1b±1 = b±1a±1 amounts to changing the loop to bypass
one cell of the grid, and 10 000 is simply the area of the square.

The exponent 2 obtained above is thus the one that expresses the area of a square
as a function of its side. We can see the analogy with the classical isoperimetric
inequality, which bounds the area enclosed by a simple plane curve by the square
of its length (divided by 4π, though that detail is not important here).

Returning to algebra, we now explain how to solve the word problem in G1

using only the relation hth−1t−2 = 1. Thanks to the equations ht±1 = t±2h and
t±1h−1 = h−1t±2, one can, in any word, move all positive powers of h to the right
of the word and all negative powers to the left. In other words, any word W is
equivalent in G1 to a word of the form h−mtnhp with m, p ≥ 0. Such a word
represents the transformation x 7→ 2p−mx+ 2−mn, which is the identity if and only
if n = 0 and p = m, that is, if the word is empty. Therefore, W = 1 in G1 if and
only if the word h−mtnhp associated to W is the empty word: the word problem is
solved.

This reasoning actually shows that all relations satisfied by h and t can be
formally deduced from the relation hth−1t−2 = 1. We say that G1 is presented by
the generators h and t subject to the relation hth−1t−2 = 1.

In general, we say that G = 〈g1, . . . , gk | r1, . . . , r`〉, where the rj are words
in the gi, is a presentation of G if G is generated by elements gi satisfying the
relations rj = 1, and if every relation among the gi can be formally deduced from
the relations rj = 1 (more precisely, G is isomorphic to the quotient of the free
group F (g1, . . . , gk) by the subgroup generated by all products of conjugates of the
rj and their inverses).

Fix an integer m, and now ask a machine to prove the relation [hmth−m, t] = 1
from hth−1t−2 = 1. This is easy for us, since we can see that hmth−m = t2

m

.
But for the machine, the number of operations will be on the order of 2m, that
is, an exponential function of the length of [hmth−m, t], which is equal to 4m + 4.
Since the words [hmth−m, t] are representatives of the general case, G1 satisfies an
exponential isoperimetric inequality.

5. The Dehn Function

Given a finite presentation G = 〈g1, . . . , gk | r1, . . . , r`〉, we define the Dehn
function ϕ(n), whose growth determines the isoperimetric inequality satisfied by G.
A replacement such as a±1b±1 7→ b±1a±1 or ht±1 7→ t±2h amounts to multiplying
the word by a conjugate of some (rj)

±1, and a word W is trivial in G if and only

if, in the free group F (g1, . . . , gk), it can be writtenf as W =
∏s
m=1 um(rjm)±1u−1m

for some elements um ∈ F (g1, . . . , gk). For each trivial word W , we consider the
smallest possible s, and define ϕ(n) to be the maximum of these s for all trivial
words of length ≤ n.

fNote that the right-hand side in the expression for W need not be a reduced word. (Ed.)
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The Dehn function depends on the presentation, but the manner of its growthg

(quadratic, exponential, etc.) depends only on G. We have already seen that ϕ is
quadratic for Z2 and exponential for G1; here is an example of a linear ϕ.

Let G3 be the group with presentation 〈a, b, c, d | aba−1b−1cdc−1d−1〉 (the fun-
damental group of the closed orientable surface of genus 2). Given a word W in
a, b, c, d, we can shorten it if it contains more than half of the relation (or its in-
verse), up to cyclic permutation. For instance, we may replace aba−1b−1c by dcd−1,
or d−1c−1bab−1 by c−1d−1a, or dc−1d−1ab by c−1ba, and so on. We then reduce
the resulting word (if possible) and repeat the process as long as possible.

Dehn showed (around 1910) that inG3, this procedure — called Dehn’s algorithm
— solves the word problem: W represents 1 if, and more importantly only if, the
above algorithm terminates with the empty word. Since the length of the word
decreases at each step, the number of operations is bounded by the length of the
word; thus G3 satisfies a linear isoperimetric inequality.

Groups in which the word problem can be solved by Dehn’s algorithm (shortening
the word whenever it contains more than half of a relation) have a Dehn function
that is at most linear. Conversely, one can show that a group with at most linear
Dehn function admits a presentation for which Dehn’s algorithm applies. These
groups are precisely the hyperbolic groups defined by Gromov around 1985; we will
discuss their geometric aspects below.

If G is not hyperbolic, its Dehn function is at least quadratic. On the other hand,
there is no “gap” beyond the exponent 2: N. Brady and M. Bridson have recently
shownh that the set of exponents α for which there exists a group whose Dehn
function is equivalent to nα is dense in [2,+∞). Note that the set of isomorphism
classes of finitely presented groups is countable, and therefore so is the set of these
α.

Knowing the Dehn function of a finitely presented group explicitly allows one
to solve the word problem algorithmically in that group: to determine whether
a word W of length n is trivial, it suffices to compare it with all expressions∏s
m=1 um(rjm)±1u−1m with s ≤ ϕ(n), of which there are only finitely many (the

lengths of the words um can be bounded a priori). Conversely, an algorithm that
solves the word problem makes it possible to compute ϕ.

It is known that there exist finitely presented groups in which the word problem
cannot be solved algorithmically, because the Dehn function is non-recursive: it
grows faster than any recursive function, thus no algorithm can compute it. There-
fore, in complete generality, nothing can be said about a group given by generators
and relations — not even whether the group is trivial or not. However, in most
cases, any algebraic or geometric information about G, even minimal, allows one
to analyze it.

gThe growth rate is captured by the following preorder (transitive, reflexive, but not antisymmetric

relation) on the set of nondecreasing functions defined on N: function ϕ is dominated by ψ if there
is C ∈ N such that ϕ(n) ≤ C · ψ(C · n+ C) + C for all n ∈ N. (Ed.)
hN. Brady and M. R. Bridson. There is only one gap in the isoperimetric spectrum. Geometric

and Functional Analysis 10, no. 5 (2000), pp. 1053-1070. (Ed.)
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6. The Hyperbolic Plane H2

Let us look at the group G3 from a geometric point of view (as Dehn did). Let
us try to construct a graph as we did for Z2. The graphi to consider is no longer of
degree 4, but of degree 8: from each vertex emerge 4 edges labeled a, b, c, d, and 4
edges arrive there. The cells of the grid are octagons, corresponding to the relation
aba−1b−1cdc−1d−1.

We can try to draw this graph, but we quickly run out of space to fit 8 edges at
each vertex: the Euclidean plane cannot be tiled by regular octagons. This graph
must actually be drawn not in the Euclidean plane, but in the hyperbolic plane H2.

Imagine a circular swimming pool (more mathematically, the open unit disk D
in the plane) filled with a viscous fluid that becomes denser as one approaches
the edge: the viscosity coefficient is proportional to 1

1−r2 , where r is the Euclidean

distance from the center of the disk. The (hyperbolic!) distance between two points
x, y in D is defined as the time it would take a swimmer to go from x to y.

There always exists a shortest path from x to y (called a geodesic), but it does not
appear straight to us: it bends toward the center of the disk to allow a faster route,
just as an airplane climbs in altitude to reduce air resistance. The geodesics are in
fact arcs of circles perpendicular to the boundary of D, as well as the diameters
(note that the boundary of D is “at infinity”; it cannot be reached in finite time).

Like the Euclidean plane, the hyperbolic plane is a homogeneous metric space:
any point can be sent to any other by an isometry; in particular, the center of D
plays no special role; any Möbius transformation of the complex plane that maps
D onto itself induces an isometry.

M. C. Escher used tilings
of H2; for example, Circle
Limit III evokes a tiling by
regular triangles and quadri-
laterals, separated by white
geodesic lines.

But hyperbolic plane has negative curvature,
whereas the Euclidean plane has zero curvature,
and the sphere has positive curvature.

To study G3, we tile H2 with regular octagons
whose sides are geodesic segments of equal length
and whose angles are 2π/8, in such a way that eight
octagons meet at each vertex. The graph associ-
ated with such a tiling is precisely the grid we were
seeking for G3.

The Dehn function of G3 is therefore linear, since
H2 satisfies a linear isoperimetric inequality: the
area enclosed by a curve can be bounded by a linear
function of its length. For example, a disk of radius
R has area 2π sinhR, which is comparable to its
perimeter 2π(coshR − 1). (It’s better to do jigsaw
puzzles in the hyperbolic plane: once you’ve placed
the border, you have already set a non-negligible
proportion of the pieces.)

Elementary geometry in H2 holds other sur-
prises. The Euclidean parallel postulate does not hold, and the sum of the angles
of a triangle is not equal to π: it is equal to π minus the area of the triangle; in
particular, the area of a triangle is at most π.

iHere we mean directed graph, that is, with oriented edges. (Ed.)
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Another fundamental property of H2 is the thinness of triangles: there exists a
constant δ (equal to log(2−

√
2+1)) such that every point on one side of a geodesic

triangle lies at distance at most δ from some point on one of the other two sides.
This property is called δ-hyperbolicity, or simply hyperbolicity.

7. Hyperbolic Groups and Quasi-Isometries

We have seen that the group Z2 resembles the Euclidean plane, while G3 resem-
bles the hyperbolic plane. Following M. Gromov, we formalize this idea by viewing
a group G, equipped with a finite generating set S, as a metric space: the distance
between two elements g and h of G is the minimal length of a word (written with
the elements of S) representing g−1h.

This discrete space is more easily visualized as the set of vertices of the Cayley
graph of G: we place an edge between two vertices g, h if h is obtained from g by
right-multiplication by an element of S, and we declare that each edge is a segment
of length 1. The distance between two points is then the length of a shortest path
connecting them (such a path is again called a geodesic).

The Cayley graphj of the free group G2 is a tree (it has no loops). That of Z2

is the square grid used earlier, with the so-called Manhattan (or taxicab) distance
(note that in general there may be several geodesics between two given points).
This distance is not the Euclidean one, which corresponds to “as the crow flies”,
but it is comparable: the ratio of the two distances lies between two strictly pos-
itive constants (here 1 and

√
2). Similarly, the Cayley graph of G3 is formed by

the geodesics bounding the octagons in the tiling of H2 mentioned above, with a
distance comparable to the hyperbolic distance.

A group G is called hyperbolic if there exists a constant δ such that its Cayley
graph is δ-hyperbolic, meaning that the triangles in the Cayley graph, like those in
H2, are thin. Thus G2 and G3 are hyperbolic, while Z2 is not (and neither is G1).

In our examples, we have always chosen the most natural, simplest generating
set. But a finitely generated group has infinitely many generating sets, and hence
infinitely many distinct Cayley graphs, so it is not immediately clear that all of
them are hyperbolic if one of them is.

In fact, all these graphs resemble one another — just as the Cayley graph of Z2

resembles the Euclidean plane and that of G3 resembles H2. This resemblance is
to be understood in the sense of quasi-isometry.

Two metric spaces X,Y are quasi-isometric if there exists a map f : X → Y and
a constant λ > 1 such that f does not distort distances too much for sufficiently
distant points (the ratio between dY (f(x), f(x′)) and dX(x, x′) lies between 1

λ and
λ whenever dX(x, x′) > λ), and f is almost surjective (every ball of radius λ in Y
contains a point of the image).

Every bounded space is quasi-isometric to a point; quasi-isometry is meant to
capture asymptotic properties of spaces — that is, properties “at infinity.” Two
geodesic spaces that are quasi-isometric are simultaneously hyperbolic or not, which
justifies the definition of a hyperbolic group given above.

Thus, to every finitely generated group one can associate a well-defined metric
space, up to quasi-isometry. One can therefore speak of groups that are quasi-
isometric to each other. Many algebraic or geometric properties of groups are

jwith respect to a free generating set. (Ed.)
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invariant under quasi-isometry: for example, being finite, finitely presented, con-
taining a commutative subgroup of finite index, being hyperbolic, or having a Dehn
function of a given growth type. In general, one may attempt to classify groups up
to quasi-isometry.

Let us mention a recent rigidity result due to Farb and Mosher.k For an integer
n ≥ 2, let Hn be the subgroup of Aff(R) generated by x 7→ x + 1 and x 7→ nx (so
H2 is the G1 studied above). If n is a power of m, then Hn is a subgroup of finite
index in Hm, hence quasi-isometric to it. Conversely, Farb and Mosher have shown
that Hn and Hm are quasi-isometric if and only if n and m are powers of the same
integer, and (essentially) that any finitely generated group quasi-isometric to some
Hn contains a finite-index subgroup isomorphic to Hnp .

8. Literature

Steve Gersten, Introduction to hyperbolic and automatic groups, Summer School
in Group Theory in Banff, 1996, 45—70, CRM Proc. Lecture Notes, 17, Amer.
Math. Soc., Providence, RI, 1999.

Mikhail Gromov, Hyperbolic groups. In Essays in group theory (pp. 75-263).
New York, NY: Springer New York. (1987)

Etienne Ghys, Pierre de la Harpe (editors), Sur les groupes hyperboliques
d’après Mikhael Gromov, Progress in Mathematics 83, Birhäuser.
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